This invention relates, in general, to the field of compression-molded, composite panels with cellulose-based cores and, in particular, to assemblies including such panels with hinged mounting flanges.
Sandwich-type composite panels including cores have very important characteristics because of their light weight and high strength. Conventionally, such panels are constructed by sandwiching a core having a large number of cavities and having low strength characteristics between two outer layers or skins, each of which is much thinner than the core but has excellent mechanical characteristics.
The prior art discloses a method of making a panel of sandwich-type composite structure having a cellular core in a single processing step. In that method, the panel is made by subjecting a stack of layers of material to cold-pressing in a mold. As shown in
Such a method is particularly advantageous because of the fact that it makes it possible, in a single operation, to generate cohesion and bonding between the various layers of the composite structure as shown in
Panels of sandwich-type composite structure having a cellular core have rigidity characteristics sufficient to enable mechanical structures subjected to large stresses to be reinforced structurally without making them too heavy. Such panels are in common use in shipbuilding, aircraft construction, and rail vehicle construction.
To maximize the functionality of such panels, it is known, in particular, that hinges can be added so that the panels can be hinged to other panels. Such hinges typically are separate parts that are fixed to the panels by gluing, welding, riveting, or some other fastening technique.
Such hinges are fixed to the sandwich-structure composite panels in a separate and subsequent operation, after said panels have been formed. That subsequent operation requires an additional workstation, be it automated or otherwise, which increases, in particular, the manufacturing time and cost of the finished parts.
In addition, the fact that separate, external parts are mounted on a composite panel of the sandwich-type is a source of quality defects, and thus adds to the cost of making such panels.
Published U.S. Patent Application 2005/0189674 discloses a method of making a composite panel of sandwich structure provided with a hinge. The panel includes a stack made up of a first skin of a reinforced thermoplastics material, a cellular core made of a thermoplastics material, and a second skin made of a reinforced thermoplastics material. The panel is formed by pressing the stack in a mold. The first and second skins are preheated to a softening temperature. As shown in
Other U.S. patent documents related to the present invention include: U.S. Pat. Nos. 5,298,694; 5,502,930; 5,915,445; 5,979,962; 6,050,630; 6,102,464; 6,435,577; 6,537,413; 6,631,785; 6,655,299; 6,659,223; 6,682,675; 6,793,747; 6,748,876; 6,790,026; 6,682,676; 6,823,803; 6,843,525; 6,890,023; 6,981,863; 7,014,259; 7,090,274; 7,093,879; 7,264,685; 7,320,739; 7,402,537; 7,419,713; 7,837,009; 7,909,379; 7,918,313; 7,919,031; 8,117,972; 2006/0255611; 2008/0185866; 2011/0315310; 2012/0315429; and 2011/0315310.
One problem associated with prior art assemblies having such panels as load floors in the automotive industry is that the assemblies typically require many assembly steps often involving costly labor which adds to the cost and time of assembly manufacture. Also, some of the materials making up such assemblies are often non-recyclable.
Some panel assemblies such as load floor assemblies have components which are pivotable with metal hinges. However, such hinges are often unsightly and heavy and the components are difficult and unwieldly to pivot with a single hand.
An object of at least one embodiment of the present invention is to provide an assembly, such as a vehicle floor panel assembly, including a pivotable component, which is light-weight, low-cost and aesthetically pleasing wherein a hinged mounting flange of the assembly is capable of withstanding repeated cyclic loading.
In carrying out the above object and other objects of at least one embodiment of the present invention, an assembly including a compression-molded, composite panel is provided. The panel includes first and second outer layers of fiber-reinforced, thermoplastic material, first and second sheets of thermoplastic adhesive and a core of cellulose-based material and having first and second portions positioned between the outer layers. The first portion of the core has a large number of cavities and the second portion of the core is substantially free of cavities. The second outer layer is bonded to the core by the second sheet by press molding. The first outer layer includes a first portion bonded to the first portion of the core by the first sheet by press molding and a second portion bonded to the second portion of the core to form a mounting flange pivotally connected to the first portion of the first outer layer. The assembly also includes a component mounted to the mounting flange to pivot with the mounting flange. The assembly further includes a living hinge which allows the mounting flange and the mounted component to pivot between different use positions relative to the first portion of the first outer layer.
The assembly may include at least one fastener for fastening the component to the mounting flange.
Each fastener may be a threaded fastener wherein the component includes a threaded part to hold the threaded fastener to the component.
The mounting flange may include at least one hole which extends completely through the mounting flange. Each fastener may be externally threaded. The threaded part may include an internally threaded hole. Each fastener may extend through its corresponding hole in the mounting flange and be threadedly secured within its internally threaded hole.
The assembly may further include a substantially continuous carpet layer bonded to an upper surface of the first outer layer including the first and second portions of the first outer layer to at least partially form a carpeted composite panel having a carpeted mounting flange. The living hinge may include a portion of the carpet layer.
The first outer layer may be made out of polymeric material wherein the living hinge is at least partially made out of the polymeric material.
The assembly may further include a second living hinge which facilitates or allows the mounting flange and the mounted component to pivot between the different use positions.
The assembly may further include a substantially continuous carpet layer bonded to an outer surface of the first outer layer including the first and second portions of the first outer layer to at least partially form a carpeted composite panel having a carpeted mounting flange. Each of the first and second living hinges may include a portion of the carpet layer.
A portion of the mounted component may have a reduced thickness to form a depression which receives the mounting flange.
A portion of the mounted component may have a reduced thickness to form a depression which receives the carpeted mounting flange wherein thickness of the carpeted mounting flange is substantially equal to depth of the depression.
The first outer layer including the first and second portions may be a fiber-reinforced, thermoplastic layer.
Further in carrying out the above object and other objects of at least one embodiment of the present invention, a vehicle assembly including a compression-molded, composite panel with a hinged mounting flange is provided. The panel includes first and second fiber-reinforced, thermoplastic outer layers, first and second sheets of thermoplastic adhesive and a core of cellulose-based material having first and second portions positioned between the outer layers. The first portion of the core has a large number of cavities and the second portion of the core is substantially free of cavities. The second outer layer is bonded to the core by the second sheet by press molding. The first outer layer has an outer surface and includes a first portion bonded to the first portion of the core by the first sheet by press molding and a second portion bonded to the second portion of the core to form a mounting flange pivotally connected to the first portion of the first outer layer. The assembly also includes a component mounted to the mounting flange to pivot with the mounting flange within the interior of the vehicle. The assembly further includes a living hinge which allows the mounting flange and the mounted component to pivot between different use positions relative to the first portion of the first outer layer.
The assembly may include a carpet layer such as a thermoplastic carpet layer bonded to the load bearing surface of the first outer layer. The thermoplastic of the first outer layer including the first and second portions and the carpet layer may be polypropylene.
The composite panel may have a thickness in the range of 5 to 25 mm.
The first outer layer may have a load bearing surface.
The core may be a cellular core.
The core may have a honeycomb structure.
Still further in carrying out the above object and other objects of at least one embodiment of the present invention, a vehicle floor panel assembly is provided. The assembly includes a compression-molded panel including first and second fiber-reinforced, thermoplastic outer layers, first and second sheets of thermoplastic adhesive and a core of cellulose-based material having first and second portions positioned between the outer layers. The first portion of the core has a large number of cavities and the second portion of the core is substantially free of cavities. The second outer layer is bonded to the core by the second sheet by press molding. The first outer layer has a load-bearing surface and includes a first portion bonded to the first portion of the core by the first sheet by press molding and a second portion bonded to the second portion of the core to form a mounting flange pivotally connected to the first portion of the first outer layer. The assembly also includes a component mounted to the mounting flange to pivot with the mounting flange in an interior of the vehicle. The assembly further includes a living hinge which allows the mounting flange and the mounted component to pivot between different use positions relative to the first portion of the first outer layer.
A portion of a carpet layer bonded to the load-bearing surface of the first outer layer may at least partially form the first living hinge. A second portion of the carpet layer may at least partially form the second living hinge.
Other technical advantages will be readily apparent to one skilled in the art from the following figures, descriptions and claims. Moreover, while specific advantages have been enumerated, various embodiments may include all, some or none of the enumerated advantages.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to the
Each panel of the panel assembly 10 (
The outer skin 20 is divided into a first portion bonded to a first portion of the core 24 and a second portion bonded to a second portion 30 of the core 20 which is substantially free of cavities (i.e. is substantially solid) to at least partially form a mounting flange 28 pivotally connected to the first portion of the skin 20 by the living hinge 12. In other words, as shown in
The assembly 10 also includes a component such as a thermoplastic component, generally indicated at 32, which is mounted to the mounting flange 28 to pivot with the mounting flange 28 about the living hinge 12. The living hinge 12 allows the mounting flange 28 and the mounted component 32 to pivot between different use positions relative to the first (right most as shown in
A portion 36 of the thermoplastic carpet layer 26 covers and is bonded to an upper surface of a plastic part 34 of the component 32 to provide an upper carpeted support surface. An intermediate portion of the layer 26 at least partially forms the living hinge 12. The living hinge 12 allows the carpeted mounting flange 28 to pivot between the different use positions.
The assembly 10 (of
Each screw 40 may be made from a wide range of materials, with steel being perhaps the most preferred, in many varieties. Where great resistance to corrosion is required, stainless steel, titanium, brass, bronze, monel or silicon bronze may be used. Galvanic corrosion of dissimilar metals can be prevented by a careful choice of material.
Some types of plastic, such as nylon or polytetrafluoroethylene (PTFE), can be threaded and used for fastenings requiring moderate strength and great resistance to corrosion or for the purpose of electrical insulation. A surface coating may be used to protect the fastener from corrosion (e.g. bright zinc plating for steel screws), to impart a decorative finish (e.g. jappaning) or otherwise alter the properties of the base material. Selection criteria of the screw materials include temperature, required strength, resistance to corrosion, joint material and cost.
The panel assembly 10 may also include a plastic mounted support or bar 34 which extends across the width of the storage area under the assembly 10 to support the component 32 and the panel of the assembly 10 at the living hinge(s) 12 or 12′.
The carpet layer 26 may be a resin carpet and the resin may be polypropylene. The carpet layer 26 may be made of a woven or nonwoven material (typically of the carpet type).
Referring now to
Referring now to
The cellular core 24 may be a honeycomb core. In this example, the cellular core 24 has an open-celled structure of the type made up of tubes or a honeycomb, and it is made mainly of polyolefin and preferably of polypropylene. It is also possible to use a cellular structure having closed cells of the foam type.
The member or component 32 may be made of a different material(s) to which the portion 36 of the carpet layer 26 is bonded.
Each of the skins 20 and 22 of each of the assemblies 10 may be fiber reinforced. The thermoplastic of the skins 20 and 22, the covering carpet layer 26 and the core 24 may be polypropylene. At least one of the skins 20 and 22 may be a woven skin, such as polypropylene skin. Each of the skins 20 and 22 may be reinforced with fibers, e.g., glass fibers, carbon fibers or natural fibers. At least one of the skins 20 and 22 may advantageously be made up of woven glass fiber fabric and of a thermoplastics material.
Each resulting hinged panel assembly 10 may have a thickness in the range of 5 to 25 mm. A depression 38 formed in the part 34 and in which the mounting flange 28 is secured may have a depth in the range of 2 to 10 mm.
In one example method of making the hinged panel assembly 10 including the mounting flange 28, stacks of material are pressed in a low pressure, cold-forming mold. With respect to a first part of the hinged panel assembly 10, the stack is made up of the first skin 20, the cellular core 24, the second skin 22 and a portion of the covering layer 26, and the stack is pressed at a pressure lying in the range of 10×105 Pa. to 30×105 Pa. The first and second skins 20 and 22 are preferably pre-heated to make them malleable and stretchable. Advantageously, in order to soften the first and second skins 20 and 22, respectively, heat is applied to a pre-assembly constituted by the stack made up of at least the first skin 20, of the cellular core 24, and the second skin 22 so that, while the first part of the panel of the assembly 10 is being formed in the mold, the first and second skins 20 and 22 have a forming temperature lying approximately in the range of 160° C. to 200° C., and, in this example, about 180° C. In like fashion, the mounting flange 28 may be formed. However, in forming the mounting flange 28, the living hinge 12 (or hinges 12′) may be formed by performing the method of the above-noted patent application entitled “Method of Making a Sandwich Type Composite Panel Having a Living Hinge and Panel Obtained by Performing the Method.”
The covering carpet layer 26 is substantially continuous and may be formed from separate pieces of thermoplastic resin carpet which are subsequently bonded or fused together, such as by heat and/or pressure to carpet the entire top support surface of the hinged panel assembly 10.
In summary,
Referring now to the
The panel 110 is typically manufactured via a thermo-compression process by providing the stack of material located or positioned within a low pressure, thermo-compression mold. As shown in
An optional substantially continuous covering or carpet layer, generally indicated at 122, made of thermoplastics material covers the first skin 112. The skins 112 and 114 and their respective sheets or film layers 118 and 120 (with the core 116 in between the layers 118 and 120) are heated typically outside of the mold (i.e. in an oven) to a softening temperature wherein the hot-melt adhesive becomes sticky or tacky. The mold is preferably a low-pressure, compression mold which performs a thermo-compression process on the stack of materials.
The step of applying the pressure compacts and reduces the thickness of the cellular core 116 and top and bottom surface portions of the cellular core 116 penetrate and extend into the film layers 118 and 120 without penetrating into and possibly encountering any fibers located at the outer surfaces of the skins 112 and 114 thereby weakening the resulting bond. Often times the fibers in the skins 112 and 114 are located on or at the surfaces of the skins as shown by skins 112′ and 112″ in
The carpet layer 122 may be a resin carpet and the resin may be polypropylene. The carpet layer 122 may be made of a woven or nonwoven material (typically of the carpet type).
An optional bottom layer of the panel 110 comprises a decorative, noise-management, covering layer 124 bonded to the bottom surface of the panel 110 to provide sound insulation and an aesthetically pleasing appearance to the bottom of the panel 110 if and when the bottom of the panel 116 is exposed to a passenger of the vehicle or others. In other words, the covering layer 124 reduces the level of undesirable noise in a passenger compartment of the vehicle.
The cellulose-based, cellular core 116 may be a honeycomb core. In this example, the cellular core has an open-celled structure of the type made up of a tubular honeycomb, and it is made mainly of cellulose and preferably of paper or cardboard. The sticky or tacky hot-melt adhesive extends a small amount into the open cells during the thermo-compression process. It is also possible to use a cellular structure having closed cells, a material, such as a wooden part, to which the top and bottom film layers 118 and 120, respectively, are bonded.
Each of the skins 112 and 114 may be fiber reinforced. The thermoplastic of the sheets or film layers 118 and 120, the skins 112 and 114, and the covering layers 122 and 124 may be polypropylene. Alternatively, the thermoplastic may be polycarbonate, polyimide, acrylonitrile-butadiene-styrene as well as polyethylene, polyethylene terphthalate, polybutylene terphthalate, thermoplastic polyurethanes, polyacetal, polyphenyl sulphide, cyclo-olefin copolymers, thermotropic polyesters and blends thereof. At least one of the skins 112 or 114 may be woven skin, such as polypropylene skin. Each of the skins 112 and 114 may be reinforced with fibers, e.g., glass fibers, carbon fibers, aramid and/or natural fibers. At least one of the skins 112 and 114 can advantageously be made up of woven glass fiber fabric and of a thermoplastics material.
The resulting panel 110 may have a thickness in the range of 5 to 25 mm.
In one example method of making the panel 110, a stack of material may be pressed in a low pressure, cold-forming mold (not shown). The stack is made up of the first skin 112, the first film layer 118, the paper cellular core 116, the second film layer 120, the second skin 114 and the covering layers 122 and 124, and is pressed at a pressure lying in the range of 10×105 Pa. to 30×105 Pa. The first and second skins 112 and 114, and the first and second film layers 118 and 120 are preferably pre-heated to make them malleable and stretchable. Advantageously, in order to soften the first and second skins 112 and 114, and their respective film layers 118 and 120, respectively, heat is applied to a pre-assembly made up of at least the first skin 112, the first film layer 118, the paper cellular core 116, the second skin 114 and the second film layer 120 so that, while the panel 110 is being formed in the mold, the first and second skins 112 and 114 and the film layers 118 and 120 have a forming temperature lying approximately in the range of 160° C. to 200° C., and, in this example, about 180° C.
The covering layer 122 is substantially continuous and may be formed from separate pieces of thermoplastic resin carpet which are subsequently bonded or fused together, such as by heat and/or pressure to carpet the entire top surface of the panel 110.
The bottom layer 124 of the panel 110 may be made of a nonwoven scrim 124 of fine denier, spunbond thermoplastic (i.e., polypropylene and/or polyester or other thermoplastic compatible to the process) fibers in the form of a sheet and having a weight in a range of 8 to 100 gsm (i.e., grams per square meter). Preferably, the weight is in a range of 17 to 60 gms. Also, preferably, the denier is in a range of 1.8 to 2.2.
The scrim 124 has an open mesh of nonwoven synthetic thermoplastic fibers including a plurality of adjacent openings. The scrim 124 both transmits light to the underlying layer and reflects light while reducing the level of undesirable noise from a different area of the vehicle. The scrim 124 may be manufactured in a color which is substantially the same, complements or is in contrast with the color of the upper carpet 122. Also, the panel 110 including the underlying scrim layer 124 and the carpet 122 can be made in a single compression molding step.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/603,552 filed Sep. 5, 2012. That application is a continuation-in-part of both U.S. patent application entitled “Carpeted Automotive Vehicle Load Floor Having a Living Hinge” filed Apr. 23, 2012 and having U.S. Ser. No. 13/453,201 (now U.S. Pat. No. 8,690,233) and U.S. patent application entitled “Method of Making a Sandwich-Type Composite Panel Having a Living Hinge and Panel Obtained by Performing the Method” also filed Apr. 23, 2012 and having U.S. Ser. No. 13/453,269 (now U.S. Pat. No. 8,795,465), both of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3568254 | Stolki | Mar 1971 | A |
3651563 | Volkmann | Mar 1972 | A |
3750525 | Waters et al. | Aug 1973 | A |
3955266 | Honami et al. | May 1976 | A |
4175995 | Walter | Nov 1979 | A |
4204822 | Hewitt | May 1980 | A |
4550854 | Schellenberg | Nov 1985 | A |
4717612 | Shackelford | Jan 1988 | A |
4836380 | Walter et al. | Jun 1989 | A |
4941785 | Witten | Jul 1990 | A |
5026445 | Mainolfi et al. | Jun 1991 | A |
5074726 | Betchel et al. | Dec 1991 | A |
5143778 | Shuert | Sep 1992 | A |
5198175 | Kato et al. | Mar 1993 | A |
5217563 | Niebling et al. | Jun 1993 | A |
5253962 | Close, Jr. | Oct 1993 | A |
5298694 | Thompson et al. | Mar 1994 | A |
5316604 | Fell | May 1994 | A |
5340183 | Horian | Aug 1994 | A |
5370521 | McDougall | Dec 1994 | A |
5417179 | Niemier et al. | May 1995 | A |
5423933 | Horian | Jun 1995 | A |
5474008 | Vespoli et al. | Dec 1995 | A |
5502930 | Burkette et al. | Apr 1996 | A |
5534097 | Fasano et al. | Jul 1996 | A |
5683782 | Duchene | Nov 1997 | A |
5700050 | Gonas | Dec 1997 | A |
5744210 | Hofmann et al. | Apr 1998 | A |
5750160 | Weber et al. | May 1998 | A |
5911360 | Schellenberg | Jun 1999 | A |
5915445 | Rauenbusch | Jun 1999 | A |
5928735 | Padmanabhan et al. | Jul 1999 | A |
5979962 | Balentin et al. | Nov 1999 | A |
6050630 | Hochet | Apr 2000 | A |
6066217 | Dibble et al. | May 2000 | A |
6102464 | Schneider | Aug 2000 | A |
6102630 | Schneider et al. | Aug 2000 | A |
6280551 | Hilligoss | Aug 2001 | B1 |
6435577 | Renault | Aug 2002 | B1 |
6537413 | Hochet et al. | Mar 2003 | B1 |
6546694 | Clifford | Apr 2003 | B2 |
6615762 | Scott | Sep 2003 | B1 |
6631785 | Khambete et al. | Oct 2003 | B2 |
6655299 | Preisler et al. | Dec 2003 | B2 |
6659223 | Allison et al. | Dec 2003 | B2 |
6682675 | Vandangeot et al. | Jan 2004 | B1 |
6682676 | Renault et al. | Jan 2004 | B1 |
6748876 | Preisler et al. | Jun 2004 | B2 |
6752443 | Thompson et al. | Jun 2004 | B1 |
6790026 | Vandangeot et al. | Sep 2004 | B2 |
6793747 | North et al. | Sep 2004 | B2 |
6823803 | Preisler | Nov 2004 | B2 |
6825803 | Wixforth et al. | Nov 2004 | B2 |
6843525 | Preisler | Jan 2005 | B2 |
6890023 | Preisler et al. | May 2005 | B2 |
6905155 | Presley et al. | Jun 2005 | B1 |
6926348 | Krueger et al. | Aug 2005 | B2 |
6945594 | Bejin et al. | Sep 2005 | B1 |
6981863 | Renault et al. | Jan 2006 | B2 |
7014259 | Heholt | Mar 2006 | B2 |
7059646 | DeLong et al. | Jun 2006 | B1 |
7059815 | Ando et al. | Jun 2006 | B2 |
7090274 | Khan et al. | Aug 2006 | B1 |
7093879 | Putt et al. | Aug 2006 | B2 |
7121128 | Kato et al. | Oct 2006 | B2 |
7121601 | Mulvihill et al. | Oct 2006 | B2 |
7188881 | Sturt et al. | Mar 2007 | B1 |
7204056 | Sieverding | Apr 2007 | B2 |
7207616 | Sturt | Apr 2007 | B2 |
7222915 | Philippot et al. | May 2007 | B2 |
7264685 | Katz et al. | Sep 2007 | B2 |
7320739 | Thompson, Jr. et al. | Jan 2008 | B2 |
7393036 | Bastian et al. | Jul 2008 | B2 |
7402537 | Lenda et al. | Jul 2008 | B1 |
7419713 | Wilkens et al. | Sep 2008 | B2 |
7530322 | Angelini | May 2009 | B2 |
7628440 | Bernhardsson et al. | Dec 2009 | B2 |
7713011 | Orszagh et al. | May 2010 | B2 |
7837009 | Gross et al. | Nov 2010 | B2 |
7854211 | Rixford | Dec 2010 | B2 |
7909379 | Winget | Mar 2011 | B2 |
7918313 | Gross et al. | Apr 2011 | B2 |
7919031 | Winget et al. | Apr 2011 | B2 |
7942475 | Murray | May 2011 | B2 |
7963243 | Quigley | Jun 2011 | B2 |
8052237 | Althammer et al. | Nov 2011 | B2 |
8062762 | Stalter | Nov 2011 | B2 |
8069809 | Wagenknecht et al. | Dec 2011 | B2 |
8117972 | Winget et al. | Feb 2012 | B2 |
8133419 | Burks et al. | Mar 2012 | B2 |
8262968 | Smith et al. | Sep 2012 | B2 |
8298675 | Alessandro et al. | Oct 2012 | B2 |
8316788 | Willis | Nov 2012 | B2 |
8475884 | Kia | Jul 2013 | B2 |
8622456 | Preisler et al. | Jan 2014 | B2 |
8651549 | Raffel et al. | Feb 2014 | B2 |
8690233 | Preisler et al. | Apr 2014 | B2 |
8764089 | Preisler et al. | Jul 2014 | B2 |
8795465 | Preisler et al. | Aug 2014 | B2 |
8795807 | Preisler et al. | Aug 2014 | B2 |
8808827 | Preisler et al. | Aug 2014 | B2 |
8808828 | Preisler et al. | Aug 2014 | B2 |
8808829 | Preisler et al. | Aug 2014 | B2 |
8808830 | Preisler et al. | Aug 2014 | B2 |
8808831 | Preisler et al. | Aug 2014 | B2 |
8808833 | Preisler et al. | Aug 2014 | B2 |
8808834 | Preisler et al. | Aug 2014 | B2 |
8808835 | Preisler et al. | Aug 2014 | B2 |
8834985 | Preisler et al. | Sep 2014 | B2 |
8852711 | Preisler et al. | Oct 2014 | B2 |
8859074 | Preisler et al. | Oct 2014 | B2 |
8883285 | Preisler et al. | Nov 2014 | B2 |
9302315 | Verbeek et al. | Apr 2016 | B2 |
9364975 | Preisler et al. | Jun 2016 | B2 |
20040078929 | Schoemann | Apr 2004 | A1 |
20050189674 | Hochet et al. | Sep 2005 | A1 |
20060008609 | Snyder et al. | Jan 2006 | A1 |
20060121244 | Godwin et al. | Jun 2006 | A1 |
20060255611 | Smith et al. | Nov 2006 | A1 |
20070065264 | Sturt et al. | Mar 2007 | A1 |
20070069542 | Steiger et al. | Mar 2007 | A1 |
20070256379 | Edwards | Nov 2007 | A1 |
20070258786 | Orszagh et al. | Nov 2007 | A1 |
20080169678 | Ishida et al. | Jul 2008 | A1 |
20080185866 | Tarrant et al. | Aug 2008 | A1 |
20080193256 | Neri | Aug 2008 | A1 |
20090108639 | Sturt et al. | Apr 2009 | A1 |
20100014935 | Jevaney | Jan 2010 | A1 |
20100026031 | Jouraku | Feb 2010 | A1 |
20100086728 | Theurl et al. | Apr 2010 | A1 |
20100170746 | Restuccia et al. | Jul 2010 | A1 |
20100206467 | Durand et al. | Aug 2010 | A1 |
20110260359 | Durand et al. | Oct 2011 | A1 |
20110315310 | Trevisan et al. | Dec 2011 | A1 |
20120247654 | Piccin et al. | Oct 2012 | A1 |
20120315429 | Stamp et al. | Dec 2012 | A1 |
20130031752 | Davies | Feb 2013 | A1 |
20130075955 | Piccin et al. | Mar 2013 | A1 |
20130137798 | Piccin | May 2013 | A1 |
20130278002 | Preisler et al. | Oct 2013 | A1 |
20130278003 | Preisler et al. | Oct 2013 | A1 |
20130278007 | Preisler et al. | Oct 2013 | A1 |
20130278008 | Preisler et al. | Oct 2013 | A1 |
20130278009 | Preisler et al. | Oct 2013 | A1 |
20130278015 | Preisler et al. | Oct 2013 | A1 |
20130278018 | Preisler et al. | Oct 2013 | A1 |
20130278019 | Preisler et al. | Oct 2013 | A1 |
20130278020 | Preisler et al. | Oct 2013 | A1 |
20130280459 | Nakashima et al. | Oct 2013 | A1 |
20130280469 | Preisler et al. | Oct 2013 | A1 |
20130280472 | Preisler et al. | Oct 2013 | A1 |
20130312652 | Preisler et al. | Nov 2013 | A1 |
20130316123 | Preisler et al. | Nov 2013 | A1 |
20130333837 | Preisler et al. | Dec 2013 | A1 |
20130341971 | Masini et al. | Dec 2013 | A1 |
20140077518 | Preisler et al. | Mar 2014 | A1 |
20140077530 | Preisler et al. | Mar 2014 | A1 |
20140077531 | Preisler et al. | Mar 2014 | A1 |
20140154461 | Preisler et al. | Jun 2014 | A1 |
20140225296 | Preisler et al. | Aug 2014 | A1 |
20140335303 | Preisler et al. | Nov 2014 | A1 |
20150130105 | Preisler et al. | May 2015 | A1 |
20150130220 | Preisler et al. | May 2015 | A1 |
20150130221 | Preisler et al. | May 2015 | A1 |
20150130222 | Preisler et al. | May 2015 | A1 |
20150132532 | Preisler et al. | May 2015 | A1 |
20160059446 | Lofgren | Mar 2016 | A1 |
Entry |
---|
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,403; date mailed Jan. 29, 2016. |
Non-Final Office Action, related U.S. Appl. No. 13/762,879; dated Feb. 13, 2015. |
Non-Final Office Action, related U.S. Appl. No. 13/479,974; dated Feb. 13, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 13/603,552; dated Feb. 18, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/087,563 date mailed Mar. 3, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/087,591; date mailed Mar. 12, 2015. |
Office Action; U.S. Appl. No. 13/762,956; notification date Apr. 17, 2015. |
Office Action; U.S. Appl. No. 14/603,413; notification date Apr. 23, 2015. |
Corrected Notice of Allowability; related U.S. Appl. No. 14/603,401; dated Jun. 23, 2016. |
Dffice Action; related U.S. Appl. No. 14/603,418; dated Jun. 16, 2016. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/444,164; dated Jul. 15, 2016. |
Office Action; related U.S. Appl. No. 14/603,397; dated Jul. 21, 2016. |
Office Action; related U.S. Appl. No. 14/087,563; notification date Jul. 20, 2015. |
Office Action; related U.S. Appl. No. 13/762,879; notification date Jul. 31, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/087,579; date mailed Aug. 3, 2015. |
Office Action; Related U.S. Appl. No. 13/479,974; Date of mailing Oct. 15, 2014. |
Office Action; related U.S. Appl. No. 13/479,974; date of mailing Mar. 20, 2014. |
Office Action; related U.S. Appl. No. 13/686,362; date of mailing Mar. 25, 2014. |
Office Action; related U.S. Appl. No. 13/523,253; date of mailing Mar. 25, 2014. |
Office Action; related U.S. Appl. No. 13/688,972; date of mailing Mar. 28, 2014. |
Office Action; related U.S. Appl. No. 13/687,232; date of mailing Mar. 28, 2014. |
Office Action; related U.S. Appl. No. 13/689,809; date of mailing Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/687,213; date of mailing Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/690,265; date of mailing Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/762,904; date of mailing Apr. 8, 2014. |
Office Action; related U.S. Appl. No. 13/762,800; date of mailing Apr. 8, 2014. |
Office Action; related U.S. Appl. No. 13/762,861; date of mailing Apr. 9, 2014. |
Office Action; related U.S. Appl. No. 13/690,566; date of mailing Apr. 9, 2014. |
Office Action; related U.S. Appl. No. 13/762,832; date of mailing Apr. 11, 2014. |
Office Action; related U.S. Appl. No. 13/762,921; date of mailing Apr. 14, 2014. |
Notice of Allowance; related U.S. Appl. No. 13/686,388; date of mailing Apr. 15, 2014. |
Related U.S. Appl. No. 13/690,566, filed Nov. 30, 2012. |
Related U.S. Appl. No. 13/762,921, filed Feb. 8, 2013. |
Related U.S. Appl. No. 13/762,956, filed Feb. 8, 2013. |
Office Action; related U.S. Appl. No. 13/453,201 (now U.S. Pat. No. 8,690,233); date of mailing Nov. 20, 2013. |
Office Action; related U.S. Appl. No. 13/523,209 (now U.S. Pat. No. 8,622,456) date of mailing Apr. 29, 2013. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 14/603,397; date mailed Oct. 17, 2016. |
Office Action; related U.S. Appl. No. 14/603,407; notification date Oct. 4, 2016. |
Office Action; related U.S. Appl. No. 14/603,430; notification date Sep. 14, 2016. |
Office Action; related U.S. Appl. No. 14/603,404; notification date Aug. 25, 2016. |
Number | Date | Country | |
---|---|---|---|
20150145276 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13603552 | Sep 2012 | US |
Child | 14603404 | US | |
Parent | 13453201 | Apr 2012 | US |
Child | 13603552 | US | |
Parent | 13453269 | Apr 2012 | US |
Child | 13453201 | US |