The invention relates to the assembly of a part, made of a material having no plastic domain, to a member comprising a different type of material.
Current assemblies including a silicon-based part are generally secured by bonding. This type of operation requires extremely delicate application which makes it expensive.
It is an object of the present invention to overcome all or part of the aforecited drawbacks by providing an adhesive-free assembly which can secure a part made of a material with no plastic domain to a member comprising a ductile material, such as, for example, a metal or metal alloy.
The invention therefore relates to an assembly of an axially extending member, made of a first material, in the aperture of a part made of a second material having no plastic domain, characterized in that the part includes pierced holes forming elastic deformation means distributed around the aperture therein and in that said member includes an elastically and plastically deformed, radially flared portion which radially grips or champs the wall of said part surrounding the aperture, by stressing said elastic deformation means to secure the assembly in a manner that is not destructive for said part.
This configuration advantageously enables the unit comprising the part-member to be secured without bonding to an ordinary, precision controlled member, while ensuring that the part is not subject to destructive stresses, even if is is formed, for example, from silicon.
In accordance with other advantageous features of the invention:
Moreover, the invention relates to a timepiece, characterized in that it includes an assembly according to any of the preceding variants.
Finally, the invention relates to a method of assembling an axially extending member, made of a first material, in a part made of a second material having no plastic domain. The method includes the following steps:
This method advantageously allows the member to be radially secured without any axial stress being applied to the part. Indeed, advantageously according to the invention, only radial, elastic deformation is applied to the part. Finally, this method unites the assembly comprising the part-member by adapting to the dispersions in manufacture of the various components.
In accordance with other advantageous features of the invention:
Other features and advantages will appear clearly from the following description, given by way of non-limiting indication, with reference to the annexed drawings, in which:
As explained above, the invention relates to an assembly and the method of assembling the same, for uniting a fragile material, i.e. which has no plastic domain, such as a silicon-based material, with a ductile material such as a metal or metal alloy.
This assembly was devised for applications within the field of horology. However, other domains may very well be envisaged, such as, notably, aeronautics, jewellery, the automobile industry or tableware.
In the field of horology, this assembly is required due to the increasing importance of fragile materials, such as those based on silicon, quartz, corundum or more generally ceramics. By way of example, it is possible to envisage forming the balance spring, balance, pallets, bridges or even the wheel sets, such as the escape wheels, completely or partially from a base of fragile materials.
However, the constraint of always having to use ordinary steel arbours, the fabrication of which has been mastered, is difficult to reconcile with the use of parts having no plastic domain. Indeed, when tests were carried out, it was impossible to drive in a steel arbour and this systematically broke fragile parts, i.e. those with no plastic domain. For example, it became clear that the shearing generated by the entry of the metallic arbour into the aperture in a silicon part systematically breaks the part.
This is why the invention relates to the assembly of an axially extending member, made of a first material, for example a ductile material such as steel, in the aperture of a part made of a second material having no plastic domain, such as a silicon-based material, by deforming a portion of the member which is mounted in the aperture of said part.
According to the invention, said member includes a radially flared portion that is elastically and plastically deformed so as to radially grip or clamp the wall of said part surrounding the aperture, by stressing the elastic deformation means thereof, in order to secure the assembly in a manner that is not destructive for said part.
Moreover, in a preferred manner, the shape of the radially flared portion of the member present in the aperture substantially matches the aperture in the part, so as to exert a substantially uniform radial stress on the wall of the part surrounding said aperture. Indeed, when research was carried out, it was clear that it was preferable for the flared portion of the member present in the aperture to uniformly distribute the radial stresses induced by its deformation on the wall of the part surrounding the aperture.
Consequently, if the aperture in the fragile part is circular, it is preferable for the external wall of the flared portion of the member present in the aperture to be substantially in the shape of a continuous cylinder, i.e. with no radial slot or axial pierced hole, to prevent any localised stresses on a weak portion of the wall of the part surrounding the aperture, which could start to cause breaking points.
Of course, the shape of the aperture in the fragile part may differ, for example by being asymmetrical, to prevent any relative movements between the elements of the assembly. This asymmetrical aperture may therefore be, for example, substantially elliptical.
This interpretation also justifies not using a washer on the top or bottom part of the flared portion of the member present in the aperture. Indeed, during the deformation, this type of washer would transmit part of the axial deformation force onto the top (or the bottom) of the fragile part. Hence, the shearing exerted, in particular, by the edges of the washer on the top (or bottom) of the fragile part similarly generates localised stresses that could cause breaking points.
Consequently, if the section of the aperture is circular, the flared portion of the member present in the aperture (the shape of which matches the aperture) may be interpreted as an unbroken disc with continuous external walls, i.e. without any grooves or more generally any discontinuity of material. Thus, via elastic and plastic deformation, the matching shape of the flared portion of the member present in the aperture therefore enables a substantially uniform radial stress to be generated over a maximised surface area of the wall of the part around the aperture.
Finally, according to the invention, the part includes pierced holes forming elastic deformation means, which is distributed around and at a distance from the aperture and which is intended to absorb said radial forces and to release them once the stress from the tools has been relaxed so as, eventually, to secure the assembly in a manner that is not destructive for said part.
The assembly according to the invention will be better understood with reference to
In the case of
The escape wheel 3, and more generally wheel set 3 includes, by way of example, an assembly 22 for securing the member, which here is pivot pin 27, to body 25 of wheel 3. As seen in
It is thus immediately clear that the example assembly 22 can be applied to any type of wheel set. Further, in addition to flared portion 24, member 27 may comprise an integral pinion so as to form the finished wheel set.
Thus, as illustrated in
Examples of pierced holes are shown in
As seen in
In a first variant of the first embodiment illustrated in
In a second variant of the first embodiment illustrated in
Advantageously, according to the invention, the series of holes 31, 33 and 35 and slots 36 are used to form elastic deformation means capable of absorbing radial stresses, i.e. forces exerted from the centre of aperture 28 towards the wall of body 25 surrounding said circular aperture.
Of course, the two or three series may be closer to or further from each other and/or of different shapes and/or different dimensions according to the maximum desired clearance and the desired stress for deforming beams 32, 34.
By way of example, an alternative to
Preferably, pierced holes 26, 26′, 26″, 26′″ extend over a width comprised between 100 μm and 500 μm from the wall of body 25 surrounding aperture 28. Further, slots 36 are comprised between 15 μm and 40 μm. Finally, the section of aperture 28 is preferably comprised between 0.5 and 2 mm.
According to a second embodiment illustrated in
Thus,
As seen in
Further, each triangular hole 53 communicates with aperture 28 via a notch 57.
In a variant of the second embodiment illustrated in
Of course, as in the first embodiment, the two or three series may be closer to or further from each other and/or of different shapes and/or of different dimensions according to the maximum desired clearance and the desired stress for deforming beams 52, 54.
Preferably, pierced holes 46, 46′ extend over a width comprised between 100 μm and 500 μm from the wall of body 25 surrounding aperture 28. Further, slots 56 and notches 57 are comprised between 15 μm and 40 82 m. Finally, the section of aperture 28 is preferably comprised between 0.5 and 2 mm.
The method of assembly will now be explained with reference to the schematic
This step may be achieved by dry or wet etching, for example DRIE (deep reactive ionic etching).
Further, in a second step, the method consists in forming the axially extending member, which is a pivot pin 27 in the example of
Of course, the first two steps do not have to observe any particular order and may even be performed at the same time.
In a third step, flared portion 24 is inserted into aperture 28 without any contact. This means, as seen in
Preferably, the difference between the section e1 of aperture 28 and the external section e4 of flared portion 24 is approximately 10 μm, i.e. a gap of around 5 μm, which separates body 25 of part 3 relative to flared portion 24 of member 27.
Further, preferably, according to the invention, flared portion 24 and, incidentally, member 27, is held in aperture 28 via one 21 of the tools 20, 21 used for the deformation step. Finally, in a preferred manner, tool 21 includes a recess 29 for receiving a portion of member 27.
Finally, the method includes a fourth step, which consists in elastically and plastically deforming flared portion 24 of member 27 by moving tools 20, 21 towards each other in axial direction A, so as to exert a uniform radial stress B against the wall of the part 3 surrounding aperture 28 by stressing the elastic deformation means of part 3, i.e. pierced holes 26.
Thus, as seen in
Preferably according to the invention, the parameters of the deformation are set so that the clamping force is greater at the gap between the non-deformed flared portion 24 and the wall of body 25 surrounding aperture 28. Preferably, the clamping force generates a displacement which is comprised between 8 and 20 82 m.
Consequently, the elastic and plastic deformation of flared portion 24 causes the elastic deformation of body 25 around aperture 28, so as to secure member 27, and thus its deformed flared portion 24, to body 25 of wheel 3, as seen in
Advantageously according to the invention, it is possible to secure member 27 from any side of body 25 of wheel 3. Further, no axial force (which by definition is likely to be destructive) is applied to body 25 of wheel 3 during the process. Only radial elastic deformation is applied to body 25. It is also to be noted that the use of the radially flared portion 24 preferably allows uniform stress to be exerted on a maximised surface area of the wall of body 25 around circular aperture 28, during the radial deformation B of flared portion 24, in order to avoid causing any breaking points in the fragile material of wheel 3 and to adapt to any dispersions in fabrication of the various components.
Of course, this invention is not limited to the illustrated example but is capable of various variants and alterations that will appear to those skilled in the art. In particular, the pierced holes of the part made of fragile material may include more or fewer series of holes than the embodiments presented hereinbefore. Moreover, the embodiments presented here may be combined with each other depending upon the intended application.
Radially flared portion 24 may also have a different geometry so as to optimise or “programme” the deformation towards body 25. For example, it is possible to envisage locally minimising or increasing the thickness of flared portion 24 so as to favour one sense of deformation relative to the other in direction B. By way of example, it is therefore possible to envisage making a conical recess coaxial to member 27, so as to facilitate radial orientation B, but also to make the induced stress progressive.
It is also possible to use the assembly 2, 12, 22, 62 in place of elastic means 48 or the cylinders 63, 66 of WO Patent No. 2009/115463 so as to fix a single-piece sprung balance resonator to a pivot pin.
Of course, two parts like those described hereinbefore may also be secured to the same arbour using two distinct assemblies 2, 12, 22, 62 so as to make their respective movements integral. It is clear that the same arbour will be formed with two radially flared portions 4, 14, 24, 64, which are intended to be deformed.
Finally, assembly 2, 12, 22, 62 according to the invention can also unite any type of timepiece or other member, whose body is formed of a material having no plastic domain (silicon, quartz, etc.) with an arbour, such as, for example, a tuning fork resonator or more generally a MEMS (Microelectromechanical system).
Number | Date | Country | Kind |
---|---|---|---|
10196597.8 | Dec 2010 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/070693 | 11/22/2011 | WO | 00 | 6/17/2013 |