This application is a U.S. National Phase patent application of PCT Application No. PCT/JP2017/031759, filed Sep. 4, 2017 which claims the benefit of priority from Japanese Patent Application No. 2017-108306, filed May 31, 2017.
One aspect of the present invention relates to an assembly structure.
Assembly toys with which assembly structures of various shapes can be coupled to produce arbitrary forms have attracted widespread popularity as intellect- or emotion-developing toys, among not only children but also adults. For example, Patent Literature 1 discloses an assembly structure including cylindrical parts with an end closed on one side. In the assembly structure, each of the cylindrical part has three cylindrical protrusions protruding from the end on the one side and a cylindrical boss portion within the cylindrical part. The assembly structure can be coupled to another assembly structure by fitting three protrusions of the other assembly structure between an inner peripheral surface of the cylindrical part and the boss portion.
Patent Literature 1: Japanese Unexamined Patent Publication No. 2016-101219
The assembly toy as described above has a limitation of assembly methods of the assembly structure.
One aspect of the present invention has an object to provide an assembly structure capable of various assembly methods.
An assembly structure according to one aspect of the present invention is an assembly structure including a cylindrical part with an end closed on one side. The cylindrical part has three columnar protrusions that protrude from the end to one side and a cylindrical boss portion that is positioned within the cylindrical part such that three protrusions of another assembly structure are fitted between the boss portion and an inner peripheral surface of the cylindrical part. The inner diameter of the cylindrical part is smaller than the sum of double the outer diameter of the protrusion and the outer diameter of the boss portion. When one protrusion of the other assembly structure is arranged on the outside of the cylindrical part, the two remaining protrusions of the other assembly structure are fitted between the boss portion and the inner peripheral surface of the cylindrical part.
In the assembly structure, the inner diameter of the cylindrical part is smaller than the sum of double the outer diameter of the protrusion and the outer diameter of the boss portion. That is, the outer diameter of the protrusion is larger than the distance between the inner peripheral surface of the cylindrical part and the boss portion. Therefore, when the protrusions of another assembly structure are fitted between the inner peripheral surface of the cylindrical part and the boss portion, the protrusion is sandwiched between the inner peripheral surface of the cylindrical part and the boss portion. Accordingly, the cylindrical part can be stably coupled to the cylindrical part of the other assembly structure. In addition, when one protrusion of the other assembly structure is arranged on the outside of the cylindrical part, the two remaining protrusions of the other assembly structure are fitted between the boss portion and the inner peripheral surface of the cylindrical part. In this manner, the cylindrical part can be stably coupled to the cylindrical part of the other assembly structure even by a method other than the method of fitting all three protrusions of the other assembly structure, thereby achieving various assembly methods.
In the assembly structure according to one aspect of the present invention, when two protrusions of the other assembly structure are fitted between the boss portion and the inner peripheral surface of the cylindrical part, the one remaining protrusion of the other assembly structure may be in contact with the outside of the cylindrical part. In this case, the protrusions of the other assembly structures are in contact with both the inside and outside of the cylindrical part. Accordingly, the cylindrical part can be more stably coupled to the cylindrical part of the other assembly structure.
In the assembly structure according to one aspect of the present invention, when one protrusion of the other assembly structure is arranged on the outside of the cylindrical part and the two remaining protrusions of the other assembly structure are fitted between the boss portion and the inner peripheral surface of the cylindrical part, the cylindrical part may rotate around a central axis of the cylindrical part as an axis of rotation with respect to the other assembly structure. In this case, for example, the assembly structure can further help develop children's intellect and emotion.
In the assembly structure according to one aspect of the present invention, as seen from one side, the three protrusions may be arranged such that the centers of the three protrusions constitute the peaks of a regular triangle and the central axis of the cylindrical part passes through the center of gravity of the regular triangle. In this case, it is possible to arbitrarily select two of the three protrusions of another assembly structure to be fitted between the boss portion and the inner peripheral surface of the cylindrical part.
The assembly structure according to one aspect of the present invention may include a further cylindrical part having the same shape as the cylindrical part and a connection part connecting the pair of cylindrical parts. In this case, the assembly structure includes the pair of cylindrical parts to allow further various assembly methods.
The assembly structure according to one aspect of the present invention allows various assembly methods.
An embodiment according to one aspect of the present invention will be described below in detail with reference to the accompanying drawings. In the following description, identical or equivalent elements will be given the same reference signs, and duplicated explanations thereof will be omitted.
The assembly structure 10 includes a pair of cylindrical parts 11 and a connection part 12. The paired cylindrical parts 11 are cylindrical members with one end 11a closed in the axial direction. The paired cylindrical parts 11 have the same shape. The paired cylindrical parts 11 are arranged axially parallel to each other. The cylindrical parts 11 serve as coupling parts when the assembly structure 10 is coupled to another assembly structure 10.
The connection part 12 connects the paired cylindrical parts 11. An axial length of the connection part 12 is almost half an axial length of the cylindrical part 11. The connection part 12 has a pair of side surfaces 12a extending from the outer peripheral surface of one cylindrical part 11 to the outer peripheral surface of the other cylindrical part 11. The paired side surfaces 12a are on opposite sides from each other. Each of the paired side surfaces 12a is formed in a concave arc shaped face.
Each of the paired side surfaces 12a has an arced surface formed at a central angle of 90° with the same diameter as that of the outer peripheral surface of the cylindrical part 11. The distance between the paired side surfaces 12a is shortest at the middle point between the paired cylindrical parts 11. The shortest distance between the paired side surfaces 12a is identical to the separation distance between the paired cylindrical parts 11. Accordingly, the assembly structure 10 and another assembly structure 10 can be coupled together in a cross shape by turning the assembly structure 10 upside down relative to other assembly structure 10, rotating them 90° relative to each other, and approaching them together in such a manner that the connection parts 12 overlap each other.
Each of the cylindrical parts 11 has three protrusions 13 and a boss portion 14. The three protrusions 13 are columnar members protruding from the end 11a toward one axial side. In one embodiment, the protrusions 13 are hollow columnar members. Alternatively, the protrusions 13 may be solid columnar members. The three protrusions 13 have the same shape, for example. The boss portion 14 is a cylindrical member protruding from the end 11a toward the other axial side. The axial length of the boss portion 14 is equal to the axial length of the cylindrical part 11. The boss portion 14 has a central axis aligned to the central axis of the cylindrical part 11 and is positioned in the cylindrical part 11. To couple the assembly structure 10 to another assembly structure 10, three protrusions 13 of the other assembly structure 10 are fitted between the outer peripheral surface of the boss portion 14 and an inner peripheral surface of the cylindrical part 11 of the assembly structure 10.
Each of the boss portions 14 has three flat face portions 15 on an inner peripheral surface and three curved face portions 16 on the inner peripheral surface. The three flat face portions 15 and the three curved face portions 16 are alternately arranged in the circumferential direction of the boss portion 14. The thickness of the curved face portions 16 in the radial direction takes on a constant value, and the thickness of the flat face portions 15 in the radial direction is larger than the constant value.
In the following description, one side of the cylindrical part 11 in the axial direction will also be called the upper side and the other side in the axial direction of the same will also be called the lower side. As seen from the upper side, the three protrusions 13 are arranged such that centers 13a of the three protrusions 13 constitute the peaks of a regular triangle, and the center of gravity G of the regular triangle overlaps the center of the cylindrical part 11. As seen from the upper side, it can be said that the centers 13a of the three protrusions 13 are positioned on a virtual circle c1 centered on the center of gravity G and having a radius equal to the distance between the center of gravity G and the centers 13a.
By the interferences, the inner diameter of the cylindrical part 11 is smaller than the sum of double the outer diameter of the protrusion 13 and the outer diameter of the boss portion 14. That is, in the assembly structure 10 and the other assembly structure 10 not coupled to each other as illustrated in
d1=2d2+d3−2α1−2α2
Therefore, when the assembly structure 10 and another assembly structure 10 are coupled to each other, the assembly structure 10 and the other assembly structure 10 deform elastically as a result of the interferences. Accordingly, the protrusions 13 of the other assembly structure 10 are sandwiched between the inner peripheral surface of the cylindrical part 11 and the outer peripheral surface of the boss portion 14, whereby the cylindrical part 11 of the assembly structure 10 can be stably coupled to the cylindrical part 11 of the other assembly structure 10. The interference widths α1 and α2 can be set to 0.02 to 0.08 mm, for example.
As illustrated in
d4=d1+2t
As illustrated in
d5=d4−2t−d2+2α1
d6=d1+2α1=d5+d2−2α1
The dimensions can be set as follows: d1=16.08 mm, d2=4.70 mm, d3=6.73 mm, d4=18.40 mm, d5=11.4 mm, d6=16.10 mm, t=1.1 to 1.2 mm, for example.
When two of the protrusions 13 of the other assembly structure 10 are fitted between the boss portion 14 and the inner peripheral surface of the cylindrical part 11, the one remaining protrusion 13 of the other assembly structure 10 is in contact with the outer periphery of the cylindrical part 11 of the assembly structure 10. In this manner, the three protrusions 13 of the other assembly structure 10 are in contact with both the inside and outside of the cylindrical part 11 of the assembly structure 10. Accordingly, the cylindrical part 11 of the assembly structure 10 can be coupled more stably to the cylindrical part 11 of the other assembly structure 10.
When one of the protrusions 13 of the other assembly structure 10 is arranged on the outside of the cylindrical part 11 of the assembly structure 10 and the two remaining protrusions 13 of the other assembly structure 10 are fitted between the outer peripheral surface of the boss portion 14 and the inner peripheral surface of the cylindrical part 11 of the assembly structure 10, the cylindrical part 11 rotates around the central axis of the cylindrical part 11 as an axis of rotation with respect to the other assembly structure 10. In this case, as seen from the upper side, center-to-center distance d7 between the cylindrical part 11 of the assembly structure 10 and the cylindrical part 11 of another assembly structure 10 is equal to the center-to-center distance between the cylindrical part 11 and the protrusion 13, that is, the radius of the virtual circle c1 (d5/2).
d4/2=d5−d2/2+α3
where d4/2 corresponds to the radius of the outer peripheral surface of the cylindrical part 11, d5 to double the center-to-center distance d7, and d2/2 corresponds to the radius of the outer peripheral surface of the protrusion 13.
The present invention is not limited to the foregoing embodiment but can be modified in various manners.
Each of the assembly structures 10 and 10A includes at least one cylindrical part 11.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2017-108306 | May 2017 | JP | national |
| Filing Document | Filing Date | Country | Kind |
|---|---|---|---|
| PCT/JP2017/031759 | 9/4/2017 | WO | 00 |
| Publishing Document | Publishing Date | Country | Kind |
|---|---|---|---|
| WO2018/220874 | 12/6/2018 | WO | A |
| Number | Name | Date | Kind |
|---|---|---|---|
| 3487579 | Brettingen | Jan 1970 | A |
| 3605322 | Matsubayashi et al. | Sep 1971 | A |
| 4037978 | Connelly | Jul 1977 | A |
| 5769681 | Greenwood, Sr. et al. | Jun 1998 | A |
| 5795210 | Kushner | Aug 1998 | A |
| 9345981 | Lama | May 2016 | B1 |
| 10994218 | Kogure | May 2021 | B2 |
| 20110045733 | Saigo et al. | Feb 2011 | A1 |
| 20130090033 | Moura | Apr 2013 | A1 |
| 20130252504 | Chang | Sep 2013 | A1 |
| 20150314210 | Lama et al. | Nov 2015 | A1 |
| 20160346708 | Yim | Dec 2016 | A1 |
| Number | Date | Country |
|---|---|---|
| 103505887 | Jan 2014 | CN |
| 105363220 | Mar 2016 | CN |
| 105980024 | Sep 2016 | CN |
| 102007038883 | Feb 2009 | DE |
| 2505430 | Mar 2014 | GB |
| S46-014182 | May 1971 | JP |
| S54-166995 | Nov 1979 | JP |
| 2004-222858 | Aug 2004 | JP |
| 2010-172568 | Aug 2010 | JP |
| 2015-226748 | Dec 2015 | JP |
| 2016-101219 | Jun 2016 | JP |
| 2016101219 | Jun 2016 | JP |
| 10-2014-0032118 | Mar 2014 | KR |
| 95008376 | Mar 1995 | WO |
| Entry |
|---|
| International Preliminary Report on Patentability with Written Opinion dated Dec. 12, 2019 for PCT/JP2017/031759. |
| International Search Report dated Nov. 7, 2017 for PCT/JP2017/031759. |
| Extended Search Report in corresponding European Application No. 17911511.8, dated May 14, 2020. |
| International Search Report dated Nov. 21, 2017 for PCT/JP2017/031804. |
| International Preliminary Report on Patentability with Written Opinion dated Dec. 12, 2019 for PCT/JP2017/031804. |
| Soei Patent and Law Firm, Statement of Related Matters, dated Dec. 8, 2020. |
| Number | Date | Country | |
|---|---|---|---|
| 20200316488 A1 | Oct 2020 | US |