1. Field of the Invention
The invention pertains to the field of engine timing drive assemblies. More particularly, the invention pertains to a system and method for assembling an engine timing drive.
2. Description of Related Art
Automobile engine timing drive components are commonly shipped as a kit. The components are sometimes packaged together in a relationship of how they are to be placed in the engine. The sprockets and chain may be placed in a molded tray in a timed relationship along with the pre-assembled mechanical tensioner. At the engine assembly plant, a chain and its sprockets may be mounted on the respective shafts as a timed unit, but the tensioners for the chain are individually mounted usually before the chain and sprockets are mounted.
In U.S. Patent Application Publication No. 2005/0130776 “A CASSETTE FOR SECURING SHIPPING AND ASSEMBLY OF A CAMSHAFT DRIVE AND TIMING SYSTEM”, the cassette is for a guide and a tensioner attached to a tensioner bracket, a chain, a camshaft sprocket, and a crankshaft sprocket. The cassette includes a body defining clearance holes and shoulder guides for placement of the camshaft sprocket, the crankshaft sprocket, and the chain. The cassette also includes at least one fastener engaging the body of the cassette to the tensioner bracket. When the body of the cassette is attached to the tensioner, the chain runs around the camshaft sprocket and the crankshaft sprocket. The guide and the tensioner are positioned in the same relationship and position on the chain as the components are installed on the engine. All components are pivotally placed for installation on the engine.
Referring to
Chain tensioners are commonly provided in a state of minimum extension to assist in assembly. Pins maintain the tensioner in the minimum extension state, and the pins are removed upon completion of the assembly to the engine. The mechanical tensioner is typically a sub-assembly including a pivoting face, pre-assembled blade springs, a bracket having mounting holes, a perpendicular pivot pin for the pivoting face, and a perpendicular tab on which a compliant face with pre-assembled springs is supported. In the prior art, with the chain wrapped around the sprockets and the tensioner secured in place, the sprockets have too little slack to be mounted on their respective shafts, and the space between the engine block and the chain is too small to allow the tensioner to pass through for assembly.
The assembly method includes packaging of items for shipment and secures components of the assembly in a fashion and in the related position required for further assembly, as a unit, to an engine that is in the process of being assembled. The timed assembly arrives at the engine plant secured together such that it allows handling, at least in part, as a single component and with its parts arranged in the relative position required for proper timing and for securing to other components of the engine. The chain is pinned between a tensioner pin and the tensioner chain contacting surface and between a guide pin and the guide or snubber chain contacting surface. The tensioner is preferably pinned in a state of minimum extension.
In a first embodiment, the method of installing a plurality of components for a cam drive and timing system for an engine includes mounting a chain to a crankshaft sprocket and a tensioner bracket. The components include the tensioner bracket, a guide or snubber and a tensioner mounted to the tensioner bracket, the chain, and the crankshaft sprocket. The method also includes inserting a tensioner pin extending into a tensioner pin hole, between a first pair of teeth of the chain, and into a first bracket pin hole to pin the chain between the tensioner pin and a tensioner chain contacting surface of the tensioner. The method further includes inserting a guide pin extending into a guide pin hole, between a second pair of teeth of the chain, and into a second bracket pin hole to pin the chain between the guide pin and a guide chain contacting surface of the guide or snubber.
In a second embodiment, the assembly unit includes a tensioner pin and a guide pin. The assembly unit is for a plurality of components for a cam drive and timing system for an engine. The components include the tensioner bracket, a guide or snubber and a tensioner attached to a tensioner bracket and a chain wrapped around a crankshaft sprocket. The tensioner pin extends into a tensioner pin hole, between a first pair of teeth of the chain, and into a first bracket pin hole to pin the chain between the tensioner pin and a tensioner chain contacting surface of the tensioner. The guide pin extends into a guide pin hole, between a second pair of teeth of the chain, and into a second bracket pin hole to pin the chain between the guide pin and a guide chain contacting surface of the guide or snubber.
In a third embodiment, the cam drive and timing system for an engine includes a tensioner bracket, a guide or snubber, a tensioner, a crankshaft sprocket, a chain, a tensioner pin, and a guide pin. The tensioner bracket includes a bracket body having a first bracket pin hole and a second bracket pin hole and a tensioner brace extending from the tensioner body, the tensioner brace having a tensioner pin hole. The guide or snubber is mounted to the tensioner bracket and has a guide chain contacting surface and at least one guide pin hole. The tensioner is mounted to the tensioner bracket and has a tensioner chain contacting surface. The chain has a plurality of chain teeth and engages the crankshaft sprocket. Prior to installation of the cam drive and timing system, the tensioner pin extends into the tensioner pin hole, between a first pair of the chain teeth, and into the first bracket pin hole, thereby pinning the chain against the tensioner chain contacting surface, and the guide pin extends into the guide pin hole, between a second pair of the chain teeth, and into the second bracket pin hole, thereby pinning the chain against the guide chain contacting surface.
In a fourth embodiment, the guide or snubber is for a cam drive and timing system including a tensioner bracket and a chain. The guide or snubber is mounted to the tensioner bracket. The guide or snubber includes at least one blade spring biasing a guide chain contacting surface of the guide or snubber toward the chain. The guide or snubber also includes a guide pin inserted into a guide pin hole such that the chain contacting surface is maintained in a state of minimum extension prior to installation of the guide or snubber.
In the present invention, the necessary slack to mount the sprockets to their respective shafts is achieved by positioning the mechanical tensioner toward the smaller sprocket, fixing the pivoting face and the compliant face at minimum positions and angles, and maintaining the chain at minimum positions and angles between the sprockets. In the assembly system, the tensioner and guide or snubber are preferably pinned such that the bracket is intentionally located closer to the smaller sprocket than where it is to be mounted for the chain drive system. This increases the amount of chain slack available for mounting the sprockets to their respective shafts. For this arrangement, first the sprockets are mounted to the shafts, then the pins holding the chain against the tensioner and guide or snubber are removed. Finally, the bracket is positioned and mounted. The tensioner is preferably pinned in its state of minimum extension along with the chain and bracket and at least the smaller sprocket in a fashion that locks these pieces together in a proper timed relationship. Preferably the pins are the only elements of the shipped assembly that do not contribute to the normal engine function such that only mounting of the assembly and removal of the pins is required to make the assembly operational.
In some embodiments, the larger sprocket is included in the pre-assembly, but this is dependent upon the length of the chain and the associated freedom of the sprocket. In one embodiment, the larger sprocket is wrapped by the chain in the correctly timed relationship such that when it is picked up, a finger secures the chain's engagement, and the remaining items hang down in their locked and timed relationship and ready for assembly to the engine. In another embodiment, the larger sprocket is shipped unattached (i.e. not engaged with the chain) to the locked components of the engine timing assembly system. In this embodiment, the chain and the larger sprocket are preferably each marked such that lining up the marks in wrapping the chain around the larger sprocket insures the proper timing relationship between the crankshaft and the camshaft. The marks may be a coloring of a particular sprocket tooth and a particular chain link.
Referring to
When a tensioner pin 66 is inserted into the tensioner pin hole 64 and into the bracket tensioner pin hole 68, the tensioner pin 66 holds the chain 44 in the desired alignment with respect to the chain tensioner 50. The tensioner pin 66 and chain 44 preferably maintain the chain tensioner 50 in a state of minimum extension. The snubber or guide 52 is mounted on a snubber mount 70, which is an extension of the bracket 42. The snubber or guide 52 includes a guide pin hole 72. When a guide pin 74 is inserted into the guide pin hole 72 and the bracket guide pin hole 76, the guide pin 74 holds the chain 44 in the desired alignment with respect to the guide or snubber 52. The bracket 42 preferably has at least two mounting holes 78, 80 for mounting the bracket 42 to an engine block (not shown).
Referring to
Referring to
Although the tensioner pin hole 64 is described as being located in an extension of the tensioner brace 62, the tensioner pin hole 64 may also be located in an extension to the tensioner 50 itself within the spirit of the present invention. Although the guide pin hole 72 is described as being located in an extension of the guide or snubber 52, the guide pin hole 72 may also be located in an extension of the tensioner bracket 42.
In the embodiment of
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.
This application claims one or more inventions which were disclosed in Provisional Application No. 60/822,096, filed Aug. 11, 2006, entitled “ASSEMBLY SYSTEM AND METHOD FOR A TENSIONED CHAIN DRIVE SYSTEM”. The benefit under 35 USC §119(e) of the United States provisional application is hereby claimed, and the aforementioned application is hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/073118 | 7/10/2007 | WO | 00 | 1/23/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/019205 | 2/14/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4770399 | Sosson et al. | Sep 1988 | A |
5180340 | Vahabzadeh et al. | Jan 1993 | A |
5286234 | Young | Feb 1994 | A |
5425680 | Young | Jun 1995 | A |
5989138 | Capucci | Nov 1999 | A |
6238311 | Cutting | May 2001 | B1 |
6623391 | Young et al. | Sep 2003 | B2 |
7479077 | Markley et al. | Jan 2009 | B2 |
20040005952 | Bachmair | Jan 2004 | A1 |
20050130776 | Markley et al. | Jun 2005 | A1 |
20060293134 | Markley et al. | Dec 2006 | A1 |
20060293136 | Markley et al. | Dec 2006 | A1 |
20070037647 | Markley et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
4025126 | Feb 1992 | DE |
10341966 | Apr 2005 | DE |
0893588 | Jan 1999 | EP |
1096174 | May 2001 | EP |
1524453 | Apr 2005 | EP |
2217807 | Nov 1989 | GB |
2000-018344 | Jan 2000 | JP |
2002-061721 | Feb 2002 | JP |
Entry |
---|
PCT Search Report; PCT/US2007/073118; Nov. 7, 2007, 14 pages. |
English translation of Office action for Japanese Patent Application No. 2009-523875, mailed Aug. 14, 2012, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20090205206 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
60822096 | Aug 2006 | US |