The presently disclosed subject matter relates generally to a rolling assembly, and related system and method of using the same, for packaging web material in a roll for transport, storage, and commercialization.
A wide variety of web materials are commercialized for various uses. For example, bags and resealable packages for containing materials such as food, household items, and waste are often formed from webs of plastic material. Such packages are inexpensive, lightweight, and easily manufactured in large quantities.
Often web materials, or the products produced therefrom, need to be transported, stored, or commercialized. One known solution is to create a roll of the web material. For example, the web material can be rolled around a shaft or spindle. However, transporting or packaging the web material with a shaft or spindle is not always desirable. For example, the shaft or spindle may add material costs, create additional waste, and increase the weight of the finished roll of web material.
Web material can be rolled without the use of a shaft or spindle; however, known methods can result in a roll that is loosely rolled, or which has a larger diameter for a given amount of web material than desired. Therefore, there continues to be a need for improved assemblies, systems, and methods for packaging web materials in a tight roll for efficient transport, packaging, and commercialization.
The purpose and advantages of the disclosed subject matter will be set forth in and apparent from the description that follows, as well as will be learned by practice of the disclosed subject matter. Additional advantages of the disclosed subject matter will be realized and attained by the assemblies, methods, and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages, and in accordance with the purpose of the disclosed subject matter, as embodied and broadly described, the disclosed subject matter includes a rolling assembly for packaging web material in a roll. The rolling assembly has a base member with a concave arcuate feed surface defining an upwardly-extending ramp and a first intermediate member moveably coupled to the base member. The assembly further includes a top member moveably coupled to at least one of the base member or the first intermediate member. The top member has a concave arcuate pressure surface facing the feed surface of the base member. The base member, the first intermediate member and the top member form an iris with a feed space defined between the feed surface and the pressure surface. The iris is moveable between a first condition and a second condition, and the feed space has a first cross dimension in side view between the feed surface and the pressure surface in the first condition. The feed space has a second cross dimension in side view between the feed surface and the pressure surface when the iris is in the second condition. The second cross dimension is greater than the first cross dimension. The iris is configured in the first condition to receive web material along the feed surface and direct the web material upwardly toward the top member to form a roll within the feed space. The iris is configured to move toward the second condition as the roll of web material increases in cross dimension against the pressure surface of the top member.
The disclosed subject matter also includes a system for packaging web material in a roll. The system includes a feed assembly configured to carry a stream of web material, and a rolling assembly proximate the feed assembly and configured to receive a stream of web material. In accordance with the disclosed subject matter, the rolling assembly includes the features described above.
The disclosed subject matter also includes a method of packaging web material in a roll. Methods in accordance with the disclosed subject matter include providing a rolling assembly configured to receive a stream of web material. In accordance with the disclosed subject matter, the rolling assembly includes the features described above. Methods in accordance with the disclosed subject matter further include delivering a stream of web material to the assembly. The iris of the rolling assembly receives the web material along the feed surface and directs the web material upwardly toward the top member to form a roll within the feed space. The iris moves toward the second condition as the roll of web material increases in cross dimension against the pressure surface of the top member.
As recognized in the art, the assemblies, systems, and methods disclosed herein can include some or all of the features described herein, or any suitable combination thereof. It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the disclosed subject matter claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the containers and methods of the disclosed subject matter. Together with the description, the drawings serve to explain the principles of the disclosed subject matter.
Reference will now be made in detail to the various exemplary embodiments of the disclosed subject matter, exemplary embodiments of which are illustrated in the accompanying drawings. The structure and corresponding method of operation of the disclosed subject matter will be described in conjunction with the detailed description of the rolling assembly and system.
The rolling assembly, system, and method presented herein can be used for the packaging transport, storage, and commercialization of a wide variety of web material. The disclosed subject matter is particularly suited for efficiently packaging web formed food storage containers, such as slider bags, in a roll.
In accordance with the disclosed subject matter herein, the rolling assembly generally includes a base member having a concave arcuate feed surface defining an upwardly-extending ramp and a first intermediate member moveably coupled to the base member. The assembly further includes a top member moveably coupled to at least one of the base member or the first intermediate member. The top member has a concave arcuate pressure surface facing the feed surface of the base member. The base member, the first intermediate member and the top member collectively form an iris with a feed space defined between the feed surface and the pressure surface. The iris is moveable between a first condition and a second condition, and the feed space has a first cross dimension in side view between the feed surface and the pressure surface in the first condition and a second cross dimension in side view between the feed surface and the pressure surface in the second condition. The second cross dimension is greater than the first cross dimension. The iris is configured in the first condition to receive web material along the feed surface and direct the web material upwardly toward the top member to form a roll within the feed space. The iris configured to move toward the second condition as the roll of web material increases in cross dimension against the pressure surface of the top member.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, serve to further illustrate various embodiments and to explain various principles and advantages in accordance with the disclosed subject matter. For purpose of explanation and illustration, and not limitation, exemplary embodiments of the container in accordance with the disclosed subject matter are shown in
For purpose of illustration, and not limitation, reference is made to the exemplary embodiment of an assembly 10 shown in
With reference to
Additionally or alternatively, and as embodied herein, the feed surface 105 of the base member 100 can include an angled or sloped region 110, which can extend along at least a portion of the feed surface 105 between the first end 101 and the second end 102. The angled or sloped region 110 can be disposed at an angle α in side view relative to a bottom edge 104 of the base member 100, as shown in
Further referencing
With reference to
In accordance with another aspect of the disclosed subject matter, and as further embodied herein, the first intermediate member 200 can include a connection point 204 such as depicted in the exemplary embodiment of
In accordance with another aspect of the disclosed subject matter, and as described further herein, the intermediate member 200 can include an arcuate first intermediate pressure surface 205 extending along at least a portion of the intermediate member 200 between the first end 201 and the second end 202. As described previously with respect to the feed surface 105, the first intermediate pressure surface 205 can have a radius of curvature to define a crescent-like shape in side view. The radius of curvature can be a constant radius of curvature, or complex. As embodied herein, and as described further below, the first intermediate member 200 collectively with the base member 100 and top member 300 can define an iris 500 to apply pressure on the roll of web material 25 as the roll increases in cross dimension and the iris 500 expands from a first condition to a second condition.
With reference to
In accordance with the disclosed subject matter, the top member 300 can be moveably coupled to at least one of the base member 100 or the first intermediate member 200. For example, the top member can be pivotally connected to the base member 100. For purpose of example, and as embodied herein, the top member 300 can include connection point 303, which can define one or more holes configured to receive a fastener, such as a bolt screw, peg, nail, or rivet, to pivotally connect the top member 300 to the base member 100. In accordance with another aspect of the disclosed subject matter, and as described further herein, the top member 300 can further include a second connection point 304, as described further below.
In accordance with the disclosed subject matter, the base member 100, first intermediate member 200, and the top member 300 collectively form an iris 500 with a feed space 510 defined between the feed surface 105 and the pressure surface 305. The iris 500 is depicted in broken line in
Further referencing
In accordance with the disclosed subject matter, the roll 25 can increase in cross dimension as the web material 20 continues to enter the feed space 510 in the direction indicated by arrow 35. The iris 500 moves towards a second condition as the roll of web material 25 increases in cross dimension against the pressure surface 305 of the top member 300. With reference to
Additionally, and in accordance with the disclosed subject matter, the iris 500 can be configured to apply pressure to the roll of web material 25 as the iris moves between a first condition and a second condition. For purpose of example, and not limitation, the amount of pressure the iris 500 applies to the roll 25 can be controlled in a number of ways, such as by selecting the weight of the top member 300, incorporating a spring bias between the various members, or by adjusting the friction fit between the various members. As discussed further herein, weight of the top member 300 can be controlled by adding one or more ballast weights to the top member. Additionally or alternatively, the material of the top member 300 can be selected to achieve the desired weight and apply the desired pressure to the roll of web material 25 as the iris moves between the first condition and the second condition. For example, and as embodied herein, the top member 300 can be formed of steel.
Additionally, and as embodied herein, friction fit between members can be adjusted by adjusting the tightness of fasteners connecting the first intermediate member 200 to the base member and connecting the top member 300 to at least one of the first intermediate member 200 or the base member 100. Adjusting the tightness of the fasteners can control the force required to move the iris 500 from a first condition to a second condition as the roll of web material 25 increases in cross dimension. For purpose of example, and as embodied herein, the bolts pivotally connecting the first intermediate member 200 and the top member 300 to the base member can be tightened to increase the amount of pressure the iris 500 exerts on the roll of web material 25 as the roll increases in cross dimension against the arcuate pressure surface of the top member.
In accordance with another aspect of the disclosed subject matter, and as further embodied in the exemplary embodiment of
In accordance with another aspect of the disclosed subject matter, and as further embodied in the exemplary embodiment of
As embodied herein, the top member 300 can be pivotally connected by connection points 115 and 303 on lower tier 108, the first intermediate member can be connected by connection points 120 and 203 on middle tier 107 of the base member 100, and the second intermediate member 400 can be pivotally connected by connection points 130 and 403 on outer tier 106. As described above, the depth of each tier on the base member 100 can correspond to a thickness dimension of the respective intermediate member or top member such that the intermediate and top members can pivot with respect to the base member 100 without interfering with one another.
In accordance with another aspect of the disclosed subject matter, and as further embodied in the exemplary embodiment of
In accordance with another aspect of the disclosed subject matter, and with reference to the exemplary rolling assembly 1100 depicted in
In accordance with the disclosed subject matter, the base member 1110, the first intermediate member 1120 and the top member 1130 collectively form an iris 1150 with a feed space 1151 defined between the feed surface 1105 and the pressure surface 1135. The iris 1150 of the exemplary rolling assembly 1100 is moveable between a first condition, as depicted in
In accordance with another aspect of the disclosed subject matter, the rolling assembly 1100 can be moveable to an extraction condition. For purpose of example and as embodied herein, the first intermediate member 1120 can pivot about connection point 1115 on base member 1110 to extract a finished roll of web material from the rolling assembly 1100. The free end 1132 of the top member 1130 can be configured to urge the roll of web material out of the feed space 1151 when the rolling assembly is moved toward the extraction condition.
In accordance with another aspect of the disclosed subject matter, and as further embodied herein, the pressure surface 1135 of the top member 1130 can include a roll-initiating notch 1155. The notch 1155 can help direct the web material upwardly to initiate the formation of a roll with a small cross-sectional diameter within the feed space 1151.
In accordance with another aspect of the disclosed subject matter, and as embodied in the exemplary embodiment of
For purpose of illustration, and not limitation, reference is made to the exemplary embodiment of an assembly 1500 shown in
The iris 1550 is moveable between a first condition and a second condition. With reference to
As embodied herein, the first intermediate member 1520 can include an arcuate first intermediate pressure surface configured to further define the iris 1550 and apply pressure on a roll of web material as the roll increases in cross dimension and the iris 1550 expands from the first condition to the second condition. Additionally, and as further embodied herein, the assembly 1500 can include a second intermediate member 1540 moveably coupled to the base member 1510. The second intermediate member 1540 can include an arcuate second intermediate pressure surface configured to further define the iris 1550 and apply pressure on a roll of web material as the roll increases in cross dimension and the iris 1550 expands from the first condition to the second condition.
As embodied herein, the first intermediate member 1520, the second intermediate member 1540, and the top member 1530 can each be pivotally connected to the base member 1510. As described above, the base member can include tiers or levels, and the various members can each be connected to a different tier of the base member to facilitate relative movement of the members. Additionally or alternatively, washers or spacers can be used at the connection between the base member 1510 and first intermediate member 1520 and between the base member 1510 and the second intermediate member 1540, respectively, to offset the first intermediate member 1520, second intermediate member 1540, and top member 1530 from one another in end view and facilitate movement of the members. In accordance with another aspect of the disclosed subject matter, and as embodied herein, the first intermediate member 1520 and the second intermediate member 1540 can each include a region of increased thickness where the first intermediate member 1520 and the second intermediate member 1540, respectively, connect to the base member 1510. The regions of increased thickness can create an offset between the respective members to facilitate movement of the members.
As described above, the top member 1530 and second intermediate member 1540 can each be slidably connected to the first intermediate member 1520. The slidable connections between the top member 1530, second intermediate member 1540, and first intermediate member 1520 can further define the motion of the iris 1550 as the iris moves from the first condition to the second condition. As embodied herein, the top member 1530 can include a fastener 1534, such as a bolt, screw, peg, pin, nail, or rivet, and the fastener 1534 can interface with a slot 1526 defined in the first intermediate member 1520 to slidably connect the top member 1530 to the first intermediate member 1520. As further embodied herein, the first intermediate member 1520 can include a fastener 1524, such as a bolt, screw, peg, pin, nail, or rivet, and the fastener 1524 can interface with a slot 1546 defined in the second intermediate member 1540 to slidably connect the second intermediate member 1540 to the first intermediate member 1520.
In accordance with an aspect of the disclosed subject matter, the top member 1530 of the exemplary rolling assembly 1500 can include a ballast 1560. For purpose of example, the top member 1530 can have a first end moveably coupled to at least one of the base member 1510 or the first intermediate member 1520 and a free end opposite the first end. The free end can include the ballast. As embodied herein, the first end of the top member 1530 can be pivotally connected to the base member 1510. The ballast, or weight, 1560 can be selected to adjust the amount of pressure the iris applies to the roll as the iris moves from the first condition to the second condition. Increasing the pressure the iris applies to a roll can, for example, help create tighter rolls of web material. The location and size of the ballast 1560 can be selected based on the desired performance characteristics of the assembly and the properties of the web material being rolled.
In accordance with another aspect of the disclosed subject matter, the exemplary rolling assembly 1500 can include an outer member 1570 extending from the base member 1510. For purpose of example and not limitation, outer member 1570 can be connected to the base member 1510 at an upper portion thereof. Outer member 1570 can include an arcuate outer member surface 1576, which can further apply pressure to the roll of web material as the roll of web material increases in cross dimension within the iris. For purpose of example and as embodied herein, outer member 1570 can be connected to the base member 1510 using a threaded connector 1575. Connector 1575 can be used to adjust the position of the outer member 1575 relative to the base member 1510. For purpose of example, the position of the outer member 1575 can be adjusted to define the desired diameter of a finished roll of web material. Additionally alternatively, the connector 1575 can be used to move the outer member 1575 away from the base member 1510 to remove a finished roll of web material from the iris 1550. It is to be understood that the outer member 1575 is optional, and the rolling assembly 1500 can be used without the outer member 1575.
For purpose of illustration, and not limitation, reference is made to the exemplary embodiment of an assembly 1600 shown in
The iris 1650 is moveable between a first condition and a second condition. With reference to
The iris 1650 in the first condition is configured to receive web material along the feed surface 1605 and direct the web material upwardly toward the top member 1635 to form a roll within the feed space. The iris 1650 is configured to move toward the second condition as the roll of web material increases in cross dimension against the pressure surface 1635 of the top member.
As embodied herein, the first intermediate member 1620 can include an arcuate first intermediate pressure surface configured to further define the iris 1650 and apply pressure on a roll of web material as the roll increases in cross dimension and the iris 1650 expands from the first condition to the second condition. Additionally, and as further embodied herein, the assembly 1600 can include a second intermediate member 1640 moveably coupled to the base member 1610. The second intermediate member 1640 can include an arcuate second intermediate pressure surface configured to further define the iris 1650 and apply pressure on a roll of web material as the roll increases in cross dimension and the iris 1650 expands from the first condition to the second condition.
As embodied herein, the first intermediate member 1620, the second intermediate member 1640, and the top member 1630 can each be pivotally connected to the base member 1610. Additionally or alternatively, the top member 1630 and second intermediate member 1640 can each be slidably connected to the first intermediate member 1620. The slidable connections between the top member 1630, second intermediate member 1640, and first intermediate member 1620 can further define the motion of the iris 1650 as the iris moves from the first condition to the second condition. As embodied herein, the top member 1630 can include a fastener 1631, such as a bolt, screw, peg, pin, nail, or rivet, and the fastener 1631 can interface with a slot 1621 defined in the first intermediate member 1620 and a slot 1641 defined in the second intermediate member 1640 to slidably connect the top member 1630 and the second intermediate member 1640 to the first intermediate member 1620.
In accordance with another aspect of the disclosed subject matter, the top member 1630 of the exemplary rolling assembly 1600 can include a ballast 1660. For purpose of example, the top member 1630 can have a first end moveably coupled to at least one of the base member 1610 or the first intermediate member 1620 and a free end opposite the first end. The free end can include the ballast. As embodied herein, the first end of the top member 1630 can be pivotally connected to the base member 1610. As described above, the location and size of the ballast 1660 can be selected based on the desired performance characteristics of the assembly and the properties of the web material being rolled.
In accordance with the disclosed subject matter, the base member 1610, intermediate members 1620 and 1640, and top member 1630 can be made of any suitable material using any suitable method of manufacture. For purpose of example, and not limitation, the members can be made of metal, such as steel or aluminum, polycarbonate, composites, such as cast polyurethane or plastic sheet materials such as Lexan and UHMWPE, or any other suitable material. In accordance with another aspect of the disclosed subject matter, and as embodied herein, the base member 1610 can be made of steel and the top member 1630, first intermediate member 1620, and second intermediate member 1640, can be molded from composite material.
Furthermore, the members can be coated or partially coated with desired materials to enhance performance, such as by reducing friction or increasing durability. For example, materials like Teflon and the like can be applied to reduce friction. Teflon can be applied or partially applied to the feed surface 1605 and/or pressure surface 1635 to reduce friction between the respective surface and web material to be rolled. The material selected for the various members can be chosen based on the desired performance characteristics of the rolling assembly. For example, selecting heavier materials for the top member can increase the pressure applied to the roll as the roll increases in cross dimension and the iris 1650 moves from a first condition to a second condition. Additionally, the material may be selected to achieve a desirable coefficient of friction between the members and the web material. For example the material of the members can be selected to prevent creation of scuffs or marks on the web as the material is rolled. In accordance with one aspect of the disclosed subject matter, the base member, intermediate members, and top member can be made of different materials from one another to achieve the desired performance characteristics.
In accordance with the disclosed subject matter, the rolling assemblies for packaging web material in a roll described herein can be configured to receive web material 20 from a wide variety of delivery sources. As embodied herein, and with reference to the exemplary embodiment depicted in
The rolling assemblies for packaging web material in a roll can be used with a wide variety, types, and sizes of web material in accordance with the disclosed subject matter. For purpose of example, and not limitation, the web material can include polymeric packages, such as plastic bags or the like, or other stock materials, such as paper or cloth. Furthermore, the web material can include any suitable material, including paper, plastics, or composites. For example, the material can include polyethylene or polypropylene. As embodied herein, the web material of the disclosed subject matter can include plastic bags having a resealable closure mechanism, such as described in U.S. Pat. No. 6,450,686, the contents of which are hereby incorporated by reference in their entirety. For purpose of illustration, the web material, such as plastic bags, can be delivered to the iris 500 of the rolling assembly in a shingled arrangement. With reference to
In accordance with another aspect of the disclosed subject matter, a system for packaging web material in a roll is provided. The system includes a feed assembly configured to carry a stream of web material and a rolling assembly proximate the feed assembly and configured to receive the stream of web material from the feed assembly. In accordance with the disclosed subject matter, the rolling assembly used with the system can be configured in accordance with any of the embodiments as described above or variations thereof. The rolling assembly includes a base member with a concave arcuate feed surface defining an upwardly-extending ramp and a first intermediate member moveably coupled to the base member. The assembly further includes a top member moveably coupled to at least one of the base member or the first intermediate member. The top member has a concave arcuate pressure surface facing the feed surface of the base member. The base member, the first intermediate member and the top member collectively form an iris with a feed space defined between the feed surface and the pressure surface. The iris is moveable between a first condition and a second condition, and the feed space has a first cross dimension in side view between the feed surface and the pressure surface in the first condition. The feed space has a second cross dimension in side view between the feed surface and the pressure surface when the iris is in the second condition. The second cross dimension is greater than the first cross dimension. The iris is configured in the first condition to receive web material along the feed surface and direct the web material upwardly toward the top member to form a roll within the feed space. The iris moves toward the second condition as the roll of web material increases in cross dimension against the pressure surface of the top member.
In accordance with another aspect of the disclosed subject matter, and with reference to the exemplary embodiment of
In accordance with another aspect of the disclosed subject matter, the rolling assembly 1600 can be mounted to a rotatable carriage assembly. For example, multiple rolling assemblies can be mounted to the carriage assembly. When a roll of web material is completed in the rolling assembly 1600, the carriage assembly can rotate the rolling assembly 1600 away from the feed assembly to a position for extracting the completed roll from the rolling assembly. As the rolling assembly 1600 is rotated away from the feed assembly, the carriage assembly can rotate a second rolling assembly into place to receive a stream of web material from the feed assembly.
The rolling assembly, system, and method can be used with a variety of sizes of web material. For example, and with reference to the exemplary embodiment of
As embodied herein, the second rolling assembly 1403 can have the same configuration as the first rolling assembly 1402. Alternatively, and in accordance with another aspect of the disclosed subject matter, the second rolling assembly 1403 can have a different configuration from the first rolling assembly 1402. For example, rolling assemblies 1402 and 1403 having different iris cross-dimensions can be configured side by side to accommodate rollups having different diameters along the length of the roll. For example rolls of slider bags can include a larger diameter at the portion of the roll having the bag sliders and a smaller diameter at the portion of the roll without sliders. While the above description refers to the use of one or two rolling assemblies, any suitable number of rolling assemblies can be used.
In accordance with another aspect of the disclosed subject matter, a method of packaging web material in a roll is provided. The method includes providing a rolling assembly configured to receive a stream of web material. In accordance with the disclosed subject matter, the rolling assembly provided can be configured in accordance with any of the embodiments as described above or variations thereof. The rolling assembly includes a base member with a concave arcuate feed surface defining an upwardly-extending ramp and a first intermediate member moveably coupled to the base member. The assembly further includes a top member moveably coupled to at least one of the base member or the first intermediate member. The top member has a concave arcuate pressure surface facing the feed surface of the base member. The base member, the first intermediate member and the top member collectively form an iris with a feed space defined between the feed surface and the pressure surface. The iris is moveable between a first condition and a second condition, and the feed space has a first cross dimension in side view between the feed surface and the pressure surface in the first condition. The feed space has a second cross dimension in side view between the feed surface and the pressure surface when the iris is in the second condition. The second cross dimension is greater than the first cross dimension.
Methods in accordance with the disclosed subject matter further include delivering a stream of web material to the assembly. The iris receives the web material along the feed surface and directs the web material upwardly toward the top member to form a roll within the feed space. The iris moves toward the second condition as the roll of web material increases in cross dimension against the pressure surface of the top member.
In accordance with another aspect of the disclosed subject matter, delivering the stream of web material can include delivering a plurality of plastic bags in a shingled arrangement.
The assemblies, systems, and methods of the disclosed subject matter have demonstrated desirable performance characteristics not achieved with conventional devices and techniques. For example, currently known rolling assemblies are designed to maintain the final outside diameter of the roll of web material, but known assemblies do not maintain pressure on the roll of web material as the web material expands in cross dimension throughout the rolling process. As such, rolls of web material produced using known assemblies and methods can be less tightly rolled and have a larger final cross dimension for a given amount of web material than rolls produced according to the disclosed subject matter. Less tightly rolled web material can be less desirable, as the rolls with larger final cross dimension can require additional space for storage, transport, and commercialization. By contrast, rolling assemblies in accordance with the disclosed subject matter include an iris that is moveable between a first condition and a second condition, and a feed space defined between the feed surface of the base member and the pressure surface of the top member. As the roll of web material increases in cross dimension against the pressure surface of the top member, the iris maintains pressure on the roll of web material as the iris moves from the first condition to the second condition. As such, the rolling assemblies, systems, and methods in accordance with the disclosed subject matter can produce tighter rolls of web material than previously known rolling assemblies.
Although the rolling assemblies herein are depicted in an orientation with the top member disposed above the base member such that gravity acts on the top member to bias the pressure surface of the top member towards the feed surface of the base member, it is to be understood that alternative configurations are envisioned within the scope of the disclosed subject matter. For example and not limitation, the pressure surface can be biased towards the feed surface with a spring, air cylinder, electric motor, or other mechanical or magnetic means.
In addition to the specific embodiments claimed below, the disclosed subject matter is also directed to other embodiments having any other possible combination of the dependent features claimed below and those disclosed above. As such, the particular features presented in the dependent claims and disclosed above can be combined with each other in other manners within the scope of the disclosed subject matter such that the disclosed subject matter should be recognized as also specifically directed to other embodiments having any other possible combinations. Thus, the foregoing description of specific embodiments of the disclosed subject matter has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosed subject matter to those embodiments disclosed.
It will be apparent to those skilled in the art that various modifications and variations can be made in the assemblies, systems, and methods of the disclosed subject matter without departing from the spirit or scope of the disclosed subject matter. Thus, it is intended that the disclosed subject matter include modifications and variations that are within the scope of the appended claims and their equivalents.
This application claims priority to U.S. Provisional Application Ser. No. 62/829,488 filed Apr. 4, 2019, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1882219 | Harwood et al. | Oct 1932 | A |
1987141 | Casper | Jan 1935 | A |
2231400 | Washburn et al. | Feb 1941 | A |
2270043 | Fourness et al. | Jan 1942 | A |
3228620 | Lee | Jan 1966 | A |
3501106 | Case | Mar 1970 | A |
3964232 | Bender | Jun 1976 | A |
4206885 | Salvino | Jun 1980 | A |
4211374 | Salvino | Jul 1980 | A |
4246817 | Marsh | Jan 1981 | A |
4445356 | Chubb | May 1984 | A |
RE31795 | Rohrbacher | Jan 1985 | E |
4592518 | Chubb | Jun 1986 | A |
4784345 | Romanowski | Nov 1988 | A |
4807825 | Elsner et al. | Feb 1989 | A |
4832130 | Brouwer et al. | May 1989 | A |
5011093 | Mayer | Apr 1991 | A |
5669575 | Byle | Sep 1997 | A |
6186436 | Selle | Feb 2001 | B1 |
6450686 | May | Sep 2002 | B1 |
7182287 | Denker | Feb 2007 | B2 |
20130189057 | Motz | Jul 2013 | A1 |
20170341798 | Hawkins | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2345259 | Mar 1975 | DE |
3 792 400 | Mar 2021 | EP |
WO 0116008 | Mar 2001 | WO |
Entry |
---|
International Search Report, dated Jun. 12, 2020 for International Application No. PCT/US20/26902. |
Extended European Search Report dated Jun. 5, 2023 in Application No. EP 20783707. |
Number | Date | Country | |
---|---|---|---|
20200317459 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62829488 | Apr 2019 | US |