In femoral revision arthroplasty modular implants having separate proximal and distal components are often used. The proximal and distal components can be inserted using known assembly tools, which are then removed before locking the components together.
The present teachings provide an assembly tool for inserting and locking proximal and distal components of a modular implant.
The present teachings provide an assembly tool having a proximal implant fastener, a distal implant fastener, and a compression member. The assembly tool is operable to hold in the assembled configuration a proximal implant partially engageable with a distal implant during implantation and axial impaction. Axial compaction can be exerted through the compression member of the assembly tool. The assembly tool is also operable to securely lock the tapers of the proximal and distal implants after impaction by rotating the compression member.
The present teachings also provide an assembly tool comprising a first coupler a handle member, a second coupler and a compression member. The first coupler has a first longitudinal shaft defining a first longitudinal bore and can be engaged to a proximal implant of a modular implant assembly. The handle member is removably couplable with the first coupler and the first coupler is received in a longitudinal bore of the handle member. The second coupler has a second longitudinal shaft passable through the first longitudinal bore of the first coupler. The second longitudinal shaft can be engageable to a distal implant of the modular implant through the proximal implant. The proximal implant and the distal implant are connectable with corresponding tapers. The compression member can be coupled to a proximal portion of the second longitudinal shaft and has an impaction surface. The compression member is operable to insert the proximal and distal implants to the anatomic site by impaction while holding the tapers at a selected separation distance. The compression member includes a knob. The knob is rotatable to reduce the separation distance and lock corresponding tapers of the proximal and distal implants after impaction.
The present teachings provide a method of implanting a modular implant having a proximal implant and a distal implant into an anatomic site. In one aspect, the method includes sequentially assembling a plurality of components of an assembly tool on to the proximal and distal implants and holding corresponding tapers of the proximal and distal implants separated by a selected distance by the assembly tool. The method also includes impacting the proximal and distal implants to an anatomic depth without changing the separation distance by impacting the assembly tool, and actuating the assembly tool to lock the corresponding tapers of the proximal and distal implants without removing the assembly tool.
In another aspect, the method includes engaging a distal portion of first coupler to an inner bore of the proximal implant, releasably connecting a handle member over the first coupler, passing a second coupler through the handle member and the first coupler and connecting the proximal and distal implants. The method also includes engaging a distal portion of the second coupler through the proximal implant to the distal implant, engaging a compression member to a proximal portion of the second coupler through the handle member, and rotating the compression member to hold corresponding tapers of the proximal and distal implants separated by a selected separation distance. The method also includes impacting the proximal and distal implants to an anatomic depth by impacting the compression member while holding the tapers separated by the separation distance, and rotating the compression member to lock the corresponding tapers of the proximal and distal implants without removing the compression member.
Further areas of applicability of the present teachings will become apparent from the description provided hereinafter. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.
The present teachings will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is in no way intended to limit the present teachings, applications, or uses. For example, although the present teachings are illustrated for hip joints in femoral revision systems, the present teachings can be used for assembling and locking modular implants for modular systems implantable in other joints, such as the knee or shoulder.
Referring to
The handle member 120 can extend from a proximal end 136 to a distal end 138 along a longitudinal axis X and can include a handle portion 121 and a tubular shaft 124. The handle portion 121 can be molded over the tubular shaft 124, as shown in
Referring to
Referring to
Referring to
Referring to
As illustrated in
Referring to
With continued reference to
As shown in
Referring to
Summarizing, the assembly tool 100 can be assembled onto the proximal and distal implants 80, 70 sequentially, by first coupling the first coupler 102 to the proximal implant 80 and then assembling the handle member 120 over the first coupler 102 by a quick connection using the locking member 170. The second coupler 140 can be inserted coaxially through the first coupler 102 and through the proximal implant 80 to engage the distal implant 70. Finally, the compression member 150 can be coupled to the handle member 120 and can be engaged to the distal shaft portion 142 of the second coupler 140.
After the proximal and distal implants 80, 70 are fully locked to one another, the assembly tool 100 can be disassembled and removed in the reverse procedure while the tapers 84, 74 of the proximal and distal implants 80, 70 remain securely locked. Specifically, the compression member 150 can be first unscrewed and removed. The second coupler 140 is then unscrewed and removed, followed by the handle member 120 which is released from the first coupler 102 using the locking member 170. The first coupler 102 is then unscrewed and removed.
As discussed above, the assembly tool 100 can be modularly and sequentially assembled onto the proximal and distal implants 80, 70, while holding the respective connecting tapers of the proximal and distal implants 80, 70 at a selected separation distance D. The proximal and distal implants can be impacted into the anatomic site at their final seating depth by impacting the compression member of the assembly tool 100, which is still assembled thereon. Before or during impaction, the implant version can be selected while the assembly tool 100 is fully engaged, by rotating the handle member 120 of the assembly tool 100, without affecting the separation distance D. After the version is selected and the implants are fully seated, the compression member 150 of the assembly tool 100 can be rotated in situ to reduce the separation distance D and lock corresponding tapers 84, 74 of the proximal and distal implants 80, 70. After the tapers 84, 74 of the proximal and distal implants 80, 70 are fully locked and secured, the components of the assembly tool 100 can be disassembled in reverse order of assembly and the assembly tool 100 removed.
It will be appreciated from the above discussion, that the assembly tool 100 can facilitate the procedure of implanting and securing modular components in a sequential manner that guides and assist the medical professional by providing an efficacious in situ assembly and disassembly.
The foregoing discussion discloses and describes merely exemplary arrangements of the present teachings. Furthermore, the mixing and matching of features, elements and/or functions between various embodiments is expressly contemplated herein, so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one embodiment may be incorporated into another embodiment as appropriate, unless described otherwise above. Moreover, many modifications may be made to adapt a particular situation or material to the present teachings without departing from the essential scope thereof. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the present teachings as defined in the following claims.
This application is a divisional of U.S. patent application Ser. No. 12/718,027 filed Mar. 5, 2010. This application is related to U.S. patent application Ser. No. 12/718,018 filed Mar. 5, 2010, now U.S. Pat. No. 8,221,432 issued Jul. 17, 2012, entitled “METHOD AND APPARATUS FOR IMPLANTING A MODULAR FEMORAL HIP;” U.S. patent application Ser. No. 12/718,230 filed Mar. 5, 2010, entitled “MODULAR LATERAL HIP AUGMENTS;” U.S. patent application Ser. No. 12/718,023 filed Mar. 5, 2010, entitled “GUIDE ASSEMBLY FOR LATERAL IMPLANTS AND ASSOCIATED METHODS;” U.S. patent application Ser. No. 12/718,026 filed Mar. 5, 2010, entitled “REVISION BROACH WITH SMOOTH LATERAL SIDE;” and U.S. patent application Ser. No. 12/718,031 filed Mar. 5, 2010, entitled “METHOD AND APPARATUS FOR TRIALING AND IMPLANTING A MODULAR FEMORAL HIP;” each filed concurrently herewith. The disclosures of each of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1714684 | Malcolm | May 1929 | A |
2231864 | Abel | Feb 1941 | A |
3815599 | Deyerle | Jun 1974 | A |
4012796 | Weisman et al. | Mar 1977 | A |
4306550 | Forte | Dec 1981 | A |
4535487 | Esper et al. | Aug 1985 | A |
4549319 | Meyer | Oct 1985 | A |
4552136 | Kenna | Nov 1985 | A |
4601289 | Chiarizzio et al. | Jul 1986 | A |
4718915 | Epinette | Jan 1988 | A |
4728333 | Masse et al. | Mar 1988 | A |
4770660 | Averill | Sep 1988 | A |
4790852 | Noiles | Dec 1988 | A |
4842606 | Kranz et al. | Jun 1989 | A |
4883492 | Frey et al. | Nov 1989 | A |
4904269 | Elloy et al. | Feb 1990 | A |
4959066 | Dunn et al. | Sep 1990 | A |
5041118 | Wasilewski | Aug 1991 | A |
5047035 | Mikhail et al. | Sep 1991 | A |
5061271 | Van Zile | Oct 1991 | A |
5080685 | Bolesky et al. | Jan 1992 | A |
5089004 | Averill et al. | Feb 1992 | A |
5092900 | Marchetti et al. | Mar 1992 | A |
5122146 | Chapman et al. | Jun 1992 | A |
5201769 | Schutzer | Apr 1993 | A |
5211666 | Fetto | May 1993 | A |
5376124 | Gustke et al. | Dec 1994 | A |
5409492 | Jones et al. | Apr 1995 | A |
5468243 | Halpern | Nov 1995 | A |
5489284 | James et al. | Feb 1996 | A |
5562666 | Brumfield | Oct 1996 | A |
5571111 | Aboczky | Nov 1996 | A |
5578037 | Sanders et al. | Nov 1996 | A |
5601564 | Gustilo et al. | Feb 1997 | A |
5607431 | Dudasik et al. | Mar 1997 | A |
5624445 | Burke | Apr 1997 | A |
5632747 | Scarborough et al. | May 1997 | A |
5645549 | Boyd et al. | Jul 1997 | A |
5649930 | Kertzner | Jul 1997 | A |
5665090 | Rockwood et al. | Sep 1997 | A |
5683470 | Johnson et al. | Nov 1997 | A |
5690636 | Wildgoose et al. | Nov 1997 | A |
5699915 | Berger et al. | Dec 1997 | A |
5704940 | Garosi | Jan 1998 | A |
5766261 | Neal et al. | Jun 1998 | A |
5766262 | Mikhail | Jun 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5788701 | McCue | Aug 1998 | A |
5849015 | Haywood et al. | Dec 1998 | A |
5860969 | White et al. | Jan 1999 | A |
5860982 | Ro et al. | Jan 1999 | A |
5908423 | Kashuba et al. | Jun 1999 | A |
5913860 | Scholl | Jun 1999 | A |
5976145 | Kennefick, III | Nov 1999 | A |
5989261 | Walker et al. | Nov 1999 | A |
6022357 | Reu et al. | Feb 2000 | A |
6027505 | Peter et al. | Feb 2000 | A |
6033405 | Winslow et al. | Mar 2000 | A |
6066173 | McKernan et al. | May 2000 | A |
6110179 | Flivik et al. | Aug 2000 | A |
6110211 | Weiss | Aug 2000 | A |
6113604 | Whittaker et al. | Sep 2000 | A |
6117138 | Burrows et al. | Sep 2000 | A |
6117173 | Taddia et al. | Sep 2000 | A |
6126694 | Gray, Jr. | Oct 2000 | A |
6136035 | Lob et al. | Oct 2000 | A |
6139551 | Michelson et al. | Oct 2000 | A |
6143030 | Schroder | Nov 2000 | A |
6152963 | Noiles et al. | Nov 2000 | A |
RE37005 | Michelson et al. | Dec 2000 | E |
6159216 | Burkinshaw et al. | Dec 2000 | A |
6206884 | Masini | Mar 2001 | B1 |
6224605 | Anderson et al. | May 2001 | B1 |
6224609 | Ressemann et al. | May 2001 | B1 |
6238435 | Meulink et al. | May 2001 | B1 |
6245111 | Shaffner | Jun 2001 | B1 |
6267785 | Masini | Jul 2001 | B1 |
6302890 | Leone, Jr. | Oct 2001 | B1 |
6306174 | Gie et al. | Oct 2001 | B1 |
6325804 | Wenstrom, Jr. et al. | Dec 2001 | B1 |
6330845 | Meulink | Dec 2001 | B1 |
6338734 | Burke et al. | Jan 2002 | B1 |
6344060 | Schmotzer et al. | Feb 2002 | B1 |
6361565 | Bonutti | Mar 2002 | B1 |
6371991 | Manasas et al. | Apr 2002 | B1 |
6379384 | McKernan et al. | Apr 2002 | B1 |
6395004 | Dye et al. | May 2002 | B1 |
6468281 | Badorf et al. | Oct 2002 | B1 |
6517581 | Blamey | Feb 2003 | B2 |
6626913 | McKinnon et al. | Sep 2003 | B1 |
6871549 | Serra et al. | Mar 2005 | B2 |
6875239 | Gerbec et al. | Apr 2005 | B2 |
6883217 | Barrette et al. | Apr 2005 | B2 |
6913623 | Zhu | Jul 2005 | B1 |
6932819 | Wahl et al. | Aug 2005 | B2 |
7074224 | Daniels et al. | Jul 2006 | B2 |
7179259 | Gibbs | Feb 2007 | B1 |
7210881 | Greenberg | May 2007 | B2 |
7247171 | Sotereanos | Jul 2007 | B2 |
7255716 | Pubols et al. | Aug 2007 | B2 |
7261741 | Weissman et al. | Aug 2007 | B2 |
7291176 | Serra et al. | Nov 2007 | B2 |
7296804 | Lechot et al. | Nov 2007 | B2 |
7297166 | Dwyer et al. | Nov 2007 | B2 |
7341589 | Weaver et al. | Mar 2008 | B2 |
7425214 | McCarthy et al. | Sep 2008 | B1 |
7491242 | Pichon et al. | Feb 2009 | B2 |
7582092 | Jones et al. | Sep 2009 | B2 |
7585301 | Santarella et al. | Sep 2009 | B2 |
7585329 | McCleary et al. | Sep 2009 | B2 |
7832405 | Schlueter et al. | Nov 2010 | B1 |
7857858 | Justin et al. | Dec 2010 | B2 |
7887539 | Dunbar, Jr. et al. | Feb 2011 | B2 |
8118868 | May et al. | Feb 2012 | B2 |
8221432 | Smith et al. | Jul 2012 | B2 |
8226725 | Ferko | Jul 2012 | B2 |
8333807 | Smith et al. | Dec 2012 | B2 |
8419743 | Smith | Apr 2013 | B2 |
8460393 | Smith et al. | Jun 2013 | B2 |
8529569 | Smith et al. | Sep 2013 | B2 |
8679130 | Smith et al. | Mar 2014 | B2 |
20030233100 | Santarella et al. | Dec 2003 | A1 |
20040107001 | Cheal et al. | Jun 2004 | A1 |
20040122439 | Dwyer et al. | Jun 2004 | A1 |
20040236341 | Petersen | Nov 2004 | A1 |
20040267267 | Daniels et al. | Dec 2004 | A1 |
20050149042 | Metzger | Jul 2005 | A1 |
20050203539 | Grimm et al. | Sep 2005 | A1 |
20050234463 | Hershberger et al. | Oct 2005 | A1 |
20060004459 | Hazebrouck et al. | Jan 2006 | A1 |
20070093844 | Dye | Apr 2007 | A1 |
20070123908 | Jones et al. | May 2007 | A1 |
20070129809 | Meridew et al. | Jun 2007 | A1 |
20070233127 | Tuke et al. | Oct 2007 | A1 |
20080125867 | McCleary et al. | May 2008 | A1 |
20080154276 | Pubols et al. | Jun 2008 | A1 |
20080161811 | Daniels et al. | Jul 2008 | A1 |
20080208203 | Moindreau et al. | Aug 2008 | A1 |
20080234685 | Gjerde | Sep 2008 | A1 |
20080243133 | Heinz | Oct 2008 | A1 |
20080243190 | Dziedzic et al. | Oct 2008 | A1 |
20080269765 | Banerjee et al. | Oct 2008 | A1 |
20080281428 | Meyers et al. | Nov 2008 | A1 |
20080294168 | Wieland | Nov 2008 | A1 |
20090099566 | Maness et al. | Apr 2009 | A1 |
20090112218 | McCleary et al. | Apr 2009 | A1 |
20090265014 | May et al. | Oct 2009 | A1 |
20090270866 | Poncet | Oct 2009 | A1 |
20090307887 | Jones et al. | Dec 2009 | A1 |
20110015634 | Smith et al. | Jan 2011 | A1 |
20110046745 | Daniels et al. | Feb 2011 | A1 |
20110218583 | Smith et al. | Sep 2011 | A1 |
20110218636 | Smith et al. | Sep 2011 | A1 |
20120226282 | Smith et al. | Sep 2012 | A1 |
20130110185 | Smith et al. | May 2013 | A1 |
20130231674 | Smith et al. | Sep 2013 | A1 |
20130274889 | Smith et al. | Oct 2013 | A1 |
20140012268 | Smith et al. | Jan 2014 | A1 |
20140081272 | Smith et al. | Mar 2014 | A1 |
20140200619 | Smith et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
29516473 | Dec 1995 | DE |
0453695 | Oct 1991 | EP |
2676172 | Nov 1992 | FR |
2732891 | Oct 1996 | FR |
2792822 | Nov 2000 | FR |
2299758 | Oct 1996 | GB |
WO-9421199 | Sep 1994 | WO |
WO-2007106752 | Sep 2007 | WO |
Entry |
---|
DePuy, a Johnson & Johnson company, “REEF: Distally Interlocked Modular Femoral Reconstruction Prosthesis”, 2004, 7 sheets. |
Zimmer, Inc., “ZMR Hip System”, 2004, 19sheets. |
BO10463.0 Arcos Modular Femoral Revisions System Surgical Techniques, Biomet Orthopedics, 96 pages (2010). |
Number | Date | Country | |
---|---|---|---|
20130231674 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12718027 | Mar 2010 | US |
Child | 13861149 | US |