The present application relates to the art of data continuity. It finds particular application to identifying individual patients and patient medical records in order to communicate and share medical information among different healthcare facilities and will be described with particular reference thereto. However, it will also find use in other types of data display applications in which data continuity is of interest.
Patients commonly receive medical care from multiple healthcare providers, many of which are geographically dispersed and located at multiple sites. Using multiple healthcare providers results in an individual patient receiving multiple patient identifiers, each patient identifier local to a specific healthcare provider. Patient data such as medical tests, histories, doctors' reports, medical images and other relevant medical information is spread across multiple healthcare provider sites. In order for a healthcare provider to retrieve patient data records stored among multiple healthcare provider sites, it is necessary to reconcile the multiple patient identifiers of the corresponding healthcare providers and to link the multiple patient identifiers together.
Patients do not always give their name consistently, e.g., with or without a middle initial, diminutive or full first name, with or without a name suffix such as Jr., married or maiden name, etc. Not only are addresses sometimes given inconsistently, but people also move. Patients in the same family may have similar names, similar addresses, and also similar medical information.
There is currently a need for a system, a method, and a device that enables medical records to follow a patient as they travel between multiple healthcare providers.
The present application provides an improved method, system and apparatus which overcomes the above-referenced problems and others.
In accordance with one aspect, a method is proposed of reconciling customer records, which comprises assigning a unique record number to a customer record, then retrieving demographic information for a customer record to match the demographic information against demographic information in a collection of records in other systems. This is used to find records that belong to the same customer, and then compare the customer record demographic information with at least one other record demographic information in the collection of records in at least one other system to derive a likelihood ratio for each compared record, then compares each likelihood ratio to a defined accept threshold and to a defined reject threshold and finally attaches an assertion for the compared customer records based on at least one likelihood ratio comparison.
In accordance with another aspect, an apparatus is proposed for reconciling customer records which comprises input means for receiving an input customer record and accompanying demographic data, which uses a collection of customer records and accompanying demographic data. Also, a processing means is included for deriving a unique customer record number from the demographic data using a computational means for comparing at least one customer record demographic data of at least one customer record with other record demographic data in a collection of records in order to derive a likelihood ratio for each compared record. The computational then means compares each likelihood ratio to a defined accept threshold and to a defined reject threshold and performs one of either rejecting the at least one customer record if the likelihood ratio falls below a reject threshold; or accepting the at least one customer record if the likelihood ratio falls above an accept threshold; or identifying the at least one customer record for a manual review if the likelihood ratio falls between the accept threshold and the reject threshold. The means also records to a data storage medium whether the at least one customer record was rejected, accepted, or identified for manual review and recording whether an assertion is made by an institution concerning a pair of the customer records.
In accordance with another aspect, a method is proposed for reconciling medical patient records which comprises inputting a patient record, retrieving a plurality of patient records from a collection of stored patient records, compares the input patient record with the retrieved patient records, deriving a likelihood ratio from each pair of compared records, assigning a reject assertion in response to the likelihood ratio falling below a reject threshold level, assigning an accept assertion in response to the likelihood ratio falling above an accept threshold level, and finally placing the record on an exception list if the likelihood ratio falls between the accept threshold and the reject threshold.
An advantage resides in creating an index based on demographic data which will be the same or similar regardless of the evaluation procedures of the healthcare provider.
A further advantage is the maximization of the use of assertions in a manual review phase by allowing sites to see the assertions issued by other sites and to take them into account when desired.
Still further advantages of the present application will be appreciated to those of ordinary skill in the art upon reading and understand the following detailed description.
The present application may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the present application.
With reference to
As medical providers or health systems associate or consolidate, it becomes advantageous to share patient records. As such, this may result in multiple provider databases containing medical record numbers (MRN) for the same patient. For each healthcare provider, the flow of information into and out of the patient record is channeled through a master patient index (MPI) that associates a unique medical record number (MRN) to each patient entity when a unique record exists. To obtain an enterprise-wide view on patients across distributed data sources, an enterprise master patient index (EMPI) is put in place. The EMPI is developed through integration of the individual MPIs of the sources. Generally, this integration of patient records is achieved by comparing demographic attributes such as first/last name, gender, date of birth, address, and other demographic data to create the EMPI as a form of an enterprise level patient identifier which may enable the same patient to be recognized in records compiled at different medical facilities by different medical providers. Such an enterprise level patient identifier is rarely based on a single identifier shared across the different organizations in the enterprise.
Probabilistic algorithms can be used to compare a fixed record with a number of candidates for a match, and to compute for each candidate a likelihood ratio or weighted score, that is compared to the chosen accept and reject thresholds, as explained above in connection with
For each medical facility, the flow of information into and out of the patient record is channeled through a master patient index (MPI) that associates a unique medical record number (MRN) to each patient entity when a unit record exists. To obtain an enterprise-wide view on patients across distributed data sources, an enterprise master patient index (EMPI) is put in place. The EMPI is developed through integration of the individual MPIs of the sources.
Currently, if two records are manually linked or manually declared as different, this fact is used as the “single ground truth” in the whole system. The problem with this approach is that the manual matching phase accepts as true a single authoritative decision. This decision may not be acceptable in other autonomous environments, where there is no enterprise wide authority recognized by all the sites and therefore no single source of truth. An enterprise-wide standard may be achieved through use of an assertion.
An assertion is attached to a pair of records to be matched, based on the likelihood ratio comparison, stating whether it is believed that the two records belong to the same patient or not. An assertion-based record linkage enables all participating sites to independently decide whether the relevant records submitted for manual review, in a federation of healthcare providers, belong to the same patient. None of the review decisions is taken as a single global ground truth. Individual assertions are maintained for every institution, serving as a local ground truth with respect to the institution that issued them, but not necessarily for other institutions.
With reference to
The ability of hospital B to overturn an assertion made by hospital A is an advantage of the present application. If hospital B, 240, were not able to overturn the hospital A assertion, then hospital B would lose autonomy over its own data and in principle could not guarantee data consistency. For instance, a mistake made at hospital A during the review, would, if hospital B were not able to overrule the assertion made by hospital A, force hospital B to become responsible for hospital A's error without being able to influence the matching outcome. However, as an autonomous organization, hospital B does not need to consider and apply decisions taken at hospital A.
In some current record linkage solutions, if two records are manually linked or manually declared as different, this fact is used as the “single ground truth” throughout the whole system. For example, record matching applied within a uniform enterprise-wide setting where the distributed sites with their own identification schemes become part of one larger “virtual” enterprise, e.g., by acquisitions or mergers. The “single ground truth” approach to manual review works well in such settings, because the degree of trust established among the participating parties is usually quite high and hence the results of the manual review are accepted by all parties without a doubt.
The model of complete trust that is essentially assumed in the “single ground truth” approach does not apply to all environments in which patient data is to be shared. Particularly, in environments where participating institutions are only loosely coupled and remain autonomous in their governance, the solution with only one single ground truth with respect to manual match review can cause problems. Some of the emerging RHIOs (Regional Health Information Organization) represent such distributed autonomous environments. There, participating institutions retain the complete control over their data and the quality process that is associated with handling it
With reference to
A medical facility reviews its own local exception list and also the corresponding assertion lists when the patient identifiers at the different healthcare organizations which are participating in the system are linked together.
Exceptions also need to be reviewed by an medical facility during normal system operation, each time an entry relevant for that site is added to the global exception list. Items are added to the global exception list during the system operation when a new patient is registered and the identity matching algorithm generates an exception for a possible match, in which case the exception list needs to be reviewed regularly.
The assertion list containing assertions already made at other medical facilities regarding the records to be evaluated may help the local site to decide whether the records should be linked, but it is not a source of truth. The local site makes its own assertions which are sent back to the patient registry 310 and stored in the global assertion list 330 as the truth for that site.
With reference to
The problem of patient identity in a federated environment in the absence of a global common identifier is a key issue, wherein the solving of such a key issue is considered to be a prerequisite to being able to build and deploy a Federated Picture Archiving and Communication System (PACS) solution. The present application addresses the manual review phase of the matching process in the context of autonomous environments.
With reference to
For example, the entered record in the present example is for Joe, a 55 year old male urban dweller. A comparison with a record in the database of Adam, a 14 year old male urban dweller would produce a low 19% likelihood ratio of a match due to the great age and address disparity between the two compared records. If the threshold ratio of rejection were 20%, then this record with a 19% ratio would fall below the 20% rejection threshold and would be rejected. These two compared records are probably not for the same person.
Another comparison, this time of the entered record of Joe the 55 year old male urban dweller with the database record of another different Joe who is 59 years old, a male urban dweller would produce a higher likelihood ratio of 91% because these two records are a much closer match in terms of age, gender, and lifestyle. If the threshold ratio for accept were 90%, then this record with an acceptance ratio of 91% would be above the 90% acceptance ratio and would be accepted as a match. These two compared records are likely for the same person.
A comparison with a record for Joan, a 55 year old female rural dweller would produce a likelihood ratio of 72%. As this 72% is above the 20% reject ratio and also below the 90% accept ratio, this record would be placed on an exception list and flagged for manual review. Only a manual review could determine whether these records are for the same person.
Each demographic factor can be, but is not necessarily, equally weighted. For example, an individual's address can change a great deal in a short period of time. Therefore this demographic might be weighted to be of less importance than other more stable, less inclined to change demographics. A demographic that rarely or never changes, such as gender or race, might be given greater weight because this demographic may be more reliable as an indicator of a specific person. In the present example, this would explain why the likelihood match between Joe 55 M U 123 Oak and Joe 59 M U 998 Balsa is at 91% despite the difference in address between these two individuals. Here, the similarity in age, gender, and lifestyle is weighted more heavily than address is weighted.
The above-described process is performed on one or more computers or computer systems. Computer programs for performing the steps can be stored on a tangible computer readable medium, such as a disc, computer memory, or the like.
A plurality of healthcare providers can exchange information and review each other's evaluations of patient medical records when determining the likelihood ratio that two records submitted for manual review belong to the same patient.
The present application has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the present application be constructed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB09/55185 | 11/19/2009 | WO | 00 | 6/6/2011 |
Number | Date | Country | |
---|---|---|---|
61121989 | Dec 2008 | US |