Assessing neural state from action potentials

Information

  • Patent Grant
  • 12285263
  • Patent Number
    12,285,263
  • Date Filed
    Tuesday, May 31, 2022
    2 years ago
  • Date Issued
    Tuesday, April 29, 2025
    2 days ago
Abstract
The neural health or state of a subject is assessed. A recording is obtained of a compound action potential arising in neural tissue of the subject. The recording is processed to determine whether a profile of the recorded compound action potential is anomalous, such as by exhibiting doublets, peak broadening or deformation, or other anomaly. An indication is output regarding the neural state of the subject based on determined anomalies in the recorded compound action potential.
Description
TECHNICAL FIELD

The present invention relates to assessing a neural state from neural potentials, and in particular relates to obtaining a recording of a neural potential arising on neural tissue, and monitoring for an anomalous profile of the recording, in order to assess the existence, state or progress of a neural disease.


BACKGROUND OF THE INVENTION

Neuropathic pain arises from damage or disease affecting the somatosensory system, and may result from disorders of the peripheral nervous system or the central nervous system. For example, complex regional pain syndrome (CRPS) is a severe type of pain disorder.


There is no known single pathognomonic symptom or sign of neuropathic disease. Consequently, it is difficult to diagnose neuropathic disease and to monitor the progress of neuropathic disease. No conclusive objective diagnostic exists for neuropathic pain, and clinicians must rely largely on a subjective clinical observation of the patient's responses. Neuropathic pain is also difficult to treat and often responds poorly to standard pain treatments.


A range of medications for treating neuropathic pain exist, including gabapentin for example. Careful documentation and appropriate monitoring of treatment are important for the safe and effective use of such medications, however this is difficult to achieve due to the difficulty of determining the disease state or monitoring the progress of the disease or symptoms. Advanced therapies for treating neuropathic pain include spinal cord stimulation.


Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.


Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.


In this specification, a statement that an element may be “at least one of” a list of options is to be understood that the element may be any one of the listed options, or may be any combination of two or more of the listed options.


SUMMARY OF THE INVENTION

According to a first aspect the present invention provides a method of assessing a neural state of a subject, the method comprising:

    • obtaining a recording of a compound action potential arising in neural tissue of the subject;
    • processing the recording to determine whether a profile of the recorded compound action potential is anomalous; and
    • outputting an indication regarding the neural state of the subject based on determined anomalies in the recorded compound action potential.


A method for determining whether a human patient has neuropathic disease, comprising:

    • obtaining a recording of a compound action potential arising in neural tissue of the patient; and
    • diagnosing the patient as having neuropathic disease if a profile of the recorded compound action potential is anomalous.


A non-transitory computer readable medium for assessing a neural state of a subject, comprising instructions which, when executed by one or more processors, causes performance of the following:

    • obtaining a recording of a compound action potential arising in neural tissue of the subject;
    • processing the recording to determine whether a profile of the recorded compound action potential is anomalous; and
    • outputting an indication regarding the neural state of the subject based on determined anomalies in the recorded compound action potential.


The detection of irregularities or anomalies in the recorded response may comprise any one or more of:

    • determining whether more than three peaks exist in the recorded compound action potential;
    • determining whether a peak in the recorded compound action potential is unexpectedly broad;
    • determining whether a peak in the recorded compound action potential has an atypically swift rate of rise;
    • determining whether anomalous frequency components exist in the recorded compound action potential when assessed in the frequency domain;
    • determining a degree of deviation of the recorded compound action potential from a predefined expected response profile and, if the degree of deviation exceeds a predetermined threshold, indicating that the recorded response is anomalous.


Some embodiments may determine whether more than three peaks exist in the recorded compound action potential by measuring an amplitude or power of the recorded compound action potential in a time window positioned after cessation of a normal response. The amplitude or power of the recorded compound action potential in such a time window can be used to assess the presence or absence of an abnormal response arising later than a normal P2 peak. Additionally or alternatively, a matched filter or other signal processing means may be used to detect the presence of an extra lobe in the recorded compound action potential.


Some embodiments of the present invention thus recognise that when considering a recorded compound action potential (CAP) obtained from a person suffering from an altered neural state such as CRPS, rather than the CAP taking a typical three lobed profile, lobe deformation or additional lobes referred to herein as doublets can be observed to arise in the ECAP. Moreover, the degree of lobe deformation and/or the relative size of the additional lobes appearing in the response can he measured, in order to give not only a binary diagnosis but also a quantitative measure of the severity of the disease suffered by the person. Absence of such response profile anomalies may be used to eliminate some diseases from a diagnosis for the person. Repeated assessment of the recorded response profile from time to time, for example throughout administration of a therapy, may be used to assess disease state, disease progress, and therapy efficacy, and may be used to guide therapy modifications and optimisation over time. Therapy modifications may include modifications of dosage of a medicament and/or modification of a stimulus regime applied by a spinal column stimulator.


Accordingly, the present invention recognises that monitoring for the occurrence and severity of anomalies such as doublets in the recorded response profile gives a diagnostic for neuropathic pain or neural damage or in general any neural disease which gives rise to atypical neural response profiles.


Notably, some embodiments of the present invention further recognise that when application of a stimulus to a first neural site gives rise to anomalies in a recorded neural response profile, application of the same stimulus to an alternative neural site might give rise to a recorded neural response without abnormalities. Such embodiments may thus provide for identifying a locus of neuropathic pain.


The method of the present invention may in some embodiments be performed intra-operatively for example to effect electrode array implantation site optimisation. The method of the present invention may additionally or alternatively be performed during an implant programming stage in order to optimise electrode selection to a site at which a locus of neuropathic pain is identified.


The invention may further provide for intra-operative monitoring of the response profile during a sympathectomy procedure, in order to provide an intra-operative progressive indication of efficacy of the sympathectomy.


According to a further aspect the present invention provides a method of treating a neural disease, the method comprising:

    • ordering or requesting the result of the method of the first aspect; and
    • administering or modifying a therapy in a manner responsive to the ordered result.


The compound action potential may arise from deliberate stimulation, whether peripheral stimulation or direct spinal column stimulation, for example.





BRIEF DESCRIPTION OF THE DRAWINGS

An example of the invention will now be described with reference to the accompanying drawings, in which:



FIG. 1a schematically illustrates an implanted spinal cord stimulator suitable for implementing the present invention;



FIG. 1b is a block diagram of the implanted neurostimulator;



FIG. 1c is a schematic illustrating interaction of the implanted stimulator with a nerve;



FIG. 2a illustrates the typical form of an electrically evoked compound action potential of a healthy subject, and FIGS. 2b and 2c illustrate how the CAP manifests in the recording when using a differential recording arrangement with an epidural ground;



FIG. 3 illustrates an actual ECAP recording obtained from a subject having a normal neural state;



FIG. 4 illustrates anomalous ECAP recordings obtained from a subject suffering a neural disease;



FIG. 5 illustrates anomalous ECAP recordings obtained from another subject suffering a neural disease;



FIG. 6 is a plot of the differences between the N1, N2 peaks measured doublets;



FIG. 7 shows the normalised antidromic responses from three patients plotted together;



FIG. 8 shows an example of a large doublet response in the antidromic response of one patient;



FIG. 9 is a plot of the normalized masker probe results for the refractory period of three patients;



FIGS. 10-12 illustrate the relative severity of doublet formation for three respective patients; and



FIG. 13 illustrates a control system by which a therapy may be modified in accordance with one embodiment of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 schematically illustrates an implanted spinal cord stimulator 100 suitable for implementing the present invention. Stimulator 100 comprises an electronics module 110 implanted at a suitable location in the patient's lower abdominal area or posterior superior gluteal region, and an electrode assembly 150 implanted within the epidural space and connected to the module 110 by a suitable lead. Numerous aspects of operation of implanted neural device 100 are reconfigurable by an external control device 192. Moreover, implanted neural device 100 serves a data gathering role, with gathered data being communicated to external device 192.



FIG. 1b is a block diagram of the implanted neurostimulator 100. Module 110 contains a battery 112 and a telemetry module 114. In embodiments of the present invention, any suitable type of transcutaneous communication 190, such as infrared (IR), electromagnetic, capacitive and inductive transfer, may be used by telemetry module 114 to transfer power and/or data between an external device 192 and the electronics module 110.


Module controller 116 has an associated memory 118 storing patient settings 120, control programs 122 and the like. Controller 116 controls a pulse generator 124 to generate stimuli in the form of current pulses in accordance with the patient settings 120 and control programs 122. Electrode selection module 126 switches the generated pulses to the appropriate electrode(s) of electrode array 150, for delivery of the current pulse to the tissue surrounding the selected electrode(s). Measurement circuitry 128 is configured to capture measurements of neural responses sensed at sense electrode(s) of the electrode array as selected by electrode selection module 126.



FIG. 1c is a schematic illustrating interaction of the implanted stimulator 100 with a nerve 180, in this case the spinal cord however alternative embodiments may be positioned adjacent any desired neural tissue including a peripheral nerve, visceral nerve, parasympathetic nerve or a brain structure. Electrode selection module 126 selects a stimulation electrode 2 of electrode array 150 to deliver an electrical current pulse to surrounding tissue including nerve 180, and also selects a return electrode 4 of the array 150 for stimulus current recovery to maintain a zero net charge transfer.


Delivery of an appropriate stimulus to the nerve 180 evokes a neural response comprising a compound action potential which will propagate along the nerve 180 as illustrated, for therapeutic purposes which in the case of a spinal cord stimulator for chronic pain might be to create paraesthesia at a desired location. To this end the stimulus electrodes are used to deliver stimuli at 30 Hz. To fit the device, a clinician applies stimuli which produce a sensation that is experienced by the user as a paraesthesia. When the paraesthesia is in a location and of a size which is congruent with the area of the user's body affected by pain, the clinician nominates that configuration for ongoing use.


The device 100 is further configured to sense the existence and intensity of compound action potentials (CAPs) propagating along nerve 180, whether such CAPs are evoked by the stimulus from electrodes 2 and 4, or otherwise evoked. To this end, any electrodes of the array 150 may be selected by the electrode selection module 126 to serve as measurement electrode 6 and measurement reference electrode 8. Signals sensed by the measurement electrodes 6 and 8 are passed to measurement circuitry 128, which for example may operate in accordance with the teachings of International Patent Application Publication No. WO2012155183 by the present applicant, the content of which is incorporated herein by reference.



FIG. 2a illustrates the typical form of an electrically evoked compound action potential of a healthy subject. The shape of the compound action potential shown in FIG. 2a is predictable because it is a result of the ion currents produced by the ensemble of axons generating action potentials in response to stimulation. The action potentials generated among a large number of fibres sum to form a compound action potential (CAP). The CAP is the sum of responses from a large number of single fibre action potentials. The CAP recorded is the result of a large number of different fibres depolarising. The propagation velocity is determined largely by the fibre diameter. The CAP generated from the firing of a group of similar fibres is measured as a positive peak potential P1, then a negative peak N1, followed by a second positive peak P2. This is caused by the region of activation passing the recording electrode as the action potentials propagate along the individual fibres. An observed CAP signal will typically have a maximum amplitude in the range of microvolts.


The CAP profile takes a typical form and can be characterised by any suitable parameter(s) of which some are indicated in FIG. 2a. The positions and amplitudes of the peaks can for example be used alone or in combination to generate a correlation between them and the state and severity of a central nervous system (CNS) disorder. Depending on the polarity of recording, a normal recorded profile may take an inverse form to that shown in FIG. 2a, i.e. having two negative peaks N1 and N2, and one positive peak P1.



FIG. 2b illustrates how the CAP manifests in the recording, when using a differential recording arrangement with an epidural ground. In FIG. 2b a normal ECAP shape (A) is inverted and delayed by the propagation distance to the epidural ground electrode (B), and so the differential measure will look like the envelope of C. FIG. 2c shows the corresponding manifestation in relation to an anomalous CAP (D). The anomalous CAP has a strong doublet, which is inverted and delayed by the propagation distance to the epidural ground electrode (E), and so the differential measure will look like the envelope of F. As shown in FIG. 2c, and also being the case for FIG. 2b, the actual recording obtained typically does not include the first positive peak as it is obscured by the stimulus.


The present invention thus recognises that the shape or profile of the compound action potential reflects changes in the ion channel characteristics as a result of pathological or natural change.


Examples

Comparison of ECAP measurements from the dorsal column of a number of different human subjects was undertaken in order to identify systematic differences which relate to either genetic or pathological differences between subjects. Measurements of dorsal column evoked compound action potentials show distinct differences between the ECAP shapes measured at different electrodes along the array.



FIG. 3 shows a “normal” ECAP, being a triphasic P1, N1, P2 response, as obtained from “patient 25”. The use of epidural ground inverts the N1 at a time when the response passes the ground electrode. As the recorded response of FIG. 3 exhibits no significant abnormalities as compared to the predicted response of FIG. 2, Patient 25 can be diagnosed as having no measurable neuropathic disease.


In contrast, FIG. 4 shows data from patient 34, measured in both the orthodromic and antidromic directions at respective electrodes either side of the stimulus electrode, each spaced apart from the stimulus electrode by three electrodes. The N1 peak 402 is broader in the orthodromic direction, displays a faster rise time and is larger in amplitude. Moreover, an additional lobe 404 has emerged in the orthodromic response, in deviation from the expected response of FIG. 3. Any or all of these abnormalities may be detected and/or quantified in order to produce an automated diagnosis of the existence or severity of neural disease in patient 34. For example in some embodiments a measurement may be taken of the signal amplitude or power occurring within a time window covering the anomalous peak 404. When the amplitude or power in such a time window exceeds a threshold the response may be flagged as being anomalous.



FIG. 5 illustrates the recordings of the corresponding orthodromic and antidromic responses arising from patient 22. As seen at 502 in the N1 peak of the orthodromic response, the N1 peak 502 is broader in the orthodromic direction, displays a faster rise time and is larger in amplitude. An additional lobe 504 has emerged in the orthodromic response, in deviation from the expected response of FIG. 3. Thus patient 22 exhibits doublets which may be detected and/or quantified in order to produce an automated diagnosis of the existence or severity of neural disease in patient 22.



FIG. 6 is a histogram of N1 peak latencies in ms, measured at the same stimulus electrode to recording electrode separation, for a large number of patients. This illustrates that N1 peak latency is predictable within quite a narrow time range as the peaks have quite a narrow spread over a large number of patients.



FIG. 7 shows the normalised antidromic responses from three patients plotted together. The N1 peaks have very similar latencies. The peak shapes 702 and 704 are normal, noting the effects described in relation to FIGS. 2b and 2c.



FIG. 8 shows an example of a large doublet response in the antidromic response of one patient, illustrating that severity of the neural state can be distinguished, for example by comparing the normalised height of lobe 804 to say lobe 404 or 504.


To explore the question of ectopic discharge, the refractory period was investigated using the “masker probe” techniques set forth in International Patent Application Publication No. WO2012/155189, the contents of which are incorporated herein by reference. FIG. 9 is a plot of the normalized masker probe results for 3 patients, denoted patient nos 16, 19 and 35 respectively. For patient 35 the masked amplitude was divided by the unmasked amplitude. To allow for differences in the measurement mode for patients 16 and 19, the results were normalized against the responses at ˜5000 micro seconds inter-stimulus interval (ISI). In general the results are consistent between patients. As shown in FIGS. 10-12, the CAP profile of patient 35 had the largest double peaks or doublets of the three patients, and also at short ISI's of the order of 100-200 us patient 35 had the largest additional recruitment as indicated at 902. The data for patient 16 was collected with an 80 us pulse width, and so this will affect the additional recruitment at the short ISI's.



FIG. 10 illustrates the progression of CAP profile as the CAP travels away from the stimulus site, for patient 35. This indicates that the existence of an atypical CAP profile may best be detected by making recordings very close to the stimulus site. It is noted that the anomalous peaks propagate with distance, which indicates that they are neural responses from the same group or class of fibres. FIG. 11 shows a response obtained from patient 16, and FIG. 12 shows a response obtained from patient 19, revealing that of these three patients Patient 35 has the most severe doublet formation in their neural response.


There appears to be little consistency between the N1 latency and the appearance of the double response so N1 latency may not be a suitable parameter for diagnosing neural state.


Some embodiments may provide for repeated assessment of the recorded response profile from time to time, for example throughout administration of a therapy, in order to assess disease state, disease progress, and therapy efficacy, and may be used to guide therapy modifications and optimisation over time. Therapy modifications may include modifications of dosage of a medicament and/or modification of a stimulus regime applied by a spinal column stimulator. FIG. 13 illustrates a control loop by which drug dosage or electrical stimuli dosage is adjusted in a dynamic manner, with the magnitude of the doublet (404, 504) being used as a control variable for a feedback loop.


It will he appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A method of assessing a neural state of a subject, the method comprising: obtaining a recording of a compound action potential arising in neural tissue of the subject from one or more implanted sense electrodes of an implantable neurostimulator;providing to a processor of a control device the recording of the compound action potential;processing, by the processor, the recording to detect an anomaly in a profile of the recorded compound action potential by determining whether a peak in the recorded compound action potential has an atypically swift rate of rise;generating, by the processor, an indication regarding the neural state of the subject based on detected anomalies in the recorded compound action potential;outputting, by the processor, the indication regarding the neural state of the subject; andconfiguring, by the processor, the implantable neurostimulator using the indication regarding the neural state of the subject.
  • 2. The method of claim 1 wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises determining whether more than three peaks exist in the recorded compound action potential.
  • 3. The method of claim 1 wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises determining whether a peak in the recorded compound action potential is unexpectedly broad.
  • 4. The method of claim 1 wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises determining whether anomalous frequency components exist in the recorded compound action potential when assessed in the frequency domain.
  • 5. The method of claim 1 wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises: determining a degree of deviation of the profile of the recorded compound action potential from a predefined expected compound action potential profile; andcomparing the degree of deviation with a predetermined threshold.
  • 6. The method of claim 1 wherein the detection of an anomaly in the profile of the recorded compound action potential comprises identifying a locus of neuropathic pain by applying stimuli to first and second neural sites and determining which stimulus gives rise to greatest anomalies in a recorded compound action potential profile.
  • 7. The method of claim 1 wherein configuring the implantable neurostimulator is performed intra-operatively to effect electrode array implantation site optimisation.
  • 8. The method of claim 1 wherein configuring the implantable neurostimulator is performed during a programming stage in order to optimise electrode selection.
  • 9. The method of claim 1 wherein configuring the implantable neurostimulator is performed intra-operatively during a sympathectomy procedure, in order to provide an intra-operative progressive indication of efficacy of the sympathectomy.
  • 10. The method of claim 1, further comprising administering or modifying a therapy in a manner responsive to the indication regarding the neural state of the subject.
  • 11. A neural state measurement system, comprising: an implantable neurostimulator, comprising: at least one implantable sense electrode;a telemetry module;a module controller; anda memory, where the memory comprises a control program capable of directing a processor to: obtain a recording of a compound action potential arising in neural tissue of a subject using the at least one implantable sense electrode; andprovide the recording of the compound action potential to a processor of a control device; andthe control device, where the processor of the control device is configured to: process the recording to detect an anomaly in a profile of the recorded compound action potential by determining whether a peak in the recorded compound action potential has an atypically swift rate of rise;generate, based on detected anomalies in the recorded compound action potential, an indication regarding the neural state of the subject;output the indication regarding the neural state of the subject; andconfigure the implantable neurostimulator using the indication regarding the neural state of the subject.
  • 12. The neural state measurement system of claim 11, wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises determining whether more than three peaks exist in the recorded compound action potential.
  • 13. The neural state measurement system of claim 11, wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises determining whether a peak in the recorded compound action potential is unexpectedly broad.
  • 14. The neural state measurement system of claim 11, wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises determining whether anomalous frequency components exist in the recorded compound action potential when assessed in the frequency domain.
  • 15. The neural state measurement system of claim 11, wherein the detection of an anomaly in the profile of the recorded compound action potential further comprises: determining a degree of deviation of the profile of the recorded compound action potential from a predefined expected compound action potential profile; andcomparing the degree of deviation with a predetermined threshold.
  • 16. The neural state measurement system of claim 11 wherein the detection of an anomaly in the profile of the recorded compound action potential comprises identifying a locus of neuropathic pain by applying stimuli to first and second neural sites and determining which stimulus gives rise to greatest anomalies in a recorded compound action potential profile.
  • 17. The neural state measurement system of claim 11, wherein configuring the implantable neurostimulator is performed intra-operatively to effect electrode array implantation site optimisation.
  • 18. The neural state measurement system of claim 11, wherein configuring the implantable neurostimulator is performed during a programming stage in order to optimise electrode selection.
  • 19. The neural state measurement system of claim 11, wherein configuring the implantable neurostimulator is performed intra-operatively during a sympathectomy procedure, in order to provide an intra-operative progressive indication of efficacy of the sympathectomy.
  • 20. The neural state measurement system of claim 11, wherein the processor of the control device is further configured to administer or modify a therapy in a manner responsive to the indication regarding the neural state of the subject.
Priority Claims (1)
Number Date Country Kind
2014901110 Mar 2014 AU national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/129,407 entitled “Assessing Neural State from Action Potentials”, filed Sep. 26, 2016 which is a national stage of PCT Application No. PCT/AU2015/050135 filed Mar. 27, 2015 which claims the benefit of Australian Provisional Patent Application No. 2014901110 filed Mar. 28, 2014, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (363)
Number Name Date Kind
3724467 Avery et al. Apr 1973 A
3736434 Darrow May 1973 A
3817254 Maurer Jun 1974 A
3898472 Long Aug 1975 A
4158196 Crawford, Jr. Jun 1979 A
4418695 Buffet Dec 1983 A
4474186 Ledley et al. Oct 1984 A
4628934 Pohndorf et al. Dec 1986 A
4807643 Rosier Feb 1989 A
4856525 Van Den Honert Aug 1989 A
5113859 Funke May 1992 A
5139020 Koestner et al. Aug 1992 A
5143081 Young et al. Sep 1992 A
5156154 Valenta et al. Oct 1992 A
5172690 Nappholz et al. Dec 1992 A
5184615 Nappholz et al. Feb 1993 A
5188106 Nappholz et al. Feb 1993 A
5215100 Spitz et al. Jun 1993 A
5324311 Acken Jun 1994 A
5417719 Hull et al. May 1995 A
5431693 Schroeppel Jul 1995 A
5458623 Lu et al. Oct 1995 A
5476486 Lu et al. Dec 1995 A
5497781 Chen et al. Mar 1996 A
5638825 Yamazaki et al. Jun 1997 A
5702429 King et al. Dec 1997 A
5758651 Nygard et al. Jun 1998 A
5776170 Macdonald et al. Jul 1998 A
5785651 Kuhn et al. Jul 1998 A
5792212 Weijand et al. Aug 1998 A
5814092 King Sep 1998 A
5895416 Barreras et al. Apr 1999 A
5913882 King Jun 1999 A
5999848 Gord et al. Dec 1999 A
6020857 Podger Feb 2000 A
6027456 Feler et al. Feb 2000 A
6038480 Hrdlicka et al. Mar 2000 A
6066163 John May 2000 A
6114164 Dennis et al. Sep 2000 A
6144881 Hemming et al. Nov 2000 A
6157861 Faltys et al. Dec 2000 A
6212431 Hahn et al. Apr 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6381496 Meadows et al. Apr 2002 B1
6449512 Boveja Sep 2002 B1
6463328 John Oct 2002 B1
6473649 Gryzwa et al. Oct 2002 B1
6473653 Schallhorn et al. Oct 2002 B1
6493576 Dankwart-Eder Dec 2002 B1
6516227 Meadows et al. Feb 2003 B1
6522932 Kuzma Feb 2003 B1
6600955 Zierhofer et al. Jul 2003 B1
6658293 Vonk et al. Dec 2003 B2
6675046 Holsheimer Jan 2004 B2
6782292 Whitehurst Aug 2004 B2
6895280 Meadows et al. May 2005 B2
6898582 Lange et al. May 2005 B2
6909917 Woods et al. Jun 2005 B2
7089059 Pless Aug 2006 B1
7171261 Litvak et al. Jan 2007 B1
7177675 Suffin et al. Feb 2007 B2
7206640 Overstreet Apr 2007 B1
7231254 DiLorenzo et al. Jun 2007 B2
7286876 Yonce et al. Oct 2007 B2
7412287 Yonce et al. Aug 2008 B2
7450992 Cameron Nov 2008 B1
7634315 Cholette Dec 2009 B2
7734340 De Ridder Jun 2010 B2
7742810 Moffitt Jun 2010 B2
7792584 Van Oort et al. Sep 2010 B2
7818052 Litvak et al. Oct 2010 B2
7831305 Gliner Nov 2010 B2
7835804 Fridman et al. Nov 2010 B2
7890182 Parramon et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
8083685 Fagin et al. Dec 2011 B2
8190251 Molnar et al. May 2012 B2
8224459 Pianca et al. Jul 2012 B1
8239031 Fried et al. Aug 2012 B2
8249698 Mugler et al. Aug 2012 B2
8332047 Libbus et al. Dec 2012 B2
8359102 Thacker et al. Jan 2013 B2
8401655 De Ridder Mar 2013 B2
8417342 Abell Apr 2013 B1
8454529 Daly et al. Jun 2013 B2
8494645 Spitzer et al. Jul 2013 B2
8515545 Trier Aug 2013 B2
8588929 Davis et al. Nov 2013 B2
8670830 Carlson et al. Mar 2014 B2
8886323 Wu et al. Nov 2014 B2
9044155 Strahl Jun 2015 B2
9155892 Parker et al. Oct 2015 B2
9302112 Bornzin et al. Apr 2016 B2
9381356 Parker et al. Jul 2016 B2
9386934 Parker et al. Jul 2016 B2
9872990 Parker et al. Jan 2018 B2
9974455 Parker et al. May 2018 B2
10206596 Single et al. Feb 2019 B2
10278600 Parker et al. May 2019 B2
10368762 Single Aug 2019 B2
10426409 Single Oct 2019 B2
10500399 Single Dec 2019 B2
10568559 Parker et al. Feb 2020 B2
10588524 Single et al. Mar 2020 B2
10588698 Parker et al. Mar 2020 B2
10632307 Parker Apr 2020 B2
10842996 Baru et al. Nov 2020 B2
10849525 Parker et al. Dec 2020 B2
10894158 Parker Jan 2021 B2
10918872 Parker et al. Feb 2021 B2
11006846 Parker et al. May 2021 B2
11006857 Parker May 2021 B2
11045129 Parker et al. Jun 2021 B2
11110270 Parker et al. Sep 2021 B2
11167129 Parker Nov 2021 B2
11172864 Parker et al. Nov 2021 B2
11179091 Karantonis et al. Nov 2021 B2
11191966 Wah Dec 2021 B2
20020055688 Katims May 2002 A1
20020099419 Ayal et al. Jul 2002 A1
20020193670 Garfield et al. Dec 2002 A1
20030032889 Wells Feb 2003 A1
20030045909 Gross et al. Mar 2003 A1
20030139781 Bradley et al. Jul 2003 A1
20030153959 Thacker et al. Aug 2003 A1
20030195580 Bradley et al. Oct 2003 A1
20040088017 Sharma et al. May 2004 A1
20040116978 Bradley Jun 2004 A1
20040122482 Tung et al. Jun 2004 A1
20040158298 Gliner et al. Aug 2004 A1
20040225211 Gozani et al. Nov 2004 A1
20040254494 Spokoyny Dec 2004 A1
20050010265 Baru Fassio et al. Jan 2005 A1
20050017190 Eversmann et al. Jan 2005 A1
20050021104 DiLorenzo Jan 2005 A1
20050065427 Magill et al. Mar 2005 A1
20050070982 Heruth et al. Mar 2005 A1
20050075683 Miesel et al. Apr 2005 A1
20050101878 Daly et al. May 2005 A1
20050107674 Parthasarathy et al. May 2005 A1
20050113877 Giardiello et al. May 2005 A1
20050137670 Christopherson et al. Jun 2005 A1
20050149154 Cohen Jul 2005 A1
20050192567 Katims Sep 2005 A1
20050203600 Wallace Sep 2005 A1
20050209655 Bradley et al. Sep 2005 A1
20050216064 Heruth et al. Sep 2005 A1
20050282149 Kovacs et al. Dec 2005 A1
20060009820 Royle et al. Jan 2006 A1
20060020291 Gozani et al. Jan 2006 A1
20060129205 Boveja et al. Jun 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060195159 Bradley et al. Aug 2006 A1
20060212089 Tass Sep 2006 A1
20060217782 Boveja et al. Sep 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060276722 Litvak et al. Dec 2006 A1
20060287609 Litvak et al. Dec 2006 A1
20070021800 Bradley et al. Jan 2007 A1
20070073354 Knudson et al. Mar 2007 A1
20070100378 Maschino May 2007 A1
20070178579 Ross et al. Aug 2007 A1
20070185409 Wu et al. Aug 2007 A1
20070208394 King et al. Sep 2007 A1
20070225765 King Sep 2007 A1
20070225767 Daly et al. Sep 2007 A1
20070244410 Fridman et al. Oct 2007 A1
20070250120 Flach et al. Oct 2007 A1
20070255372 Metzler et al. Nov 2007 A1
20070265489 Borgerding et al. Nov 2007 A1
20070282217 McGinnis et al. Dec 2007 A1
20070287931 Dilorenzo Dec 2007 A1
20080021292 Stypulkowski Jan 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080064947 Heruth et al. Mar 2008 A1
20080077039 Donnett Mar 2008 A1
20080077191 Morrell Mar 2008 A1
20080097529 Parramon et al. Apr 2008 A1
20080132964 Cohen et al. Jun 2008 A1
20080147155 Swoyer et al. Jun 2008 A1
20080183076 Witte et al. Jul 2008 A1
20080208304 Zdravkovic et al. Aug 2008 A1
20080234780 Smith et al. Sep 2008 A1
20080275527 Greenberg et al. Nov 2008 A1
20080294221 Kilgore Nov 2008 A1
20080300655 Cholette Dec 2008 A1
20080319508 Botros et al. Dec 2008 A1
20090030337 Gozani et al. Jan 2009 A1
20090033486 Costantino et al. Feb 2009 A1
20090058635 Lalonde et al. Mar 2009 A1
20090082691 Denison et al. Mar 2009 A1
20090149912 Dacey, Jr. et al. Jun 2009 A1
20090157155 Bradley Jun 2009 A1
20090270957 Pianca Oct 2009 A1
20090281594 Wacnik et al. Nov 2009 A1
20090287277 Conn et al. Nov 2009 A1
20090299214 Wu et al. Dec 2009 A1
20090306491 Haggers Dec 2009 A1
20090306533 Rousche et al. Dec 2009 A1
20100010388 Panken et al. Jan 2010 A1
20100057159 Lozano Mar 2010 A1
20100058126 Chang et al. Mar 2010 A1
20100069835 Parker et al. Mar 2010 A1
20100069996 Strahl Mar 2010 A1
20100070007 Parker et al. Mar 2010 A1
20100070008 Parker et al. Mar 2010 A1
20100100153 Carlson et al. Apr 2010 A1
20100106231 Torgerson Apr 2010 A1
20100114237 Giftakis et al. May 2010 A1
20100114258 Donofrio et al. May 2010 A1
20100125313 Lee et al. May 2010 A1
20100125314 Bradley et al. May 2010 A1
20100145222 Brunnett et al. Jun 2010 A1
20100152808 Boggs Jun 2010 A1
20100179626 Pilarski Jul 2010 A1
20100191307 Fang et al. Jul 2010 A1
20100204748 Lozano et al. Aug 2010 A1
20100222844 Troosters et al. Sep 2010 A1
20100222858 Meloy Sep 2010 A1
20100249643 Gozani et al. Sep 2010 A1
20100249867 Wanasek Sep 2010 A1
20100258342 Parker Oct 2010 A1
20100262208 Parker Oct 2010 A1
20100262214 Robinson Oct 2010 A1
20100280570 Sturm et al. Nov 2010 A1
20100286748 Midani et al. Nov 2010 A1
20100331604 Okamoto et al. Dec 2010 A1
20100331926 Lee et al. Dec 2010 A1
20110004207 Wallace et al. Jan 2011 A1
20110021943 Lacour et al. Jan 2011 A1
20110028859 Chian Feb 2011 A1
20110040546 Gerber et al. Feb 2011 A1
20110077712 Killian Mar 2011 A1
20110087085 Tsampazis et al. Apr 2011 A1
20110093042 Torgerson et al. Apr 2011 A1
20110106100 Bischoff May 2011 A1
20110130802 Libbus et al. Jun 2011 A1
20110184488 De Ridder et al. Jul 2011 A1
20110204811 Pollmann-retsch Aug 2011 A1
20110224665 Crosby et al. Sep 2011 A1
20110224749 Ben-David et al. Sep 2011 A1
20110264165 Molnar et al. Oct 2011 A1
20110270343 Buschman et al. Nov 2011 A1
20110288391 Rao et al. Nov 2011 A1
20110307030 John Dec 2011 A1
20110313310 Tomita Dec 2011 A1
20110313483 Hincapie et al. Dec 2011 A1
20120029377 Polak Feb 2012 A1
20120059275 Fagin et al. Mar 2012 A1
20120101552 Lazarewicz et al. Apr 2012 A1
20120101826 Visser et al. Apr 2012 A1
20120109004 Cadwell May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120155183 Aritome Jun 2012 A1
20120185020 Simon et al. Jul 2012 A1
20120245481 Blanco et al. Sep 2012 A1
20120253423 Youn et al. Oct 2012 A1
20120277621 Gerber et al. Nov 2012 A1
20120277823 Gerber et al. Nov 2012 A1
20120310301 Bennett et al. Dec 2012 A1
20130041449 Cela et al. Feb 2013 A1
20130053722 Carlson et al. Feb 2013 A1
20130060302 Polefko et al. Mar 2013 A1
20130172774 Crowder et al. Jul 2013 A1
20130289661 Griffith et al. Oct 2013 A1
20130289683 Parker et al. Oct 2013 A1
20140046407 Ben-ezra et al. Feb 2014 A1
20140066803 Choi Mar 2014 A1
20140142447 Takahashi et al. May 2014 A1
20140194771 Parker et al. Jul 2014 A1
20140194772 Single et al. Jul 2014 A1
20140236042 Parker et al. Aug 2014 A1
20140236257 Parker et al. Aug 2014 A1
20140243926 Carcieri Aug 2014 A1
20140243931 Parker et al. Aug 2014 A1
20140249396 Shacham-diamand et al. Sep 2014 A1
20140276195 Papay et al. Sep 2014 A1
20140277250 Su et al. Sep 2014 A1
20140277267 Vansickle et al. Sep 2014 A1
20140288551 Bharmi et al. Sep 2014 A1
20140288577 Robinson et al. Sep 2014 A1
20140296737 Parker et al. Oct 2014 A1
20140324118 Simon et al. Oct 2014 A1
20140350634 Grill et al. Nov 2014 A1
20140358024 Nelson et al. Dec 2014 A1
20150018699 Zeng et al. Jan 2015 A1
20150025597 Surth et al. Jan 2015 A1
20150032181 Baynham et al. Jan 2015 A1
20150051637 Osorio Feb 2015 A1
20150126839 Li et al. May 2015 A1
20150148869 Dorvall et al. May 2015 A1
20150164354 Parker et al. Jun 2015 A1
20150174396 Fisher et al. Jun 2015 A1
20150238104 Tass Aug 2015 A1
20150238304 Lamraoui Aug 2015 A1
20150282725 Single Oct 2015 A1
20150313487 Single Nov 2015 A1
20150360031 Bornzin et al. Dec 2015 A1
20150374999 Parker Dec 2015 A1
20160082265 Moffitt et al. Mar 2016 A1
20160082268 Hershey et al. Mar 2016 A1
20160101289 Stolen et al. Apr 2016 A1
20160106980 Sürth et al. Apr 2016 A1
20160121124 Johanek et al. May 2016 A1
20160129272 Hou et al. May 2016 A1
20160144189 Bakker et al. May 2016 A1
20160166164 Obradovic et al. Jun 2016 A1
20160175594 Min et al. Jun 2016 A1
20160287126 Parker et al. Oct 2016 A1
20160287182 Single Oct 2016 A1
20160367808 Simon et al. Dec 2016 A9
20170001017 Parker et al. Jan 2017 A9
20170049345 Single Feb 2017 A1
20170071490 Parker et al. Mar 2017 A1
20170135624 Parker May 2017 A1
20170157410 Moffitt et al. Jun 2017 A1
20170173326 Bloch et al. Jun 2017 A1
20170173335 Min et al. Jun 2017 A1
20170173341 Johanek et al. Jun 2017 A1
20170216587 Parker Aug 2017 A1
20170361101 Single Dec 2017 A1
20180071513 Weiss et al. Mar 2018 A1
20180104493 Doan et al. Apr 2018 A1
20180110987 Parker Apr 2018 A1
20180117335 Parker et al. May 2018 A1
20180132747 Parker et al. May 2018 A1
20180132760 Parker May 2018 A1
20180133459 Parker et al. May 2018 A1
20180228391 Parker et al. Aug 2018 A1
20180228547 Parker Aug 2018 A1
20180229046 Parker et al. Aug 2018 A1
20180256052 Parker et al. Sep 2018 A1
20190001139 Mishra et al. Jan 2019 A1
20190030339 Baru et al. Jan 2019 A1
20190125269 Markovic et al. May 2019 A1
20190168000 Laird-wah Jun 2019 A1
20190216343 Single et al. Jul 2019 A1
20190239768 Karantonis et al. Aug 2019 A1
20190307341 Parker et al. Oct 2019 A1
20190357788 Single Nov 2019 A1
20200029914 Single Jan 2020 A1
20200129108 Parker et al. Apr 2020 A1
20200155240 Parker et al. May 2020 A1
20200215331 Single Jul 2020 A1
20200282208 Parker Sep 2020 A1
20210001133 Williams et al. Jan 2021 A1
20210008373 Single et al. Jan 2021 A1
20210016091 Parker et al. Jan 2021 A1
20210121696 Parker et al. Apr 2021 A1
20210162214 Parker Jun 2021 A1
20210267518 Parker et al. Sep 2021 A1
20210308449 Parker Oct 2021 A1
20210315502 Parker et al. Oct 2021 A1
20210379386 Parker et al. Dec 2021 A1
20210387005 Parker et al. Dec 2021 A1
20210387008 Single Dec 2021 A1
20210393964 Single et al. Dec 2021 A1
20220007987 Huang et al. Jan 2022 A1
20220039724 Parker et al. Feb 2022 A1
20220151535 Parker et al. May 2022 A1
20220151536 Karantonis et al. May 2022 A1
20220168574 Wah Jun 2022 A1
20220249009 Parker et al. Aug 2022 A1
Foreign Referenced Citations (119)
Number Date Country
2013277009 Jan 2016 AU
103648583 Mar 2014 CN
103654762 Mar 2014 CN
103842022 Jun 2014 CN
104411360 Mar 2015 CN
0219084 Apr 1987 EP
1244496 Oct 2002 EP
0998958 Aug 2005 EP
2019716 Nov 2007 EP
2243510 Oct 2010 EP
2443995 Apr 2012 EP
2520327 Nov 2012 EP
2707095 Mar 2014 EP
3229893 Oct 2017 EP
2006504494 Feb 2006 JP
2009512505 Mar 2009 JP
2012524629 Oct 2012 JP
2013500779 Jan 2013 JP
2013527784 Jul 2013 JP
2013536044 Sep 2013 JP
2014522261 Sep 2014 JP
2014523261 Sep 2014 JP
1983003191 Sep 1983 WO
1993001863 Feb 1993 WO
1996012383 Apr 1996 WO
2000002623 Jan 2000 WO
2002036003 Nov 2001 WO
2002038031 May 2002 WO
2002049500 Jun 2002 WO
2002082982 Oct 2002 WO
2003028521 Apr 2003 WO
2003043690 May 2003 WO
2003103484 Dec 2003 WO
2004021885 Mar 2004 WO
2004103455 Dec 2004 WO
2005032656 Apr 2005 WO
2005105202 Nov 2005 WO
2005122887 Dec 2005 WO
2006091636 Aug 2006 WO
2007050657 May 2007 WO
2007064936 Jun 2007 WO
2007127926 Nov 2007 WO
2007130170 Nov 2007 WO
2008004204 Jan 2008 WO
2008049199 May 2008 WO
2009002072 Dec 2008 WO
2009002579 Dec 2008 WO
2009010870 Jan 2009 WO
2009130515 Oct 2009 WO
2009146427 Dec 2009 WO
2010013170 Feb 2010 WO
2010044989 Apr 2010 WO
2010051392 May 2010 WO
2010051406 May 2010 WO
2010057046 May 2010 WO
2010124139 Oct 2010 WO
2010138915 Dec 2010 WO
2011011327 Jan 2011 WO
2011014570 Feb 2011 WO
2011017778 Feb 2011 WO
2011066477 Jun 2011 WO
2011066478 Jun 2011 WO
2011112843 Sep 2011 WO
2011119251 Sep 2011 WO
2011159545 Dec 2011 WO
2012016138 Feb 2012 WO
2012027252 Mar 2012 WO
2012027791 Mar 2012 WO
2012155183 Nov 2012 WO
2012155184 Nov 2012 WO
2012155185 Nov 2012 WO
2012155187 Nov 2012 WO
2012155188 Nov 2012 WO
2012155189 Nov 2012 WO
2012155190 Nov 2012 WO
2012162349 Nov 2012 WO
2013063111 May 2013 WO
2013075171 May 2013 WO
2013116161 Aug 2013 WO
2014071445 May 2014 WO
2014071446 May 2014 WO
2014143577 Sep 2014 WO
2014150001 Sep 2014 WO
2015070281 May 2015 WO
2015074121 May 2015 WO
2015109239 Jul 2015 WO
2015143509 Oct 2015 WO
2015168735 Nov 2015 WO
2016011512 Jan 2016 WO
2016048974 Mar 2016 WO
2016059556 Apr 2016 WO
2016077882 May 2016 WO
2016090420 Jun 2016 WO
2016090436 Jun 2016 WO
2016115596 Jul 2016 WO
2016161484 Oct 2016 WO
2016168798 Oct 2016 WO
2016191807 Dec 2016 WO
2016191808 Dec 2016 WO
2016191815 Dec 2016 WO
2017053504 Mar 2017 WO
2017142948 Aug 2017 WO
2017173493 Oct 2017 WO
2017210352 Dec 2017 WO
2017219096 Dec 2017 WO
2018080753 May 2018 WO
2018119220 Jun 2018 WO
2018160992 Sep 2018 WO
2018170141 Sep 2018 WO
2019178634 Sep 2019 WO
2019204884 Oct 2019 WO
2019231796 Dec 2019 WO
2020082118 Apr 2020 WO
2020082126 Apr 2020 WO
2020082128 Apr 2020 WO
2020087123 May 2020 WO
2020087135 May 2020 WO
2020124135 Jun 2020 WO
2021007615 Jan 2021 WO
Non-Patent Literature Citations (252)
Entry
Communication Pursuant to Article 94(3) EPC, for European Patent Application No. 14861553.7, Dated Nov. 4, 2022, 8 Pgs.
Extended European Search Report for European Application 18910394.8 Search Completed Oct. 7, 2021, Mailed Oct. 15, 2021, 8 pgs.
Extended European Search Report for European Application 19876581.0 Search Completed Jun. 7, 2022, Mailed Jun. 15, 2022, 7 pgs.
Extended European Search Report for European Application No. 15789515.2, Search completed Dec. 4, 2017, Mailed Jan. 30, 2018, 7 Pgs.
Extended European Search Report for European Application No. 16802238.2, Search completed Oct. 17, 2018, Mailed Oct. 24, 2018, 8 Pgs.
Extended European Search Report for European Application No. 19793420.1, Search completed Dec. 6, 2021, Mailed Dec. 17, 2021, 9 Pgs.
Extended European Search Report for European Application No. 19875139.8, Search completed Jun. 7, 2022, Mailed Jun. 15, 2022, 8 Pgs.
Extended European Search Report for European Application No. 19899138.2, Search completed Jul. 26, 2022, Mailed Aug. 3, 2022, 09 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2020/050725, Search completed Oct. 19, 2020, 8 Pgs.
Herreras, “Local Field Potentials: Myths and Misunderstandings”, Frontiers in Neural Circuits, Dec. 15, 2016, vol. 10, Article 1101, 16 pgs., doi:10.3389/fncir.2016.00101.
Islam et al., “Methods for artifact detection and removal from scalp EEG: A review”, Neurophysiologie Clinique—Clinical Neurophysiology, vol. 46, No. 4, pp. 287-305, XP029804850, DOI: 10.1016/J.NEUCLI.2016.07.002, 2016.
Kopelman et al., “Attempted Reversible Sympathetic Ganglion Block by An Implantable Neurostimulator”, Interactive CardioVascular and Thoracic Surgery, Feb. 7, 2012, vol. 14, Issue 5, pp. 605-609, doi:10.1093/icvts/ivr137.
Li et al., “Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex”, Neuron, vol. 76, No. 5, pp. 1030-1041, XP0289601 09, ISSN: 0896-6273, 001: 10.1 016/J.NEURON.2012.09.032, 2012.
Parker et al., “Electrically evoked compound action potential recording in peripheral nerves”, Bioeletron. Med., vol. 1, No. 1, 2018, pp. 71-83.
Penar et al., “Cortical Evoked Potentials Used for Placement of a Laminotomy Lead Array: A Case Report”, Neuromodulation: Technology at the Neural Interface, Apr. 19, 2011, doi: 10.1111/j.15251403.2011.00352.x.
Shepherd et al., “Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties”, Hearing Research, 1999, 130, pp. 171-188.
Siegfried et al., “Bilateral Chronic Electrostimulation of Ventroposterolateral Pallidum: A New Therapeutic Approach for Alleviating all Parkinsonian Symptoms”, Neurosurgery, 35, No. 6, Dec. 1994, pp. 1126-1130.
Tronnier et al., “Magnetic Resonance Imaging with Implanted Neurostimulators: An In Vitro and In Vivo Study”, Jan. 1999, Neurosurgery, vol. 44(1), pp. 118-125 (Year: 1999).
Australian Examination Report for Application No. 2019283936, Mailed Apr. 1, 2021, 7 pages.
Extended European Search Report for EP Application 12785483.4 completed Sep. 16, 2014, 7 pgs.
Extended European Search Report for European Application 12785619.3 Search Completed Oct. 13, 2014, Mailed Oct. 23, 2014, 7 pgs.
Extended European Search Report for European Application 12785669.8 Search Completed Sep. 22, 2014, Mailed Sep. 29, 2014, 5 pgs.
Extended European Search Report for European Application No. 13852669.4, Search completed Jun. 8, 2016, Mailed Jun. 22, 2016, 09 Pgs.
Extended European Search Report for European Application No. 14861553.7, Search completed Jun. 8, 2017, Mailed Jun. 19, 2017, 8 Pgs.
Extended European Search Report for European Application No. 14863597.2, Search completed Jun. 6, 2017, Mailed Jun. 13, 2017, 9 Pgs.
Extended European Search Report for European Application No. 15768956.3, Search completed Oct. 3, 2017, Mailed Oct. 10, 2017, 8 Pgs.
Extended European Search Report for European Application No. 15861444.6, Search completed Jul. 13, 2018, Mailed Jul. 23, 2018, 8 pgs.
Extended European Search Report for European Application No. 16739680.3, Search completed Jun. 1, 2018, Mailed Jun. 12, 2018, 9 Pgs.
Extended European Search Report for European Application No. 16802237.4, Search completed Dec. 11, 2018, Mailed Dec. 19, 2018, 9 Pgs.
Extended European Search Report for European Application No. 17778477.4, report completed Nov. 12, 2019, mailed Nov. 20, 2019, 7 pgs.
Extended European Search Report for European Application No. 17814341.8, report completed Dec. 12, 2019, report mailed Jan. 2, 2020, 8 pgs.
Extended European Search Report for European Application No. 13853514.1, Search completed Jun. 8, 2016, Mailed Jun. 15, 2016, 07 Pgs.
International Preliminary Report for International Application No. PCT/AU2017/050296, Issued Oct. 9, 2018, 7 Pgs.
International Preliminary Report for International Application No. PCT/AU2017/050647, Issued Dec. 25, 2018, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2011/001127, Report Issued Mar. 5, 2013, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000511, Report Issued Nov. 19, 2013, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000512, Report Issued Nov. 19, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000513, Report Issued Nov. 19, 2013, 11 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000515, Report Issued Nov. 19, 2013, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000516, Report Issued Nov. 19, 2013, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000517, Report Issued Nov. 19, 2013, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/000518, Report Issued Nov. 19, 2013, 11 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2012/001441, Report Issued May 27, 2014, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001279, Report Issued May 12, 2015, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2013/001280, Report Issued May 12, 2015, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2014/001049, Report Issued May 17, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2014/050369, Report Issued May 24, 2016, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050135, Report Issued Oct. 4, 2016, 13 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050215, Report Issued Nov. 8, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050422, Report Issued Jan. 31, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050724, Report Issued May 23, 2017, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050753, Report Issued Jun. 13, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2015/050787, Report Issued Jun. 13, 2017, 6 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050019, Report Issued Jul. 25, 2017, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2016/050263, Report Issued Oct. 10, 2017, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050278, Issued Sep. 29, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/AU2019/050384, Mailed Oct. 27, 2020, 8 pgs.
International Search Report & Written Opinion for International Application No. PCT/AU2013/001280, Search Completed Jan. 16, 2014, Mailed Jan. 16, 2014, 8 Pgs.
International Search Report & Written Opinion for International Application PCT/AU2013/001279, Search Completed Jan. 9, 2014, Mailed Jan. 9, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2011/001127, date completed Nov. 11, 2011, date mailed Nov. 15, 2011, 13 pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2012/001441, International Filing Date Nov. 23, 2012, Search Completed Feb. 26, 2013, Mailed Feb. 26, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2014/001049, Search completed Feb. 10, 2015, Mailed Feb. 10, 2015, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2014/050369, Search completed Feb. 20, 2015, Mailed Feb. 20, 2015, 14 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050135, Search completed Jun. 30, 2015, Mailed Jun. 30, 2015, 26 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050422, Search completed Oct. 14, 2015, Mailed Oct. 14, 2015, 17 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050724, Search completed May 9, 2016, Mailed May 9, 2016, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050753, Search completed Feb. 10, 2016, Mailed Feb. 10, 2016, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050787, Search completed Mar. 16, 2016, Mailed Mar. 16, 2016, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050019, Search completed May 4, 2016, Mailed May 4, 2016, 16Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050263, Search completed Nov. 16, 2016, Mailed Nov. 16, 2016, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050430, Search completed Aug. 16, 2016, Mailed Aug. 16, 2016, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050431, Search completed Aug. 16, 2016, Mailed Aug. 16, 2016, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2016/050439, Search completed Jul. 15, 2016, Mailed Jul. 15, 2016, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050296, Search completed Jul. 28, 2017, Mailed Jul. 28, 2017, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050647, Search completed Sep. 29, 2017, Mailed Sep. 29, 2017, 13 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2018/050278, Search completed Jun. 18, 2018, Mailed Jun. 18, 2018, 12 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2019/050384, Search completed Jun. 25, 2019, Mailed Jun. 25, 2019, 15 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2019/051385, Search completed Mar. 24, 2020, Mailed Mar. 24, 2020, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/AU2015/050215, Search completed Jul. 30, 2015, Mailed Jul. 30, 2015, 8 Pgs.
International Search Report for Australian Application 2011901829 Search Completed Feb. 6, 2012, Mailed Feb. 7, 2012, 3pgs.
International Search Report for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, Mailed May 18, 2012, 4 pgs.
International Search Report for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, Mailed Jul. 11, 2012, 4 pgs.
International Search Report for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, Mailed May 30, 2012, 5 pgs.
International Search Report for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, Mailed Jun. 4, 2012, 5 pgs.
International Search Report for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, Mailed Jul. 12, 2012, 8 pgs.
International Search Report for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, Mailed Jun. 6, 2012, 3 pgs.
International Search Report for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, Mailed Jun. 12, 2012, 4 pgs.
International Search Report for International Application No. PCT/AU2019/051151, International Filing Date Oct. 22, 2019, Search Completed Feb. 24, 2020, Mailed Feb. 24, 2020, 9 pgs.
International Search Report for International Application No. PCT/AU2019/051160, International Filing Date Oct. 23, 2019, Search Completed Jan. 28, 2020, Mailed Jan. 28, 2020, 13 pgs.
International Search Report for International Application No. PCT/AU2019/051163, International Filing Date Oct. 23, 2019, Search Completed Jan. 21, 2020, Mailed Jan. 31, 2020, 8 pgs.
International Search Report for International Application No. PCT/AU2019/051197, International Filing Date Oct. 30, 2019, Search Completed Jan. 21, 2020, Mailed Jan. 21, 2020, 15 pgs.
International Search Report for International Application No. PCT/AU2019/051210, International Filing Date Nov. 2, 2019, Search Completed Feb. 4, 2020, Mailed Feb. 4, 2020, 10 pgs.
International Type Search Report for International Application No. AU 2015902393, Search completed May 16, 2016, Mailed May 16, 2016, 8 Pgs.
Japanese Office Action for Application No. 2017-546830, Mailed Feb. 20, 2020, 5 pages with English translation.
Japanese Office Action for Application No. 2017-553090, Mailed Mar. 16, 2020, 12 pages with English translation.
Japanese Office Action for Application No. 2018-552138, Mailed Mar. 1, 2021, 7 pages with English translation.
Japanese Office Action for Application No. 2018-513699, Mailed Jun. 8, 2020, 7 pages with English translation.
Massachusetts Institute of Technology, The Compound Action Potential of the Frog Sciatic Nerve, Quantitative Physiology: Cells and Tissues. Fall, 1999, Retrieved from http://umech.mit.edu/freeman/6.021J/2001/lab.pdf on May 22, 2012.
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Specification, Printed Jun. 16, 2014, 2 pgs.
Medtronic, Spinal Cord Stimulation, RestoreSensor Neurostimulator, Features and Specification: Summary Printed Jun. 16, 2014, 1 pg.
Office Action for Chinese Patent Application No. 201680020725.4, dated Mar. 16, 2020, 8 pgs.
Partial European Search Report for European Application No. 16775966.1, Search completed Oct. 26, 2018, Mailed Nov. 6, 2018, 11 Pgs.
Supplementary European Search Report for European Application No. 11820923.8, report completed Dec. 9, 2013, report mailed Dec. 17, 2013, 6 pgs.
Written Opinion for International Application No. PCT/AU2012/000511, International Filing Date May 11, 2012, Search Completed May 17, 2012, Mailed May 18, 2012, 5 pgs.
Written Opinion for International Application No. PCT/AU2012/000512, International Filing Date May 11, 2012, Search Completed Jul. 10, 2012, Mailed Jul. 11, 2012, 7 pgs.
Written Opinion for International Application No. PCT/AU2012/000513, International Filing Date May 11, 2012, Search Completed May 29, 2012, Mailed May 30, 2012, 10 pgs.
Written Opinion for International Application No. PCT/AU2012/000515, International Filing Date May 11, 2012, Search Completed May 21, 2012, Mailed Jun. 4, 2012, 4 pgs.
Written Opinion for International Application No. PCT/AU2012/000516, International Filing Date May 11, 2012, Search Completed Jul. 11, 2012, Mailed Jul. 12, 2012, 8 pgs.
Written Opinion for International Application No. PCT/AU2012/000517, International Filing Date May 11, 2012, Search Completed Jun. 4, 2012, Mailed Jun. 6, 2012, 5 pgs.
Written Opinion for International Application No. PCT/AU2012/000518, International Filing Date May 11, 2012, Search Completed Jun. 8, 2012, Mailed Jun. 12, 2012, 10 pgs.
Medtronic, RestoreSensor Neurostimulator, Retrieved from: http://web.archive.org/web/20150328092923/http://professional.medtronic.com:80/pt/neuro/scs/prod/restore-sensor/features-specifications/index.html, Capture Date Jul. 9, 2012, Printed on May 11, 2017.
“Advanced Pain Therapy using Neurostimulation for Chronic Pain”, Medtronic RestoreSensor clinical trial paper, Clinical summary, Nov. 2011, pp. 32.
“Battelle Neurotechnology—Moving Beyond The Limits In Neurotechnology”, Battelle, www.battelle.org, May 2014, pp. 1-2.
“Evoke 12C Percutaneous Leads”, Saluda Medical, specifications available in the “Evoke Surgical Guide”, version 6, http://www.saludamedical.com/manuals/, retrieved May 2017.
“Haptic technology”, Wikipedia, Retrieved from: http://en.wikipedia.org/wiki/Haptic_technology, Last modified on Sep. 15, 2014, Printed on Sep. 15, 2014, 5 pgs.
“Implants for surgery, Cardiac pacemakers”, IS-1 standard ISO 5841-3-2000, Oct. 15, 2000.
“Neural Bypass Technology Enables Movement in Paralyzed Patient”, Posted on Jul. 29, 2014, 6 a.m. in Brain chips/computer interface, pp. 1-2.
“Percutaneous Lead Kit”, St. Jude Medical Clinician's Manual, Models 3143, 3146, 3149, 3153, 3156, 3159, 3183, 3186, 3189, published Sep. 2016, 24 pages.
“Spinal Cord Stimulation, About Spinal Cord Stimulation”, Medtronic, Retrieved from: http://professional.medtronic.com/pt/neuro/scs/edu/about/index.htm, Printed on Jun. 16, 2014, 2 pgs.
“Wide bandwidth BioAmplifier”, http://www.psylab.com/html/default_bioamp.htm, Printed Jan. 30, 2014, 1-3 pages.
Siegfried et al., “Bilateral Chronic Electrostimulation of Ventroposterolateral Pallidum: A New Therapeutic Approach for Alleviating All Parkinsonian Symptoms”, Issue: vol. 35(6), Dec. 1994, p. 1126-1130.
Abrard et al., “A time-frequency blindsignal separation methodapplicable to underdetermined mixtures of dependent sources”, Signal Processing 85 (2005) 1389-1403.
Alam et al., “Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats”, Journal of Neuroscience Methods, Mar. 2015, 28 pgs.
Al-Ani et al., “Automatic removal of high-amplitude stimulus artefact from neuronal signal recorded in the subthalamic nucleus”, Journal of Neuroscience Methods, vol. 198, Issue 1, 2011, pp. 135-146.
Andreassen et al., “Muscle Fibre Conduction Velocity in Motor Units of the Human Anterior Tibial Muscle: a New Size Principle Parameter”, J. Physiol, (1987), 391, pp. 561-571.
Andy, “Parafascicular-Center Median Nuclei Stimulation for Intractable Pain and Dyskinesia (Painful-Dyskinesia)”, Stereotactic and Functional Neurosurgery, Appl. Neurophysiol., 43, No. 3-5, 1980, pp. 133-144.
Bahmer et al., “Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: I. Amplitude growth functions”, Journal of Neuroscience Methods, Clinical Neuroscience, 2012, vol. 205, pp. 202-211.
Bahmer et al., “Effects of electrical pulse polarity shape on intra cochlear neural responses in humans: Triphasic pulses with cathodic second phase”, Hearing Research, 2013, vol. 306, pp. 123-130.
Balzer et al., “Localization of cervical and cervicomedullary stimulation leads for pain treatment using median nerve somatosensay evoked potential collision testing”, Journal of Neurosurgery, Jan. 2011, vol. 114, No. 1: pp. 200-205.
Blum, “An Electronic System for Extracellular Neural Stimulation and Recording”, Dissertation, Georgia Institute of Technology, Aug. 2007, Retrieved from http://smartech.gatech.edu/handle/1853/16192 on Jan. 30, 2012.
Borg et al., “Conduction velocity and refractory period of single motor nerve fibres in antecedent poliomyelitis”, Journal of Neurology, Neurosurgery, and Psychiatry, vol. 50, 1987, 443-446.
Bratta et al., “Orderly Stimulation of Skeletal Muscle Motor Units with Tripolar Nerve Cuff Electrode”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 8, 1989, pp. 836-843.
Brown et al., “Impact of Deep Brain Stimulation on Upper Limb Askinesia in Parkinson's Disease”, Annals of Neurology, 45, No. 4, 1999, pp. 473-488.
Casey et al., “Separation of Mixed Audio Sources by Independent Subspace Analysis”, Mitsubishi Electric Research Laboratories (2001), 8 pgs.
Celestin et al., “Pretreatment Psychosocial Variables as Predictors of Outcomes Following Lumbar Surgery and Spinal Cord Stimulation: A Systematic Review and Literature Synthesis”, American Academy of Pain Medicine, 2009, vol. 10, No. 4, pp. 639-653. doi: 10.1111/j.1526-4637.2009.00632.X.
Cong et al., “A 32-channel modular bi-directional neural interface system with embedded DSP for closed-loop operation”, 40th European Solid State Circuits Conference (ESSCIRC), 2014, pp. 99-102.
Connolly et al., “Towards a platform for prototyping control systems for optimization of neuromodulation therapies”, IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015, pp. 1-4.
Coquery et al., “Backward and forward masking in the perception of cutaneous stimuli”, Perception & Psychophysics, 1973, vol. 13.No. 2, pp. 161-163.
Dawson, “The relative excitability and conduction velocity of sensory and motor nerve fibres in man”, Journal of Physiology, 1956, vol. 131(2), pp. 436-451.
De Ridder et al., “Burst Spinal Cord Stimulation toward Paresthesia-Free Pain Suppression”, Nuerosurgery-online.com, May 2010, vol. 66, No. 8, pp. 986-990.
Delgado et al., “Measurement and interpretation of electrokinetic phenomena”, Pure Appl. Chem., 2005, vol. 77, No. 10, pp. 1753-1805.
Devergnas et al., “Cortical potentials evoked by deep brain stimulation in the subthalamic area”, Frontiers in System Neuroscience, May 13, 2011, vol. 5, Article 30, 2011, doi:10.3389/fnsys.2011.00030.
Dijkstra, “Ultrasonic Distance Detection for a Closed-Loop Spinal Cord Stimulation System”, Proceedings—19th International Conference—IEEE/EMBS Oct. 30-Nov. 2, 1997, Chicago, IL., 4 pgs.
Dillier et al., “Measurement of the electrically evoked compound action potential via a neural response telemetry system”, Ann. Otol. Rhinol. Laryngol., May 2002, vol. 111, No. 5, pp. 407-414.
Doiron et al., “Persistent Na+ Current Modifies Burst Discharge By Regulating Conditional Backpropagation of Dendritic Spikes”, Journal of Neurophysiology 89, No. 1 (Jan. 1, 2003): 324-337, doi:10.1152/jn.00729.2002.
England et al., “Increased Numbers of Sodium Channels Form Along Demyelinated Axons”, Brain Research 548, No. 1-2 (May 10, 1991): 334-337.
Fagius, J et al., “Sympathetic Reflex Latencies and Conduction Velocities in Normal Man”, Journal of Neurological Sciences, 1980. vol. 47, pp. 433-448.
Falowski et al., “Spinal Cord Stimulation: an update”, Neurotherapeutics: The Journal of the American Society for Experimental Neuro Therapeutics 5, No. 1, Jan. 2008, pp. 86-99.
Fisher, “F-Waves—Physiology and Clinical Uses”, TheScientificWorldJournal, (2007) 7, pp. 144-160.
Fitzpatrick et al., “A Nerve Cuff Design for the Selective Activation and Blocking of Myelinated Nerve Fibers”, IEEE Engineering in Medicine and Biology Society, vol. 13, No. 2, 1991, pp. 906-907.
Franke et al., “An Online Spike Detection and Spike Classification Algorithm Capable of Instantaneous Resolution of Overlapping Spikes”, Journal of Computational Neuroscience, 2010, vol. 29, No. 1-2, pp. 127-148.
French et al., “Information transmission at 500 bits/s by action potentials in a mechanosensory neuron of the cockroach”, Neuroscience Letters, vol. 243, No. 1-3, Feb. 1, 1998, pp. 113-116.
Fuentes et al., “Spinal Cord Stimulation Restores Locomotion in Animal Models of Parkinson's Disease”, Science, vol. 323, No. 5921, Mar. 20, 2009, pp. 1578-1582.
Gad et al., “Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats”, Journal of NeuroEngineering and Rehabilitation 2013, 10:2, 18 pgs., http://www.jneuroengrehab.com/content/10/1/2.
George et al., “Vagus nerve stimulation: a new tool for brain research and therapy”, Biological Psychiatry 47, No. 4, Feb. 15, 2000, pp. 287-295.
Gnadt et al., “Spectral Cancellation of Microstimulation Artifact for Simultaneous Neural Recording In Situ”, IEEE Transactions on Biomedical Engineering, Oct. 2003, Date of Publication: Sep. 23, 2003, vol. 50, No. 10, pp. 1129-1135, DOI: 10.1109/TBME.2003.816077.
Goodall et al., “Modeling Study of Activation and Propagation delays During Stimulation of Peripheral Nerve Fibres with a Tripolar Cuff Electrode”, IEEE Transactions on Rehabilitation Engineering, Sep. 1995, vol. 3, No. 3, pp. 272-282.
Gorman et al., “ECAP Mapping of the Spinal Cord: Influence of Electrode Position on Aβ Recruitment”, (2012)., In 16th Annual Meeting. Presented at the North American Neuromodulation Society, Las Vegas, NV, 2 pgs.
Gorman et al., “Neural Recordings For Feedback Control Of Spinal Cord Stimulation: Reduction Of Paresthesia Variability.”, 2013, In International Neuromodulation Society 11th World Congress, presented at the International Neuromodulation Society 11th World Congress, Berlin, Germany, 2 pgs.
Hallstrom et al, “Distribution of lumbar spinal evoked potentials and their correlation with stimulation-induced paresthesiae”, Electroencephalography and Clinical Neurophysiology, Mar.-Apr. 1991, vol. 80, No. 2, pp. 126-139, doi:10.1016/0168-5597(91)90150-V.
Harper et al., “Conduction Velocity is Related to Morphological Cell Type in Rat Dorsal Root Ganglion Neurones”, J. Physiol, (1985), vol. 359, pp. 31-46.
He et al., “Perception threshold and electrode position for spinal cord stimulation”, Pain, vol. 59, (1994), pp. 55-63.
Holsheimer et al., “Optimum Electrode Geometry for Spinal Cord Stimulation: the Narrow Bipole and Tripole”, Medical and Biological Engineering and Computing, 1997, vol. 35, No. 5, pp. 493-497.
Holsheimer et al., “Significance of the Spinal Cord Position in Spinal Cord Stimulation”, Acta Neurochir (1995) [Suppl] 64, pp. 119-124.
Holsheimer et al., “Spinal Geometry and Paresthesia Coverage in Spinal Cord Stimulation”, Neuromodulation, 1998, vol. 1, No. 3, pp. 129-136.
Howell et al., “Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation”, PLOS ONE, DOI: 10.1371/journal.pone.0114938, Dec. 23, 2014.
Huff, Terry B. et al., “Real-Time CARS Imaging Reveals a Calpain-Dependent Pathway for Paranodal Myelin Retraction during High-Frequency Stimulation”, PLoS ONE, vol. 6, Issue 3 (Mar. 3, 2011): e17176, 11 pgs., doi:10.1371/journal.pone.0017176.
Jang et al, “Single Channel Signal Separation Using Time-Domain Basis Functions”, IEEE Signal Processing Letters, Jun. 2003, vol. 10, No. 6, 13 pgs.
Jang et al., “A Maximum Likelihood Approach to Single-channel Source Separation”, Journal of Machine Learning Research, Dec. 2003, vol. 4, pp. 1365-1392.
Jeffrey et al., “A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain”, BMC Neuroscience. Biomed Central. London, GB. vol. 14. No. 1, Aug. 6, 2013 (Aug. 6, 2013), pp. 1-8.
Jones et al., “Scaling of Electrode-Electrolyte Interface Model Parameters In Phosphate Buffered Saline”, IEEE Transactions on Biomedical Circuits and Systems, 2015, vol. 9, No. 3, pp. 441-448, DOI: 10.1109/TBCAS.2014.4223759.
Kent, “Characterization of Evoked Potentials During Deep Brain Stimulation in the Thalamus”, Dissertation, Duke University, 2013, Retrieved from https://hdl.handle.net/10161/8195. https://dukespace.lib.duke.edu/dspace/handle/10161/8195.
Kent et al., “Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation”, Conf. Proc. IEEE Eng. Med Biol. Sol, Aug. 2012, pp. 6777-6780, doi:10.1109/IEMBS.20113.6091671.
Kent et al., “Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact”, J Neural Eng., Jun. 2012, vol. 9, No. 3, 036004, doi: 10.1088/17412560/9/3/036004.
Kim et al., “A Wavelet-Based Method for Action Potential Detection From Extracellular Neural Signal Recording With Low Signal-to-Noise Ratio”, IEEE Transactions On Biomedical Engineering, Aug. 2003, vol. 50. No. 8, pp. 999-1011.
Kim et al., “Cell Type-specific Changes of the Membrane Properties of Peripherally-axotomized Dorsal Root Ganglion Neurons in a Rat Model of Neuropathic Pain”, Neuroscience, vol. 86, No. 1, May 21, 1998, pp. 301-309, doi:10.1016/S0306-4522(98)00022-0.
Krames et al., “Neuromodulation”, 1st Edition, Academic Press, 2009, pp. 540-541.
Krarup, “Compound sensory action potential in normal and pathological human nerves”, Muscle & Nerve, Apr. 2004, vol. 29, No. 4, pp. 465-483.
Krishnan et al., “Excitability Differences in Lower-Limb Motor Axons During and After Ischemia”, Muscle & nerve, vol. 31, No. 2 (2005), pp. 205-213.
Kumar et al., “Deep Brain Stimulation for Intractable Pain: a 15-year Experience”, Neurosurgery, Issue 40, No. 4, Apr. 1997, pp. 736-747.
Kumar et al., “Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease”, by the American Academy of Neurology, 51, No. 3, Sep. 1, 1998, pp. 850-855.
Kumar et al., “Globus Pallidus Deep Brain Stimulation for Generalized Dystonia: Clinical and PET Investigation”, Sep. 11, 1999, vol. 53, No. 4, pp. 871-874, doi:10.1212/WNL.53.4.871.
Laird et al., “A Model of Evoked Potentials in Spinal Cord Stimulation”, IEEE Engineering in Medicine & Biology Society, 35th Annual Conference. Osaka, Japan: Jul. 3-7, 2013, pp. 6555-6558.
Laird-Wah, “Improving Spinal Cord Stimulation: Model-Based Approaches to Evoked Response Telemetry”, UNSW Thesis, Aug. 2015, 279 pgs.
Lempka, “The Electrode-Tissue Interface During Recording and Stimulation In The Central Nervous System”, Thesis, 155 pgs., published May 2010.
Levy et al., “Incidence and Avoidance of Neurologic Complications with Paddle Type Spinal Cord Stimulation Leads”, Neuromodulation, Sep. 2011, vol. 14, No. 15, pp. 412-422, https://doi.org/10.1111/j.1525-1403.2011.00395.x.
Li, S. et al., “Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation”, J Neurophysiol. Dec. 2007; 98(6): 3525-37. First published Oct. 10, 2007. doi:10.1152/jn.00808.2007.
Ma et al., “Similar Electrophysiological Changes in Axotomized and Neighboring Intact Dorsal Root Ganglion Neurons”, Journal of Neurophysiology 89, No. 3 (Mar. 1, 2003): 1588-1602, doi:10.1152/jn.00855.2002.
MacEfield, “Spontaneous and Evoked Ectopic Discharges Recorded from Single Human Axons”, Muscle & Nerve 21, No. 4, Apr. 1998, pp. 461-468.
Madhukar et al., “Modelling of compound nerve action potentials health and disease”, Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE. vol. 6. IEEE, 1992. pp. 2600-2601.
Mahnam et al., “Measurement of the current-distance relationship using a novel refractory interaction technique”, J. Neural Eng. 6(2): 036005, published May 20, 2009, 22 pgs.
Mannan et al., “Identification and Removal of Physiological Artifacts From Electroencephalogram Signals: A Review”, IEEE Access, May 31, 2018, vol. 6, pp. 30630-30652, https://doi.org/10.1109/ACCESS.2018.2842082.
Markandey, “ECG Implementation on the TMS320C5515 DSP Medical Development Kit (MDK)”, Texas Instruments Application Report Jun. 2010, 35 pgs.
Matzner et al., “Na+ Conductance and the Threshold for Repetitive Neuronal Firing”, Brain Research 597, No. 1 (Nov. 27, 1992): 92-98, doi:10.1016/0006-8993(92)91509-D.
McGill, et al., “On the Nature and Elimination of Stimulus Artifact in Nerve Signals Evoked and Recorded Using Surface Electrodes”, IEEE Transactions On Biomedical Engineering, vol. BME-29, No. 2, Feb. 1982, pp. 129-137.
Melzack et al., “Pain mechanisms: a new theory”, Science, New York, New York, vol. 150, No. 3699, Nov. 19, 1965, pp. 971-979.
Miles et al., “An Electrode for Prolonged Stimulation of the Brain”, Proc. 8th Meeting World Soc. Stereotactic and Functional Neurosurgery, Part III, Zurich, 1981, Appl. Neurophysiol, 45, 1982, pp. 449-445.
Misawa et al., “Neuropathic Pain Is Associated with Increased Nodal Persistent Na(+) Currents in Human Diabetic Neuropathy”, Journal of the Peripheral Nervous System: JPNS, 14, No. 4 (Dec. 2009): 279-284.
Niazy et al., “Removal of FMRI environment artifacts from EEG data using optimal basis sets”, Neurolmage, 2005, vol. 28, pp. 720-737, available online Sep. 16, 2005, doi: 10.1016/j.neuroimage.2005.06.0607.
Nordin et al., “Ectopic Sensory Discharges and Paresthesiae in Patients with Disorders of Peripheral Nerves, Dorsal Roots and Dorsal Columns”, Pain 20, No. 3 (Nov. 1984): 231-245, doi:10.1016/0304-3959(84)90013-7.
North et al., “Prognostic value of psychological testing in patients undergoing spinal cord stimulation: a prospective study”, Neurosurgery, Aug. 1, 1996, vol. 39, Issue 2, pp. 301-311. https://doi.org/10.1097/00006123-199608000-00013.
Oakley et al., “Spinal Cord Stimulation: Mechanisms of Action”, Spine 27, No. 22, Nov. 15, 2002, pp. 2574-2583.
Oakley et al., “Transverse Tripolar Spinal Cord Stimulation: Results of an International Multicenter Study”, Neuromodulation, vol. 9, No. 3, 2006, pp. 192-203.
Obradovic et al., “Effect of pressure on the spinal cord during spinal cord stimulation in an animal model”, Poster, 18th Annual Meeting of the North American Neuromodulation Society, Dec. 11-14, 2014, Las Vegas.
Oh et al., “Long-term hardware-related complications of deep brain stimulation”, Neurosurgery, vol. 50, No. 6, Jun. 2002, pp. 1268-1274, discussion pp. 1274-1276.
Olin et al., “Postural Changes in Spinal Cord Stimulation Perceptual Thresholds”, Neuromodulation, vol. 1, No. 4, 1998, pp. 171-175.
Opsommer, E. et al., “Determination of Nerve Conduction Velocity of C-fibres in Humans from Thermal Thresholds to Contact Heat (Thermode) and from Evoked Brain Potentials to Radiant Heat (CO2 Laser)”, Neurophysiologie Clinique 1999, vol. 29, pp. 411-422.
Orstavik et al., “Pathological C-fibres in patients with a chronic painful condition”, Brain (2003), 126, 567-578.
Ouyang et al., “Compression Induces Acute Demyelination and Potassium Channel Exposure in Spinal Cord”, Journal of Neurotrauma 27, No. 6, Jun. 2010, 1109-1120, doi:10.1089/neu.2010.1271.
Parker et al., “Closing the Loop in Neuromodulation Therapies: Spinal Cord Evoked Compound Action Potentials During Stimulation for Pain Management (230).”, 2011, In 15th Annual Meeting, North American Neuromodulation Society (p. 48). Presented at the North American Neuromodulation Society, Las Vegas.
Parker et al., “Compound Action Potentials Recorded in the Human Spinal Cord During Neurostimulation for Pain Relief”, Pain, vol. 153, 2012, pp. 593-601.
Parker et al., “Electrically Evoked Compound Action Potentials Recorded From the Sheep Spinal Cord”, Neuromodulation, vol. 16, 2013, pp. 295-303.
Penar et al., “Cortical Evoked Potentials Used for Placement of a Laminotomy Lead Array: A Case Report”, Neuromodulation: Technology at the Neural Interface, accessed Apr. 19, 2011, doi:10.1111/j.1525-1403.2011.00352.x.
Peterson et al., “Stimulation artifact rejection in closed-loop, distributed neural interfaces”, ESSCIRC, 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 233-235.
Rattay, “Analysis of Models for External Stimulation of Axons”, IEEE Transactions on Biomedical Engineering, vol. BME-33, No. 10, Oct. 1986, pp. 974-977.
Richter et al., “EMG and SSEP Monitoring During Cervical Spinal Cord Stimulation”, Journal of Neurosurgical Review 2011, Southern Academic Press, 1(S1), 2011, pp. 61-63.
Ridder et al., “Burst Spinal Cord Stimulation for Limb and Back Pain”, World Neurosurgery, 2013, 9 pgs.
Rijkhoff et al., “Acute Animal Studies on the Use of Anodal Block to Reduce Urethral Resistance in Sacral Root Stimulation”, IEEE Transactions on Rehabilitation Engineering, 1994, vol. 2, No. 2, pp. 92-99.
Rijkhoff et al., “Orderly Recruitment of Motoneurons in an Acute Rabbit Model”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, vol. 20, No. 5, pp. 2564-2565.
Ross et al., “Improving Patient Experience with Spinal Cord Stimulation: Implications of Position-Related Changes in Neurostimulation”, Neuromodulation 2011; e-pub ahead of print. DOI: 10.1111/j.1525-1403.2011.00407.x 6 pages.
Roy et al., “Effects of Electrode Location on Myoelectric Conduction Velocity and Median Frequency Estimates”, J. Appl. Physiol. 61 (4), 1986, pp. 1510-1517.
Sayenko et al., “Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals”, Journal of Neurophysiology, vol. 111, No. 5, 2014, pp. 1088-1099, First published Dec. 11, 2013.
Schmidt et al., “Gating of tactile input from the hand”, Exp Brain Res, 1990, 79, pp. 97-102.
Scott et al., “Compact Nonlinear Model of an Implantable Electrode Array for Spinal Cord Stimulation (SCS)”, IEEE Transactions on Biomedical Circuits and Systems, 2014, vol. 8, No. 3, pp. 382-390.
Siegfried et al., “Intracerebral Electrode Implantation System”, Journal of Neurosurgery, vol. 59, No. 2, Aug. 1983, pp. 356-359.
Srinivasan, “Electrode/Electrolyte Interfaces: Structure and Kinetics of Charge Transfer”, Fuel Cells, 2006, Chapter 2, 67 Pages.
Stanslaski et al., “Design and Validation of a Fully Implantable, Chronic, Closed-Loop Neuromodulation Device With Concurrent Sensing and Stimulation”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Jul. 2012, Date of Publication: Jan. 23, 2012, vol. 20, No. 4, pp. 410-421, DOI: 10.1109/TNSRE.2012.2183617.
Struijk, “The Extracellular Potential of a Myelinated Nerve Fiber in an Unbounded Medium and in Nerve Cuff Models”, Biophysical Journal vol. 72 Jun. 1997, 2457-2469.
Struijk et al, “Paresthesia Thresholds in Spinal Cord Stimulation: A Comparison of Theoretical Results with Clinical Data”, IEEE Transactions on Rehabilitation Engineering, vol. 1, No. 2, Jun. 1993, pp. 101-108.
Struijk et al., “Excitation of Dorsal Root Fibers in Spinal Cord Stimulation: a Theoretical Study”, IEEE Transactions on Biomedical Engineering, Jul. 1993, vol. 40, No. 7, pp. 632-639.
Sufka et al., “Gate Control Theory Reconsidered”, Brain and Mind, 3, No. 2, 2002, pp. 277-290.
Takahashi et al, “Classification of neuronal activities from tetrode recordings using independent component analysis”, Neurocomputing, (2002), vol. 49, Issues 1-4, pp. 289-298.
Tamura et al., “Increased Nodal Persistent Na+ Currents in Human Neuropathy and Motor Neuron Disease Estimated by Latent Addition”, Clinical Neurophysiology 117, No. 11 (Nov. 2006): 2451-2458, doi: 10.1016/j.clinph.2006.07.309.
Tasker, “Deep Brain Stimulation is Preferable to Thalamotomy for Tremor Suppression”, Surgical Neurology, 49, No. 2, 1998, pp. 145-153.
Taylor et al., “Spinal Cord Stimulation for Chronic Back and Leg Pain and Failed Back Surgery Syndrome: A Systematic Review and Analysis of Prognostic Factors”, SPINE, vol. 30, No. 1, 2004, pp. 152-160.
Texas Instruments, “Precision, Low Power Instrumentation Amplifiers”, Texas Instruments SBOS051B Oct. 1995, Revised Feb. 2005, 20 pgs.
Tomas et al., “Dorsal Root Entry Zone (DREZ) Localization Using Direct Spinal Cord Stimulation Can Improve Results of the DREZ Thermocoagulation Procedure for Intractable Pain Relief”, Pain, 2005, vol. 116, pp. 159-163.
Tscherter et al., “Spatiotemporal Characterization of Rhythmic Activity in Rat Spinal Cord Slice Cultures”, European Journal of Neuroscience 14, No. 2 (2001), pp. 179-190.
Van Den Berg et al., “Nerve fiber size-related block of action currents by phenytoin in mammalian nerve”, Epilepsia, Nov. 1994, 35(6), pp. 1279-1288.
Villavicencio, Alan T. “Laminectomy versus Percutaneous Electrode Placement for Spinal Cord Stimulation,” Neurosurgery, vol. 46 (2), Feb. 2000, pp. 399-405.
Vleggeert et al., “Electrophysiology and morphometry of the Aalpha- and Abeta-fiber populations in the normal and regenerating rat sciatic nerve”, Experimental Neurology, vol. 187, No. 2, Jun. 1, 2004, Available online Apr. 2, 2004, pp. 337-349.
Woessner, “Blocking Out the Pain, Electric Nerve Block Treatments for Sciatic Neuritis”, Retrieved from: http://www.practicalpainmanagement.com/pain/spine/radiculopathy/blocking-out-pain, Last updated Jan. 10, 2012.
Wolter et al., “Effects of sub-perception threshold spinal cord stimulation in neuropathic pain: A randomized controlled double-blind crossover study”, European Federation of International Association for the Study of Pain Chapters, 2012, pp. 648-655.
Wu et al., “Changes in Aβ Non-nociceptive Primary Sensory Neurons in a Rat Model of Osteoarthritis Pain”, Molecular Pain 6, No. 1 (Jul. 1, 2010): 37, doi:10.1186/1744-8069-6-37.
Xie et al., “Functional Changes in Dorsal Root Ganglion Cells after Chronic Nerve Constriction in the Rat”, Journal of Neurophysiology 73, No. 5 (May 1, 1995): 1811-1820.
Xie et al., “Sinusoidal Time-Frequency Wavelet Family and its Application in Electrograstrographic Signal Analysis”, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 3, Oct. 29, 1998, pp. 1450-1453.
Yamada et al., “Extraction and Analysis of the Single Motor Unit F-Wave of the Median Nerve”, EMG Methods for Evaluating Muscle and Nerve Function, InTech, 2012, 15 pgs.
Yearwood, “Pulse Width Programming in Spinal Cord Stimulation: a Clinical Study”, Pain Physician. 2010. vol. 13, pp. 321-335.
Yingling et al., “Use of Antidromic Evoked Potentials in Placement of Dorsal Cord Disc Electrodes”, Applied Neurophysiology, 1986, vol. 49, pp. 36-41.
Yuan et al., “Recording monophasic action potentials using a platinum-electrode ablation catheter”, Europace. Oct. 2000; 2(4):312-319.
Zhang et al., “Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information”, BioMed Research International, Aug. 25, 2015, Article ID 720450, 8 pgs., DOI: https://doi.org/10.1155/2015/720450.
Zhou et al., “A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring”, IEEE Transactions on Biomedical Circuits and Systems, 2016, vol. 10, No. 6, pp. 1079-1086.
Related Publications (1)
Number Date Country
20220287620 A1 Sep 2022 US
Continuations (1)
Number Date Country
Parent 15129407 US
Child 17804846 US