a. Field of the Invention
The instant invention is directed toward an electrode catheter and a method for using the electrode catheter for tissue ablation. In particular, the electrode catheter of the present invention may comprise a circuit to assess electrode-tissue contact and electrical coupling for applying ablative energy (e.g., RF energy) to target tissue.
b. Background Art
It is well known that benefits may be gained by forming lesions in tissue if the depth and location of the lesions being formed can be controlled. In particular, it can be desirable to elevate tissue temperature to around 50° C. until lesions are formed via coagulation necrosis, which changes the electrical properties of the tissue. For example, lesions may be formed at specific locations in cardiac tissue via coagulation necrosis to lessen or eliminate undesirable atrial fibrillations.
Several difficulties may be encountered, however, when attempting to form lesions at specific locations using some existing ablation electrodes. One such difficulty encountered with existing ablation electrodes is how to ensure adequate tissue contact and electrical coupling. Electrode-tissue contact is not readily determined using conventional techniques such as fluoroscopy. Instead, the physician determines electrode-tissue contact based on his/her experience using the electrode catheter. Such experience only comes with time, and may be quickly lost if the physician does not use the electrode catheter on a regular basis. In addition, when forming lesions in a heart, the beating of the heart further complicates matters, making it difficult to determine and maintain sufficient contact pressure between the electrode and the tissue for a sufficient length of time to form a desired lesion. If the contact between the electrode and the tissue cannot be properly maintained, a quality lesion is unlikely to be formed. Similarly, information on electrical coupling between the electrode and the target tissue is not readily available a priori to determine how much ablative energy may be absorbed in the tissue during ablation. Instead, the physician uses generalized pre-determined ablation parameters, such as power and duration, based on his/her experience to perform ablation procedures with the electrode catheter. Such experience may lead to deficiencies, inefficiencies and complications, such as inadequate lesion formation, premature high impedance shut-off, tissue charring, and thrombus formation.
It is desirable to be able to assess electrode-tissue contact and electrical coupling for electrode catheters used for tissue ablation procedures. Although radio frequency (RF) ablative energy is predominately resistive heating at typical operating frequencies of about 500 kHz, at lower frequencies there exist capacitances in the patient's blood and tissue. The combined effects of resistance and capacitance at the blood-tissue interface can be measured (e.g., as impedance) to automatically assess different contact conditions between the electrode and a target tissue.
An exemplary electrode catheter system may comprise an electrode adapted to apply electric energy. A measurement circuit adapted to measure impedance may be implemented between the electrode and ground as the electrode approaches a target tissue. A processor or processing units may be implemented to determine a contact condition for the target tissue based at least in part on reactance of the impedance measured by the measurement circuit. In another embodiment, the contact condition may be based on the phase angle of the impedance.
An exemplary electrode catheter system may comprise an electrode adapted to apply electric energy. A measurement circuit adapted to measure impedance may be implemented between the electrode and ground as the electrode approaches a target tissue. A processor or processing units may be implemented to determine an electrical coupling condition for the target tissue based at least in part on reactance of the impedance measured by the measurement circuit. In another embodiment, the electrical coupling condition may be based on the phase angle of the impedance.
An exemplary method of assessing electrode-tissue contact for tissue ablation may comprise: measuring impedance between an electrode and ground as the electrode approaches a target tissue, separating a reactance component from the measured impedance, and indicating a contact condition for the target tissue based at least in part on the reactance component.
An exemplary method of assessing electrode-tissue electrical coupling for tissue ablation may comprise: measuring impedance between an electrode and ground as the electrode approaches a target tissue, separating a reactance component from the measured impedance, and indicating electrical coupling condition for the target tissue based at least in part on the reactance component.
Another exemplary method of assessing electrode-tissue contact for tissue ablation may comprise: directly measuring a phase angle between an electrode and ground as the electrode approaches a target tissue, and indicating a contact condition for the target tissue based at least in part on the phase angle.
Another exemplary method of assessing electrode-tissue electrical coupling for tissue ablation may comprise: directly measuring a phase angle between an electrode and ground as the electrode approaches a target tissue, and indicating electrical coupling condition for the target tissue based at least in part on the phase angle.
The contact condition may be conveyed to the user (e.g., a physician or technician), e.g., at a display device or other interface. The user may then use the contact condition as feedback to properly position the electrode catheter on the target tissue with the desired level of contact for the ablation procedure. For example, the user may increase contact if the contact condition indicates insufficient contact. Or for example, the user may reduce contact if the contact condition indicates too much contact.
The electrical coupling condition may be conveyed to the user (e.g., a physician or technician), e.g., at a display device or other interface. The user may then use the electrical coupling condition as feedback to properly position the electrode catheter on the target tissue with the desired level of coupling for the ablation procedure. For example, the user may increase coupling if the coupling condition indicates insufficient coupling. Or for example, the user may reduce coupling if the coupling condition indicates too much coupling.
It is also noted that in exemplary embodiments, a current source (or alternatively, a voltage source) may be used to administer the electrical energy. This source can be the same source that is used for the ablation procedure and is used to “ping” during positioning of the electrode, or it can be a separately provided source. In any event, a constant current source (or constant voltage source) may be used. Alternatively, a variable current source (or a variable voltage source), such as an ablation source operating in a mode that is adaptive to tissue temperature. Furthermore, a plurality of the current sources (or voltage sources) may be used. The plurality of current sources (or voltage sources) may be operative either in a concurrent, sequential, or temporally overlapping mode.
A number of additional aspects of the present invention exist. What may be characterized as first through seventh aspects of the present invention each may be utilized to assess a coupling between an electrode and tissue, which hereafter may be referred to as an “electrode coupling.” This electrode coupling may be in the form of a mechanical coupling between the electrode and tissue, or stated another way a condition or state in which there is physical contact between the electrode and tissue. Another embodiment has this electrode coupling being in the form of an electrical coupling between the electrode and tissue. Electrical coupling may be referred to as a condition or state when a sufficient amount of electrical energy is transferred from the electrode to tissue. It should also be appreciated that there may be one or more “degrees” of electrode coupling, and that one or more benchmarks associated with a particular degree of electrode coupling may be tissue dependent.
A first aspect of the present invention is embodied by a medical system/method for performing a medical procedure on tissue. A first electrode may be disposed in a certain position relative to tissue, and a first electrical signal may be sent to the first electrode. A phase angle associated with the provision of this first electrical signal to the first electrode is used to assess a coupling between the first electrode and the tissue (electrode coupling). More specifically, such a phase angle may be compared with at least one other phase angle value to assess the coupling between the electrode and the tissue.
Various refinements exist of the features noted in relation to the first aspect of the present invention. Further features may also be incorporated in the first aspect of the present invention as well. These refinements and additional features may exist individually or in any combination. Initially, the features discussed below in relation to the fifth aspect may be incorporated into this first aspect.
At least one phase angle benchmark value may be provided for the phase angle comparison in accordance with the first aspect. In one embodiment, this phase angle benchmark value is stored within a data structure or is otherwise accessible by a phase angle comparator or the like. In one embodiment, a phase angle benchmark value is associated with an insufficient coupling condition. In another embodiment, a phase angle benchmark value is associated with an elevated or excessive coupling condition.
In one embodiment of the first aspect, one or more categories or ranges may be provided for a phase angle comparison to assess the electrode coupling. Any appropriate number of phase angle categories or ranges may be used, and these phase angle categories or ranges may be determined or set in any appropriate manner (e.g., empirically). For instance: 1) a first range may include those phase angles that are associated with an insufficient coupling condition, and which may be utilized by a phase angle comparator or the like to determine if a phase angle associated with the first electrical signal is within this first range; 2) a second range may include those phase angles that are associated with a sufficient coupling condition, and which may be utilized by a phase angle comparator or the like to determine if a phase angle associated with the first electrical signal is within this second range; and 3) a third range may include those phase angles that are associated with an elevated or excessive coupling condition, and which may be utilized by a phase angle comparator or the like to determine if a phase angle associated with the first electrical signal is within this third range. Each of these first, second, and third ranges could be used individually to compare with a phase angle value associated with the first electrical signal, or may be used in any appropriate combination with each other. It should be appreciated that what is “insufficient,” “sufficient,” “elevated/excessive” may be dependent upon the tissue being coupled with the first electrode, as well as one or more other factors.
A phase angle associated with the first electrical signal at a certain point in time of a medical procedure may be determined in any appropriate manner and for purposes of assessing the electrode coupling at this certain point in time in accordance with the first aspect. It of course may be desirable to assess the electrode coupling on some predetermined temporal basis or otherwise in accordance with some predefined function (e.g., assess a phase angle associated with the first electrical signal every “x” seconds during at least part of a medical procedure). In one embodiment, the phase angle that is associated with the first electrical signal is a phase angle between a current being provided to the first electrode and a voltage that exists between the first electrode and another electrode such as a return electrode.
A second aspect of the present invention is embodied by a medical system/method for performing a medical procedure on tissue. A first electrode may be disposed in a certain position relative to tissue, and a first electrical signal may be sent to the first electrode. A reactance associated with the provision of this first electrical signal to the first electrode is used to assess a coupling between the first electrode and the tissue (electrode coupling). More specifically, such a reactance may be compared with at least one other reactance value to assess the coupling between the electrode and the tissue.
Various refinements exist of the features noted in relation to the second aspect of the present invention. Further features may also be incorporated in the second aspect of the present invention as well. These refinements and additional features may exist individually or in any combination. Initially, the features discussed below in relation to the fifth aspect may be incorporated into this second aspect.
At least reactance benchmark value may be provided for the reactance comparison in accordance with the second aspect. In one embodiment, this reactance benchmark value is stored within a data structure or is otherwise accessible by a reactance comparator or the like. In one embodiment, a reactance benchmark value is associated with an insufficient coupling condition. In another embodiment, a reactance benchmark value is associated with an elevated or excessive coupling condition.
In one embodiment of the second aspect, one or more categories or ranges may be provided for a reactance comparison to assess the electrode coupling. Any appropriate number of reactance categories or ranges may be used, and these reactance categories or ranges may be determined or set in any appropriate manner (e.g., empirically). For instance: 1) a first range may include those reactance values that are associated with an insufficient coupling condition, and which may be utilized by a reactance comparator or the like to determine if a reactance associated with the first electrical signal is within this first range; 2) a second range may include those reactance values that are associated with a sufficient coupling condition, and which may be utilized by a reactance comparator or the like to determine if a reactance associated with the first electrical signal is within this second range; and 3) a third range may include those reactance values that are associated with an elevated or excessive coupling condition, and which may be utilized by a reactance comparator or the like to determine if a reactance associated with the first electrical signal is within this third range. Each of these first, second, and third ranges could be used individually to compare with a reactance value associated with the first electrical signal, or used in any appropriate combination with each other. It should be appreciated that what is “insufficient,” “sufficient,” or “elevated/excessive” may be dependent upon the tissue being coupled with the first electrode, as well as one or more other factors.
A reactance associated with the first electrical signal at a certain point in time of a medical procedure may be determined in any appropriate manner and for purposes of assessing the electrode coupling at this certain point in time in accordance with the second aspect. It of course may be desirable to assess the electrode coupling on some predetermined temporal basis or otherwise in accordance with some predefined function (e.g., assess a reactance associated with the first electrical signal every “x” seconds during at least part of a medical procedure). In one embodiment, the reactance that is associated with the first electrical signal is a reactance associated with the electrical path between the first electrode and another electrode such as a return electrode.
A third aspect of the present invention is embodied by a medical system/method for performing a medical procedure on tissue. A first electrode may be disposed in a certain position relative to tissue, and a first electrical signal may be sent to the first electrode. What may be characterized as an impedance components ratio associated with the provision of this first electrical signal to the first electrode is used to assess a coupling between the first electrode and the tissue (electrode coupling). This “impedance components ratio” is a ratio of two component values that define an impedance (e.g., resistance, reactance, impedance) that is associated with the provision of the first electrical signal. More specifically, such an impedance components ratio may be compared with at least one other impedance components ratio value to assess the coupling between the electrode and the tissue.
A fourth aspect of the present invention is embodied by a medical system/method for performing a medical procedure on tissue. A first electrode may be disposed in a certain position relative to tissue, and a first electrical signal may be sent to the first electrode. The development of an elevated or excessive coupling condition (e.g., mechanical, electrical, or both) may be identified through an appropriate assessment.
Various refinements exist of the features noted in relation to the fourth aspect of the present invention. Further features may also be incorporated in the fourth aspect of the present invention as well. These refinements and additional features may exist individually or in any combination. Initially, the features discussed below in relation to the fifth aspect may be incorporated into this fourth aspect.
One or more parameters may be monitored/assessed for purposes of identifying the existence of an elevated or excessive coupling condition between the first electrode and tissue in the case of the fourth aspect, including without limitation impedance, phase angle (e.g., in accordance with the first aspect), reactance (e.g., in accordance with the second aspect), and target frequency (e.g., in accordance with the seventh aspect discussed below). A reactance (e.g., of a portion of an electrical circuit that extends from the first electrode, through a patient's body, and to a return electrode) may be compared to at least one reactance benchmark value to determine if an excessive coupling condition exists. In one embodiment, an elevated or excessive coupling condition is equated with a reactance that is less than a predetermined negative reactance value. A phase angle (e.g., a phase angle between the current at the first electrode, and the voltage between the first electrode and a return electrode) also may be compared to at least one phase angle benchmark value to determine if an elevated or excessive coupling condition exists. In one embodiment, an elevated or excessive coupling condition is equated with a phase angle that is less than a predetermined negative phase angle value.
That frequency for the first electrical signal at which the phase angle is at a certain, preset value (e.g., a phase angle between the current at the first electrode, and the voltage between the first electrode and a return electrode) may be referred to as a “target frequency”, and this target frequency may be compared to at least one frequency benchmark value to determine if an elevated or excessive coupling condition exists for purposes of this fourth aspect. In one embodiment, an elevated or excessive coupling condition is equated with having a target frequency that is greater than a predetermined frequency value. That frequency for the first electrical signal at which an inductance (e.g., of a portion of an electrical circuit that extends from the first electrode, through a patient's body, and to a return electrode) is at a certain, preset value may define a target frequency as well, and this target frequency may be compared to at least one frequency benchmark value to determine if an elevated or excessive coupling condition exists. In one embodiment, an elevated or excessive coupling condition is equated with having a target frequency that is greater than a predetermined frequency value. Generally, an appropriate electrical parameter may be associated with a target frequency, and any appropriate value may be used for this electrical parameter for purposes of the target frequency. Frequencies above a target frequency may be associated with a certain condition, frequencies below a target frequency may be associated with a certain condition, or both.
A fifth aspect of the present invention is embodied by a medical system/method for performing a medical procedure on tissue. A first electrode may be disposed in a certain position relative to tissue, and a first electrical signal that provides a first current may be sent to the first electrode. This first current is used to perform a first medical procedure (e.g., ablation of heart tissue). A coupling between the first electrode and the tissue is also assessed using this first current.
Various refinements exist of the features noted in relation to the fifth aspect of the present invention. Further features may also be incorporated in the fifth aspect of the present invention as well. These refinements and additional features may exist individually or in any combination. The coupling between the first electrode and the tissue in the case of the fifth aspect may be assessed in any appropriate parameter. This assessment may be based upon impedance comparisons, phase angle comparisons (e.g., in accordance with the first aspect), reactance comparisons (e.g., in accordance with the second aspect), and target frequency comparisons (e.g., in accordance with the seventh aspect discussed below).
A second electrical signal that provides a second current may be sent to the first electrode in the case of the fifth aspect. The coupling between the first electrode and the tissue may also be assessed using this second signal. Various characterizations may be made in relation to the second electrical signal, and which apply individually or in any combination: 1) the second current may be less than the first current; 2) the first and second electrical signals may be at least generally of the same frequency; and 3) the first and second signals may be sent sequentially or other than simultaneously, for instance by switching from one electrical power source to another electrical power source. In the latter regard, a switch may be disposed in one position to interconnect the first electrode with a first electrical power source (e.g., an assessment power source), and a first electrode coupling assessment module may be used to assess electrode coupling. Disposing this switch into another position may interconnect the first electrode with a second electrical power source (e.g., an ablation power source), and a second electrode coupling assessment module may be used to assess electrode coupling. These first and second electrode coupling assessment modules may be of a common configuration.
A sixth aspect of the present invention is embodied by a medical system/method for performing a medical procedure on tissue. In one embodiment, a first catheter having a first electrode is positioned within a first chamber of a patient's heart (e.g., the left atrium), along with a second catheter having a second electrode. In another embodiment, first and second electrode tips (e.g., associated with different catheters; associated with a common catheter) are positioned within a first chamber of the heart. In each case, a first electrical signal may be sent to the first electrode for performing a first medical procedure, and a coupling between the first electrode and tissue may be assessed using this first electrical signal.
Various refinements exist of the features noted in relation to the sixth aspect of the present invention. Further features may also be incorporated in the sixth aspect of the present invention as well. These refinements and additional features may exist individually or in any combination. The coupling between the first electrode and the tissue in the case of the sixth aspect may be assessed in any appropriate parameter. This assessment may be based upon impedance comparisons, phase angle comparisons (e.g., in accordance with the first aspect), reactance comparisons (e.g., in accordance with the second aspect), and target frequency comparisons (e.g., in accordance with the seventh aspect discussed below). In addition, the features discussed above in relation to the fifth aspect may be incorporated into this sixth aspect.
A seventh aspect of the present invention is embodied by a medical system/method for performing a medical procedure on tissue. A first electrode may be disposed in a certain position relative to tissue, and a first electrical signal may be sent to the first electrode. One or more frequencies may be analyzed to identify a frequency where an electrical parameter is of certain value (where “value” includes a certain range of values).
Various refinements exist of the features noted in relation to the seventh aspect of the present invention. Further features may also be incorporated in the seventh aspect of the present invention as well. These refinements and additional features may exist individually or in any combination. A target frequency may be where a frequency provides a zero phase angle (e.g., a phase angle between a current being provided to the first electrode and a voltage that exists between the first electrode and another electrode such as a return electrode). A zero frequency also may be where a frequency provides an inductance that is zero (e.g., an inductance of a portion of an electrical circuit that extends from the first electrode, through a patient's body, and to a return electrode). Any electrical parameter may be used for purposes of the target frequency, and this electrical parameter may be of any appropriate value for purposes of a target frequency. In one embodiment, a target frequency is identified by sequentially providing a plurality of electrical signals at different frequencies (e.g., using a frequency sweep), and determining which of these electrical signals generates an electrical parameter of a requisite value. In another embodiment, an electrical signal that includes a plurality of frequencies is sent to the first electrode. Filters may be used to allow each of the various frequencies from this common electrical signal to be separately analyzed to determine if any of these frequencies generates an electrical parameter of a requisite value.
A target frequency may be used to assess the coupling between the first electrode and tissue in the case of the seventh aspect. In this regard, at least one frequency benchmark value may be provided for a frequency comparison in accordance with the seventh aspect to assess electrode coupling. In one embodiment, this frequency benchmark value is stored within a data structure or is otherwise accessible by a frequency comparator or the like. In one embodiment, a frequency benchmark value is associated with an insufficient coupling condition. In another embodiment, a frequency benchmark value is associated with an elevated or excessive coupling condition.
In one embodiment of the seventh aspect, one or more categories or ranges may be provided for a frequency comparison to assess electrode coupling. Any appropriate number of frequency categories or ranges may be used, and these frequency categories or ranges may be determined or set in any appropriate manner (e.g., empirically). For instance; 1) a first range may include those frequencies that are associated with an insufficient coupling condition, and which may be utilized by a frequency comparator or the like to determine if the target frequency is within this first range; 2) a second range may include those frequencies that are associated with a sufficient coupling condition, and which may be utilized by a frequency comparator or the like to determine if the target frequency is within this second range; and 3) a third range may include those frequencies that are associated with an elevated or excessive coupling condition, and which may be utilized by a frequency comparator or the like to determine if the target frequency is within this third range. Each of these first, second, and third ranges could be used individually to compare with a target frequency, or may be used in any appropriate combination with each other. It should be appreciated that what is “insufficient,” “sufficient,” or “elevated/excessive” may be dependent upon the tissue being coupled with the first electrode, as well as one or more other factors.
There are a number of features or the like that are applicable to each of the first through the seventh aspects, and which will now be summarized. The first electrode may be of any appropriate size, shape, configuration, and/or type, and further may be used to execute any type of medical procedure (e.g., ablation). In one embodiment, the first electrode is in the form of a catheter electrode.
The first electrical signal may be at any appropriate frequency in the case of the first through the seventh aspects. In one embodiment and except in the case of the seventh aspect, only a single frequency is required for purposes of providing an electrode coupling assessment. Any appropriate electrical power source or signal generator may be used to provide the first electrical signal or any other electrical signal. Each such electrical power source or signal generator may be continually interconnected with the first electrode, or may be electrically interconnected as desired/required through operation of a switch or the like.
A return electrode may be used in combination with the first electrode to execute a medical procedure using the first electrode in the case of the first through the seventh aspects, and which also may be used for an electrode coupling assessment. The following features relating to such a return electrode may be used individually or in any appropriate combination: 1) each of the first electrode and the return electrode may be in the form of a catheter electrode, and each such catheter electrode may be independently maneuverable; 2) the return electrode may utilize a larger surface area than the first electrode; and 3) each of the first electrode and return electrode may be disposable in a common chamber of the heart, such as the left atrium.
Any electrode coupling assessment used by the first through the seventh aspects may utilize at least one electrode coupling assessment module (e.g., an electrical circuit). Each such electrode coupling assessment module may be incorporated in any appropriate manner and at any appropriate location. For instance, an electrode coupling assessment module may be incorporated into the catheter, may be in the form of a standalone unit, may be incorporated by an electrical power generator, may be incorporated by an electrophysiology mapping system, or may be incorporated by electrophysiology signal recording system.
Each of the first through the seventh aspects may be used to identify the existence of an elevated or excessive coupling condition. The ability to identify the existence of such an elevated or excessive coupling condition may be desirable for a number of reasons. For instance, it may be desirable to avoid an elevated or excessive coupling condition (e.g., to reduce the potential of puncturing a tissue wall or membrane). It also may be desirable to reach an elevated or excessive coupling condition (e.g., to increase the potential of passing the first electrode through a tissue wall or membrane).
Any phase angle comparison used by the first through the seventh aspects may utilize a phase shift circuit to facilitate the measurement/determination of a phase angle. For instance, the phase of a current signal being provided to the first electrode may be shifted an appropriate amount (e.g., by 90°). It also may be desirable to compensate for a residual phase shill for purposes of any electrode coupling assessment based upon a phase angle comparison. That is, a phase shift may be indicated to exist for an electrode coupling assessment, when there in fact should be no phase difference under the current circumstances.
The result of any electrode coupling assessment used by the first through seventh aspects may be output in any appropriate manner to one or more locations. This output may be in the form of one or more of visual feedback, audible feedback, or physical feedback. For instance, a bar graph or other display may be utilized to visually convey the current degree of the electrode coupling. It may be desirable to scale/amplify the output of the electrode coupling assessment.
The foregoing and other aspects, features, details, utilities, and advantages of the present invention will be apparent from reading the following description and claims, and from reviewing the accompanying drawings.
Exemplary embodiments of a tissue ablation system and methods of use to assess electrode-tissue contact and electrical coupling are depicted in the figures. As described further below, the tissue ablation system of the present invention provides a number of advantages, including, for example, the ability to apply a reasonable amount of ablative energy to a target tissue while mitigating electrode-tissue contact and coupling problems. The invention also facilitates enhanced tissue contact and electrical coupling in difficult environments (e.g., during lesion formation on a surface inside a beating heart).
When the electrode catheter 14 reaches the patient's heart 16, electrodes 20 at the tip of the electrode catheter 14 may be implemented to electrically map the myocardium 22 (i.e., muscular tissue in the heart wall) and locate a target tissue 24. After locating the target tissue 24, the user must move the electrode catheter 14 into contact and electrically couple the catheter electrode 14 with the target tissue 24 before applying ablative energy to form an ablative lesion or lesions. The electrode-tissue contact refers to the condition when the catheter electrode 14 physically touches the target tissue 24 thereby causing a mechanical coupling between the catheter electrode 14 and the target tissue 24. Electrical coupling refers to the condition when a sufficient portion of electrical energy passes from the catheter electrode 14 to the target tissue 24 so as to allow efficient lesion creation during ablation. For target tissues with similar electrical and mechanical properties, electrical coupling includes mechanical contact. That is, mechanical contact is a subset of electrical coupling. Thus, the catheter electrode may be substantially electrically coupled with the target tissue without being in mechanical contact, but not vice-versa. In other words, if the catheter electrode is in mechanical contact, it is also electrically coupled. The range or sensitivity of electrical coupling, however, changes for tissues with different electrical properties. For example, the range of electrical coupling for electrically conductive myocardial tissue is different from the vessel walls. Likewise, the range or sensitivity of electrical coupling also changes for tissues with different mechanical properties, such as tissue compliance. For example, the range of electrical coupling for the relatively more compliant smooth atrial wall is different from the relatively less compliant pectinated myocardial tissue. The level of contact and electrical coupling are often critical to form sufficiently deep ablative lesions on the target tissue 24 without damaging surrounding tissue in the heart 16. The catheter system 10 may be implemented to measure impedance at the electrode-tissue interface and assess the level of contact (illustrated by display 11) between the electrode catheter 14 and the target tissue 24, as described in more detail below.
Contact condition 30a (“little or no contact”) may be experienced before the electrode catheter 14 comes into contact with the target tissue 24. Insufficient contact may inhibit or even prevent adequate lesions from being formed when the electrode catheter 14 is operated to apply ablative energy. However, contact condition 30c (“hard contact”) may result in the formation of lesions which are too deep (e.g., causing perforations in the myocardium 22) and/or the destruction of tissue surrounding the target tissue 24. Accordingly, the user may desire contact condition 30b (“light to medium contact”).
It is noted that the exemplary contact or coupling conditions 30a-c in
Exemplary catheter system 10 may include a generator 40, such as, e.g., a radio frequency (RF) generator, and a measurement circuit 42 electrically connected to the electrode catheter 14 (as illustrated by wires 44 to the electrode catheter). The electrode catheter 14 may also be electrically grounded, e.g., through grounding patch 46 affixed to the patient's arm or chest (as shown in
Generator 40 may be operated to emit electrical energy (e.g., RF current) near the tip of the electrode catheter 14. It is noted that although the invention is described herein with reference to RF current, other types of electrical energy may also be used for assessing contact conditions.
In an exemplary embodiment, generator 40 emits a so-called “pinging” (e.g., low) frequency as the electrode catheter 14 approaches the target tissue 24. The “pinging” frequency may be emitted by the same electrode catheter that is used to apply ablative energy for lesion formation. Alternatively, a separate electrode catheter may be used for applying the “pinging” frequency. In such an embodiment, the separate electrode may be in close contact with (or affixed to) the electrode for applying ablative energy so that a contact or coupling condition can be determined for the electrode which will be applying the ablative energy.
The resulting impedance at the electrode-tissue interface may be measured during contact or coupling assessment (or “pinging”) using a measurement circuit 42. In an exemplary embodiment, the measurement circuit 42 may be a conventionally available resistance-capacitance-inductance (RCL) meter. Another exemplary measurement circuit which may be implemented for determining the phase angle component is also described in more detail below with reference to
The reactance and/or phase angle component of the impedance measurements may be used to determine a contact or coupling condition. The contact or coupling condition may then be conveyed to the user in real-time for achieving the desired level of contact or coupling for the ablation procedure. For example, the contact or coupling condition may be displayed for the user on a light array (e.g., as illustrated in
After the user has successfully guided the electrode catheter 14 into the desired contact or coupling condition with the target tissue 24, a generator, such as generator 40 or a second generator, may be operated to generate ablative (e.g., high frequency) energy for forming an ablative lesion or lesions on the target tissue 24. In an exemplary embodiment, the same generator 40 may be used to generate electrical energy at various frequencies both for the impedance measurements (e.g., “pinging” frequencies) and for forming the ablative lesion. In alternative embodiments, however, separate generators or generating units may also be implemented without departing from the scope of the invention.
In an exemplary embodiment, measurement circuit 42 may be operatively associated with a processor 50 and memory 52 to analyze the measured impedance. By way of example, processor 50 may determine a reactance and/or phase angle component of the impedance measurement, and based on the reactance component and/or phase angle, the processor 50 may determine a corresponding contact or coupling condition for the electrode catheter 14. In an exemplary embodiment, contact or coupling conditions corresponding to various reactance and/or phase angles may be predetermined, e.g., during testing for any of a wide range of tissue types and at various frequencies. The contact or coupling conditions may be stored in memory 52, e.g., as tables or other suitable data structures. The processor 50 may then access the tables in memory 42 and determine a contact or coupling condition corresponding to impedance measurement based on the reactance component and/or phase angle. The contact or coupling condition may be output for the user, e.g., at display device 54.
It is noted, that the catheter system 10 is not limited to use with processor 50 and memory 52. In other embodiments, analog circuitry may be implemented for assessing contact conditions based on the impedance measurement and for outputting a corresponding contact condition. Such circuitry may be readily provided by one having ordinary skill in the electronics arts after having become familiar with the teachings herein, and therefore further discussion is not needed.
It is also noted that display device 54 is not limited to any particular type of device. For example, display device 54 may be a computer monitor such as a liquid-crystal display (LCD). Alternatively, display device may be implemented as a light array, wherein one or more light emitting diodes (LED) are activated in the light array to indicate a contact condition (e.g., more lights indicating more contact). Indeed, any suitable output device may be implemented for indicating contact conditions to a user, and is not limited to a display device. For example, the contact condition may be output to the user as an audio signal or tactile feedback (e.g., vibrations) on the handle of the electrode catheter.
It is further noted that the components of catheter system 10 do not need to be provided in the same housing. By way of example, measurement circuit 42 and/or processor 50 and memory 52 may be provided in a handle portion of the electrode catheter 14. In another example, at least part of the measurement circuit 42 may be provided elsewhere in the electrode catheter 14 (e.g., in the tip portion). In still other examples, processor 50, memory 52, and display device 54 may be provided as a separate computing device, such as a personal desktop or laptop computer which may be operatively associated with other components of the catheter system 10.
Assessing a contact or coupling condition between the electrode catheter 14 and target tissue 24 based on impedance measurements at the electrode-tissue interface may be better understood with reference to
As described above, the generator 40 may be operated to generate electrical energy for emission by the electrode catheter 14. Emissions are illustrated in
In an exemplary application, capacitive effects of the blood and at the electrode-blood interface (e.g., between the metal electrode catheter and the blood) were found be minimal or even non-existent at frequencies higher than about 50 kHz. Stray inductance (e.g., due to the relatively thin catheter wires), capacitance and resistance at the electrode interface, and capacitance effects of other organs (e.g., the lungs) were also found to be minimal or even non-existent at frequencies higher than about 50 kHz.
In addition, it was found that resistive effects dominate at the blood-tissue interface for frequencies below 50 kHz because the current flows into the target tissue 24 primarily via the interstitial fluid spaces 23, and the cell membranes 25 (e.g., bi-lipids or “fat”) act as an insulator. However, at frequencies greater than about 50 kHz, the cell membranes 25 become conductive, and electrical current penetrates the target tissue 24 through both the interstitial fluid spaces 23 and the cell membranes 25. Accordingly, the cell membranes act as “capacitors” and the resistive effects are reduced at frequencies above about 50 kHz.
To avoid a risk of creating an ablation lesion during contact or coupling assessment, it can be desirable to use a low amount of current and power. A presently preferred range for a current of less than 1 mA is a working frequency in the 50-500 kHz range.
The frequency choice is mostly based on physiological aspect and engineering aspect and is within the purview of one of ordinary skill in the art. For physiological aspect, lower frequencies can introduce measurement errors due to electrode-electrolyte interface. When frequency goes higher to MHz range or above, the parasitic capacitance can become significant. It is noted, however, that the invention is not limited to use at any particular frequency or range of frequencies. The frequency may depend at least to some extent on operational considerations, such as, e.g., the application, the type of target tissue, and the type of electrical energy being used, to name only a few examples.
Assuming, that a desired frequency has been selected for the particular application, the model shown in
The R-C circuit 66 may include a resistor 68 representing the resistive effects of blood on impedance, in parallel with a resistor 70 and capacitor 72 representing the resistive and capacitive effects of the target tissue 24 on impedance. When the electrode catheter 14 has no or little contact with the target tissue 24, resistive effects of the blood affect the R-C circuit 66, and hence also affect the impedance measurements. As the electrode catheter 14 is moved into contact with the target tissue 24, however, the resistive and capacitive effects of the target tissue 24 affect the R-C circuit 66, and hence also affect the impedance measurements.
The effects of resistance and capacitance on impedance measurements may be better understood with reference to a definition of impedance. Impedance (Z) may be expressed as:
Z=R+jX
where:
It is observed from the above equation that the magnitude of the reactance component responds to both resistive and capacitive effects of the circuit 62. This variation corresponds directly to the level of contact or coupling at the electrode-tissue interface, and therefore may be used to assess the electrode-tissue contact or coupling. By way of example, when the electrode catheter 14 is operated at a frequency of 100 kHz and is primarily in contact with the blood, the impedance is purely resistive and the reactance (X) is close to 0 Ohms. When the electrode catheter 14 contacts the target tissue, the reactance component becomes negative. As the level of contact or coupling is increased, the reactance component becomes more negative.
Alternatively, contact or coupling conditions may be determined based on the phase angle. Indeed, determining contact or coupling conditions based on the phase angle may be preferred in some applications because the phase angle is represented as a trigonometric ratio between reactance and resistance. Although the magnitude of the reactance component may be different under varying conditions (e.g., for different patients), the phase angle is a relative measurement which tends to be insensitive to external conditions.
In an exemplary embodiment, the phase angle may be determined from the impedance measurements (e.g., by the processor 50 in
Z=|Z|∠ϕ
where:
The terms |Z| and ϕ may further be expressed as:
The phase angle also corresponds directly to the level of contact or coupling at the electrode-tissue interface, and therefore may be used to assess the electrode-tissue contact or coupling. By way of example, when the electrode catheter 14 is operated at a frequency of 100 kHz and is primarily in contact with the blood, the phase angle is close to zero (0). When the electrode catheter 14 contacts the target tissue, the phase angle becomes negative, and the phase angle becomes more negative as the level of contact or coupling is increased. An example is shown in Table 1 for purposes of illustration.
Although impedance measurements may be used to determine the phase angle, in an alternative embodiment, the measurement circuit 42 may be implemented as a phase detection circuit to directly determine the phase angle. An exemplary phase detection circuit 80 is shown in
Exemplary phase detection circuit 80 may include a current sensor 82 and voltage sensor 84 for measuring current and voltage at the electrode-tissue interface. The current and voltage measurements may be input to a phase comparator 86. Phase comparator 86 provides a direct current (DC) output voltage proportional to the difference in phase between the voltage and current measurements.
In one embodiment, the current sensor 82 may be used to measure the ablation current. The sensor can be in series with ablation wire. For example, a Coilcraft CST1 current sensing transformer may be placed in series with the ablation wire. Alternatively, the current wire can pass through holes of a current sensor, with or without physical connection. In addition, the voltage between the ablation electrode and the ground patch can be sensed. This voltage can be attenuated so that it can be fed into a phase sensing circuit. The phase sensing circuit then measures the current and voltage and determines the phase angle between them, which is then correlated to a coupling level. In this way the ablation current can be used to measure the phase angle rather than injecting an additional current for the coupling sensing purpose.
Optionally, current measurements may be phase shifted by phase shift circuit 88 to facilitate operation of the phase comparator 86 by “correcting” phase lag between the measured current and the measured voltage. Also optionally, output from the phase comparator 86 may be “corrected” by phase adjustment circuit 90 to compensate for external factors, such as the type of grounding patch 46 being used. A signal scaling circuit 92 may also be provided to amplify the output (e.g., from milli-volts to volts) for use by various devices (e.g., the processor 50 and display device 54 in
During ablation, the measured impedance, and its component's resistance and reactance, change with tissue temperature. In such conditions, the change due to changes in tissue temperature provides a measure of lesion formation during ablation.
It is noted that phase detection circuit 80 shown in
Having described exemplary systems for electrode contact assessment, exemplary operational modes may now be better understood with reference to the block diagrams shown in
As noted above, the phase angle method of sensing contact or coupling is based on the fact that (1) tissue is both more resistive and capacitive than blood, and (2) measured electrode impedance is mostly dependant on the immediate surrounding materials. Thus, when an electrode moves from blood to myocardium, the measured impedance value increases and phase angles change from 0° to negative values (capacitive). Phase angle may be used to represent the contact or coupling levels because phase angle is a relative term of both resistance and reactance. That is, it provides a 0° base line when the electrode is in contact with blood, and becomes increasingly more negative as more contact or coupling is established. It also minimizes the influence of the catheter, instrumentation, and physiological variables.
The phase angle measurement may be made by sampling both electrical voltage (V) 102 and current (I) 104 of a load and calculating the lag between those signals as the phase angle. As shown in
Exemplary instruments may be operated as frequencies of for example but not limited to, 100 kHz, 400 kHz and 485 kHz, depending on the reference electrode configuration. Both current 104 and voltage 102 are sensed. These two signals are transmitted to a phase comparator 112 to calculate phase angle, which corresponds to the contact or coupling condition of the electrode 108. The raw phase angle signal is adjusted in block 114 to compensate for external influence on the phase angle, e.g., caused by the catheter, instrumentation, and physiological variables. It is also conditioned for easy interpretation and interface and then output in block 116 to other equipments for display or further processing.
The phase compensation may be achieved at the beginning of an ablation procedure. First, the catheter electrode is maneuvered to the middle of the heart chamber (e.g., the right atrium or left atrium) so that the electrode 108 only contacts blood. The system measures the phase angle and uses this value as a baseline for zero contact level. This adjustment compensates the fixed phase angles caused by catheter and patient such as catheter wiring, location of the reference electrode and skin or adiposity if external patch is used.
After the initial zero adjustment, the user may maneuver the catheter electrode to one or more desired sites to ablate arrhythmic myocardium. In an exemplary embodiment, the phase angle starts to change when the electrode 108 approaches to say within 3 min from the myocardium and becomes increasingly more negative as more contact or coupling is established. The user may judge the quality of electrode contact or coupling before administering the ablation energy based on phase angle output. In an exemplary embodiment, this phase angle value is about −3° when a 4 mm ablation electrode actually contacts the myocardium. It is noted that there are at least two methods to measure phase angle during ablation, as described in more detail now with reference to
In
Another option is to switch the phase measurement between the sensing signal 306 and ablation power 318, as indicated by switch 320 in
Step 402 of the assessment protocol 400 of
The electrical signal that is sent pursuant to step 402 of the protocol 400 may be at any appropriate frequency. However, only a single frequency is required to make the assessment for purposes of the protocol 400. The phase angle associated with step 404 may be the phase angle of the impedance. This phase angle may be determined in any appropriate manner, for instance using a phase sensing circuit of any appropriate configuration. In one embodiment and using the electrical signal associated with step 402, the phase angle is determined by measuring the current at the electrode, measuring the voltage between the electrode and another electrode (e.g., a return electrode), and then determining the phase angle between these current and voltage measurements. Another option would be to measure/determine the reactance and impedance in an appropriate manner, and to then determine the phase angle from these values (e.g., the sine of the phase angle being the ratio of the reactance to the impedance).
The phase angle may be determined using an RCL meter or a phase detection circuit (e.g., having an oscillator, multiplexer, filter, phase detection circuit), and may be referred to as a phase module. This phase module (measurement and/or detection) may be disposed at any appropriate location, such as by being incorporated into or embedded in the catheter handle set, by being in the form of a standalone unit between the ablation catheter and the power generator, by being incorporated into or embedded in the power generator, by being incorporated into an electrophysiology or EP mapping system, or by being part of an electrophysiology recording system.
Assessment of the coupling of the electrode with the tissue (step 408 of the protocol 400) may be undertaken in any appropriate manner. For instance, the phase angle determined through step 404 may be compared with one or more benchmark phase angle values (e.g., using a phase angle comparator). These benchmark phase angle values may be determined/set in any appropriate manner, for instance empirically. These benchmark phase angle values may be stored in an appropriate data structure, for instance on a computer-readable data storage medium, or otherwise may be made available to a phase angle comparator. Generally and in one embodiment, the phase angle decreases as more electrode-tissue (e.g., myocardium) coupling exists.
There may be one or more benchmark phase angle values (e.g., a single benchmark phase angle value or a range of benchmark phase angle values) for one or more of the following conditions for purposes of the categorization of step 410 of the assessment protocol 400 of
An “elevated” or “excessive” electrode coupling may be elevated/excessive in relation to the electrical coupling, the mechanical coupling, or both (the coupling between the electrode and the target tissue). In one embodiment, an elevated/excessive or hard electrode coupling means an elevated/excessive mechanical contact between the electrode and the target tissue. It may be desirable to know when an elevated or excessive mechanical contact exists between the electrode and tissue for a variety of reasons. For instance, it may be desirable to avoid an elevated or excessive mechanical contact between the electrode and the target tissue (e.g., to reduce the likelihood of directing the electrode through a tissue wall, membrane, or the like). However, it may also be desirable to know when a sufficient mechanical force is being exerted on the target tissue by the electrode (e.g., to increase the likelihood of directing the electrode through a tissue wall, membrane, or the like to gain access to a desired region on the other side of this tissue wall or membrane).
The result of the assessment of step 408 may be output in any appropriate manner pursuant to step 412 of the electrode coupling assessment protocol 400 of
Step 402′ of the assessment protocol 400′ of
The electrode coupling is assessed at step 408′ of the protocol 400′ based upon the above-noted reactance. This electrode coupling from step 408′ may be categorized through execution of step 410′. However, the categorization of step 410′ may not be required in all instances. In any case, the result of the assessment is output pursuant to step 412′. Step 412′ may correspond with step 412 of the electrode coupling assessment protocol 400 of
Assessment of the electrode coupling with the tissue (step 408′ of the protocol 400′) may be undertaken in any appropriate manner. For instance, the reactance determined through step 404′ may be compared with one or more benchmark reactance values (e.g., using a reactance comparator). These benchmark reactance values may be determined/set in any appropriate manner, for instance empirically. These benchmark reactance values may be stored in an appropriate data structure, for instance a computer-readable data storage medium, or otherwise may be made available to a reactance comparator. Generally and in one embodiment, the reactance decreases as more electrode-tissue (e.g., myocardium) coupling exists.
There may be one or more benchmark reactance values (e.g., a single benchmark reactance value or a range of benchmark reactance values) for one or more of the following conditions for purposes of the categorization of step 410′: 1) insufficient electrode coupling (e.g., an electrode coupling where the associated reactance being less than “A” is equated with insufficient electrode coupling); 2) sufficient electrode coupling (e.g., an electrode coupling with an associated reactance greater than “A” and less than “B” being equated with a sufficient electrode coupling); and 3) elevated or excessive electrode coupling (e.g., an electrode coupling where the associated reactance being greater than “B” is equated with an elevated or excessive electrode coupling). One embodiment equates the following reactance values for the noted conditions:
One benefit of basing the electrode coupling assessment upon phase angle is that the phase angle is more insensitive to changes from patient to patient, or operation setup, than both impedance or reactance when considered alone or individually. Other ways of realizing less sensitivity to changes from tissue to tissue or such other conditions may be utilized to provide an electrode coupling assessment.
The electrode coupling is assessed at step 488 of the protocol 480. This electrode coupling from step 488 may be categorized through execution of step 490, where step 490 may be in accordance with step 410 of the electrode coupling assessment protocol 400 discussed above in relation to
Each of the protocols of
Additional components of the ablation system 420 include an electrode coupling assessment power source 428 (hereafter the “assessment power source 428”), an assessment return electrode 430, and an electrode coupling assessment module 432 (hereafter the “assessment module 432”). Any appropriate frequency may be used by the assessment power source 428. Typically, the ablation power source 424 will also use a significantly higher current than the assessment power source 428.
The assessment return electrode 430 may be of any appropriate size, shape, and/or configuration, and may be disposed at any appropriate location. One embodiment has the return electrode 426 and the assessment return electrode 430 being in the form of separate structures that are disposed at different locations. Another embodiment has the functionality of the return electrode 426 and the functionality of the assessment return electrode 430 be provided by a single structure (a single unit that functions as both a return electrode 426 and as an assessment return electrode 430).
The ablation electrode 422 either receives power from the ablation power source 424 or the assessment power source 428, depending upon the position of a switch 434 for the ablation system 420. That is, ablation operations and electrode coupling assessment operations may not be simultaneously conducted in the case of the ablation system 420 of
Additional components of the ablation system 440 include an electrode coupling assessment power source 448 (hereafter the “assessment power source 448”), an assessment return electrode 450, and an electrode coupling assessment module 452 (hereafter the “assessment module 452”). Any appropriate frequency may be used by the assessment power source 448. However, the ablation power source 444 and the assessment power source 448 operate at different frequencies in the case of the ablation system 440 in order to accommodate the simultaneous execution of ablation and electrode coupling assessment operations. Moreover, typically the ablation power source 444 will also use a significantly higher current than the assessment power source 448.
The assessment return electrode 450 may be of any appropriate size, shape, and/or configuration, and may be disposed at any appropriate location. One embodiment has the return electrode 446 and the assessment return electrode 450 being in the form of separate structures that are disposed at different locations. Another embodiment has the functionality of the return electrode 446 and the functionality of the assessment return electrode 450 be provided by a single structure (a single unit that functions as both a return electrode 446 and as an assessment return electrode 450).
The ablation electrode 442 may simultaneously receive power from the ablation power source 444 and the assessment power source 448. That is, ablation operations and electrode coupling assessment operations may be simultaneously executed in the case of the ablation system 440 of
Additional components of the ablation system 460 include an electrode coupling assessment power source 468 (hereafter the “assessment power source 468”). Any appropriate frequency may be used by the assessment power source 468. Typically, the ablation power source 464 will also use a significantly higher current than the assessment power source 468.
The ablation system 460 further includes a pair of electrode coupling assessment modules 472a, 472b (hereafter the “assessment module 472a” and “the assessment module 472b”). The assessment module 472a is associated with the assessment power source 468, while the assessment module 472b is associated with the ablation power source 464. Both ablation operations and electrode coupling assessment operations utilize the return electrode 466 in the illustrated embodiment, although it may be possible to utilize separate return electrodes as in the case of the embodiments of
The ablation electrode 462 either receives power from the ablation power source 464 or the assessment power source 468, depending upon the position of a switch 474 for the ablation system 460. However, electrode coupling assessment operations may be executed regardless of the position of the switch 474, unlike the embodiment of
Any appropriate configuration may be utilized by each of the assessment module 472a, 472b to provide their respective electrode coupling assessment functions, including without limitation the various configurations addressed herein. The discussion presented above with regard to the assessment module 432 for the ablation system 420 of
One of the electrodes used by the assessment module in each of the embodiments of
The configuration shown in
One or more ways of using a phase angle to assess the coupling between an active electrode and the target tissue have been presented above. Another way in which a phase angle may be used to assess electrode coupling is illustrated in
A determination is made through execution of step 525 to determine when the electrode is in the desired medium, e.g., the blood. Next, through the execution of step 526, the baseline coupling condition is established. For example, the physician can activate an input device to indicate the establishment of the baseline coupling condition. Then protocol 520 adjusts to the baseline coupling condition in step 528 by correcting the phase angle or the reactance to zero.
In an alternative to zeroing the baseline coupling condition, the value(s) of the baseline coupling condition established in step 526 may be stored and used to determine an electrode coupling condition relative to such a baseline coupling condition. In a second alternative, the baseline coupling condition may be determined by comparing the determined phase angle with one or more predetermined benchmark values. These benchmark values may be determined/set in any appropriate manner, for instance empirically through in vitro, ex vivo, or in vivo studies. These benchmark values may be stored in an appropriate data structure, for instance on a computer-readable data storage medium, or otherwise may be made available to a phase comparator.
The electrode coupling may be assessed pursuant to step 532 of the protocol 520 using the baseline coupling condition from step 528. One or more electrical parameters may be determined in any appropriate manner and compared with the corresponding value of the baseline coupling condition from step 528. For instance, the following categories may be provided: 1) insufficient electrode coupling (e.g., an electrode coupling where the value(s) associated with a baseline coupling condition being less than “A” is equated with insufficient electrode coupling); 2) sufficient electrode coupling (e.g., an electrode coupling where the value(s) associated with a baseline coupling condition greater than “A” and less than “B” is equated with a sufficient electrode coupling); and 3) elevated or excessive electrode coupling (e.g., an electrode coupling where the value(s) associated with a baseline coupling condition being greater than “B” is equated with an elevated or excessive electrode coupling).
In another embodiment, the electrical coupling is measured as a function of a “target frequency”—a frequency that corresponds to a preset value for an electrical parameter (e.g., a preset reactance or a phase angle value).
When the protocol 620 determines that the target frequency exists, the protocol 620 proceeds to step 630 where the coupling of the electrode 508 with the tissue 510 is assessed using the information provided by step 628, and the result of this assessment is output pursuant to step 636 of the protocol 620. Step 636 may be in accordance with step 412 of the protocol discussed above in relation to
Assessment of the electrode coupling with the tissue is provided through step 630 of the protocol 620 of
There may be one or more benchmark frequency values (e.g., a single benchmark frequency value or a range of benchmark frequency values) for one or more of the following conditions for purposes of the categorization for the assessment protocol 620 of
The protocol 620 of
Although several embodiments of this invention have been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. References are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations as to the position, orientation, or use of the invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.
This application claims the benefit of U.S. Application No. 60/748,234, filed on Dec. 6, 2005. This application is also related to International Application No. PCT/US06/061716, entitled, “ASSESSMENT OF ELECTRODE COUPLING FOR TISSUE ABLATION” having a filing date of Dec. 6, 2006. This application claims the benefit of U.S. application Ser. No. 12/096,071, now U.S. Pat. No. 8,267,926, entitled “ASSESSMENT OF ELECTRODE COUPLING FOR TISSUE ABLATION” having a filing date of Jun. 4, 2008, which is a U.S. 371 national phase application of International Application No. PCT/US06/061716. This application claims the benefit of U.S. application Ser. No. 13/593,676, entitled “Assessment of electrode coupling for tissue ablation” having a filing date of 24 Aug. 2012, which is a divisional of U.S. application Ser. No. 12/096,071. The present application is a continuation of U.S. application Ser. No. 13/593,676. The entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2184511 | Bagno et al. | Dec 1939 | A |
3316896 | Thomasset | May 1967 | A |
3949736 | Vrana et al. | Apr 1976 | A |
4641649 | Walinsky | Feb 1987 | A |
5230349 | Langberg | Jul 1993 | A |
5257635 | Langberg | Nov 1993 | A |
5297549 | Beatty | Mar 1994 | A |
5311866 | Kagan | Jun 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5366896 | Margrey et al. | Nov 1994 | A |
5423808 | Edwards | Jun 1995 | A |
5429131 | Scheinman | Jul 1995 | A |
5447529 | Marchlinski | Sep 1995 | A |
5462544 | Saksena | Oct 1995 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5562721 | Marchlinski et al. | Oct 1996 | A |
5582609 | Swanson | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5630034 | Oikawa | May 1997 | A |
5657755 | Desai | Aug 1997 | A |
5659624 | Fazzari | Aug 1997 | A |
5673704 | Marchlinski | Oct 1997 | A |
5688267 | Panescu | Nov 1997 | A |
5697377 | Wittkampf | Dec 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5718241 | Ben-Haim | Feb 1998 | A |
5722402 | Swanson | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5759159 | Masreliez | Jun 1998 | A |
5782900 | de la Rama | Jul 1998 | A |
5800350 | Coppleson | Sep 1998 | A |
5810742 | Pearlman | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5837001 | Mackey | Nov 1998 | A |
5846238 | Jackson et al. | Dec 1998 | A |
5904709 | Arndt | May 1999 | A |
5944022 | Nardella | Aug 1999 | A |
5954665 | Ben-Haim | Sep 1999 | A |
6001093 | Swanson | Dec 1999 | A |
6019757 | Scheldrup | Feb 2000 | A |
6026323 | Skladnev | Feb 2000 | A |
6035341 | Nunally | Mar 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6129669 | Panescu et al. | Oct 2000 | A |
6171304 | Netherly | Jan 2001 | B1 |
6179824 | Eggers | Jan 2001 | B1 |
6206874 | Ubby | Mar 2001 | B1 |
6217574 | Webster | Apr 2001 | B1 |
6217576 | Tu | Apr 2001 | B1 |
6221070 | Tu | Apr 2001 | B1 |
6226542 | Reisfeld | May 2001 | B1 |
6233476 | Strommer | May 2001 | B1 |
6246896 | Dumoulin et al. | Jun 2001 | B1 |
6256540 | Panescu | Jul 2001 | B1 |
6322558 | Taylor et al. | Nov 2001 | B1 |
6337994 | Stoianovici | Jan 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6427089 | Knowlton | Jul 2002 | B1 |
6443894 | Sumanaweera | Sep 2002 | B1 |
6445952 | Manrodt | Sep 2002 | B1 |
6456864 | Swanson | Sep 2002 | B1 |
6468271 | Wentzel | Oct 2002 | B1 |
6471693 | Carroll | Oct 2002 | B1 |
6475215 | Tanrisever | Nov 2002 | B1 |
6490474 | Willis | Dec 2002 | B1 |
6498944 | Ben-Haim | Dec 2002 | B1 |
6507751 | Blume | Jan 2003 | B2 |
6511478 | Burnside | Jan 2003 | B1 |
6546270 | Goldin et al. | Apr 2003 | B1 |
6558382 | Jahns et al. | May 2003 | B2 |
6569160 | Goldin | May 2003 | B1 |
6575969 | Rittman, III | Jun 2003 | B1 |
6605082 | Hareyama | Aug 2003 | B2 |
6652518 | Wellman | Nov 2003 | B2 |
6663622 | Foley et al. | Dec 2003 | B1 |
6676654 | Balle-Petersen et al. | Jan 2004 | B1 |
6683280 | Wofford | Jan 2004 | B1 |
6690963 | Ben-Haim | Feb 2004 | B2 |
6696844 | Wong | Feb 2004 | B2 |
6712074 | Edwards | Mar 2004 | B2 |
6743225 | Sanchez | Jun 2004 | B2 |
6755790 | Stewart | Jun 2004 | B2 |
6780182 | Bowman | Aug 2004 | B2 |
6788967 | Ben-Haim | Sep 2004 | B2 |
6813515 | Hashimshony | Nov 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6918876 | Kamiyama | Jul 2005 | B1 |
6926669 | Stewart | Aug 2005 | B1 |
6936047 | Nasab | Aug 2005 | B2 |
6950689 | Willis | Sep 2005 | B1 |
6964867 | Downs | Nov 2005 | B2 |
6965795 | Rock | Nov 2005 | B2 |
6993384 | Bradley | Jan 2006 | B2 |
7041096 | Malis | May 2006 | B2 |
7106043 | Da Silva | Sep 2006 | B1 |
7197354 | Sobe | Mar 2007 | B2 |
7248032 | Hular | Jul 2007 | B1 |
7263395 | Chan | Aug 2007 | B2 |
7263397 | Hauck | Aug 2007 | B2 |
7386339 | Strommer | Jun 2008 | B2 |
7497858 | Chapelon | Mar 2009 | B2 |
7499745 | Littrup | Mar 2009 | B2 |
7536218 | Govari | May 2009 | B2 |
7565613 | Forney | Jul 2009 | B2 |
7610078 | Willis | Oct 2009 | B2 |
7633502 | Willis | Dec 2009 | B2 |
7671871 | Gonsalves | Mar 2010 | B2 |
7776034 | Kampa | Aug 2010 | B2 |
7819870 | Thao et al. | Oct 2010 | B2 |
7865236 | Cory | Jan 2011 | B2 |
7904174 | Hammill | Mar 2011 | B2 |
7925349 | Wong et al. | Apr 2011 | B1 |
7953495 | Sommer | Jun 2011 | B2 |
8403925 | Miller et al. | Mar 2013 | B2 |
8430925 | Miller et al. | Mar 2013 | B2 |
20010034501 | Tom | Oct 2001 | A1 |
20010039413 | Bowe | Nov 2001 | A1 |
20010047129 | Hall | Nov 2001 | A1 |
20010051774 | Littrup et al. | Dec 2001 | A1 |
20020013537 | Rock | Jan 2002 | A1 |
20020022836 | Goble | Feb 2002 | A1 |
20020049375 | Strommer et al. | Apr 2002 | A1 |
20020068931 | Wong | Jun 2002 | A1 |
20020072686 | Hoey et al. | Jun 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020120188 | Brock et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020151887 | Stern | Oct 2002 | A1 |
20020177847 | Long | Nov 2002 | A1 |
20030028183 | Sanchez et al. | Feb 2003 | A1 |
20030045871 | Jain et al. | Mar 2003 | A1 |
20030060696 | Skladnev et al. | Mar 2003 | A1 |
20030065364 | Wellman | Apr 2003 | A1 |
20030093067 | Panescu | May 2003 | A1 |
20030093069 | Panescu | May 2003 | A1 |
20030100823 | Kipke | May 2003 | A1 |
20030109871 | Johnson | Jun 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030187430 | Vorisek | Oct 2003 | A1 |
20040006337 | Nasab et al. | Jan 2004 | A1 |
20040030258 | Williams et al. | Feb 2004 | A1 |
20040044292 | Yasushi et al. | Mar 2004 | A1 |
20040078036 | Keidar | Apr 2004 | A1 |
20040078058 | Holmstrom | Apr 2004 | A1 |
20040082946 | Malis | Apr 2004 | A1 |
20040087975 | Lucatero | May 2004 | A1 |
20040097806 | Hunter | May 2004 | A1 |
20040147920 | Keidar | Jul 2004 | A1 |
20040181165 | Hoey et al. | Sep 2004 | A1 |
20040243018 | Organ | Dec 2004 | A1 |
20040243181 | Conrad | Dec 2004 | A1 |
20040267252 | Washington | Dec 2004 | A1 |
20050010263 | Schauerte | Jan 2005 | A1 |
20050054944 | Nakada | Mar 2005 | A1 |
20050065507 | Hartley | Mar 2005 | A1 |
20050222554 | Wallace et al. | Oct 2005 | A1 |
20060015033 | Blakley | Jan 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060116669 | Dolleris | Jun 2006 | A1 |
20060173251 | Govari et al. | Aug 2006 | A1 |
20060200049 | Leo et al. | Sep 2006 | A1 |
20060235286 | Stone et al. | Oct 2006 | A1 |
20070016006 | Shachar | Jan 2007 | A1 |
20070055142 | Webler | Mar 2007 | A1 |
20070073179 | Afonso | Mar 2007 | A1 |
20070083193 | Werneth et al. | Apr 2007 | A1 |
20070100332 | Paul et al. | May 2007 | A1 |
20070106289 | O'Sullivan | May 2007 | A1 |
20070118100 | Mahesh | May 2007 | A1 |
20070123764 | Thao et al. | May 2007 | A1 |
20070161915 | Desai | Jul 2007 | A1 |
20070225558 | Hauck | Sep 2007 | A1 |
20070225593 | Porath | Sep 2007 | A1 |
20070244479 | Beatty et al. | Oct 2007 | A1 |
20070255162 | Abboud et al. | Nov 2007 | A1 |
20080091193 | Kauphusman | Apr 2008 | A1 |
20080097220 | Lieber | Apr 2008 | A1 |
20080097422 | Edwards | Apr 2008 | A1 |
20080132890 | Lunsford et al. | Jun 2008 | A1 |
20080183071 | Strommer | Jul 2008 | A1 |
20080183189 | Teichman et al. | Jul 2008 | A1 |
20080221440 | Iddan et al. | Sep 2008 | A1 |
20080234564 | Beatty et al. | Sep 2008 | A1 |
20080249536 | Stahler | Oct 2008 | A1 |
20080275465 | Paul et al. | Nov 2008 | A1 |
20080288023 | John | Nov 2008 | A1 |
20080288038 | Paul | Nov 2008 | A1 |
20080300589 | Paul | Dec 2008 | A1 |
20080312713 | Wilfey | Dec 2008 | A1 |
20090012533 | Barbagli | Jan 2009 | A1 |
20090036794 | Stubhaug | Feb 2009 | A1 |
20090163904 | Miller | Jun 2009 | A1 |
20090171235 | Schneider | Jul 2009 | A1 |
20090171345 | Miller | Jul 2009 | A1 |
20090177111 | Miller | Jul 2009 | A1 |
20090247942 | Kirschenman | Oct 2009 | A1 |
20090247943 | Kirschenman | Oct 2009 | A1 |
20090247944 | Kirschenman | Oct 2009 | A1 |
20090247993 | Kirschenman | Oct 2009 | A1 |
20090248042 | Kirschenman | Oct 2009 | A1 |
20090275827 | Aiken et al. | Nov 2009 | A1 |
20090276002 | Sommer | Nov 2009 | A1 |
20090306655 | Stangenes | Dec 2009 | A1 |
20100069921 | Miller et al. | Mar 2010 | A1 |
20100168550 | Byrd | Jul 2010 | A1 |
20100168735 | Deno | Jul 2010 | A1 |
20100191089 | Stebler et al. | Jul 2010 | A1 |
20100256558 | Olson et al. | Oct 2010 | A1 |
20100274239 | Paul | Oct 2010 | A1 |
20100298823 | Cao | Nov 2010 | A1 |
20110015569 | Kirschenman | Jan 2011 | A1 |
20110118727 | Fish | May 2011 | A1 |
20110313311 | Gaw | Dec 2011 | A1 |
20110313417 | de la Rama et al. | Dec 2011 | A1 |
20120158011 | Sandhu | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1472976 | Nov 2004 | EP |
1586281 | Apr 2009 | EP |
3585491 | Nov 2004 | JP |
2005279256 | Oct 2005 | JP |
1998046149 | Oct 1998 | WO |
2000078239 | Dec 2000 | WO |
2007067628 | Jun 2007 | WO |
2007067941 | Jun 2007 | WO |
2009065140 | May 2009 | WO |
2009085457 | Jul 2009 | WO |
2009120982 | Oct 2009 | WO |
2011123669 | Oct 2011 | WO |
Entry |
---|
Author: Gales, Rosemary Title: Use of bioelectrical impedance analysis to assess body composition of seals Citation: Marine Mammal Science, vol. 10, Issue 1, Abstract Publication Date: Aug. 26, 2006 1 pg. |
Author: Masse, Stephana Title: A Three-dimensional display for cardiac activation mapping Citation: Pace, vol. 14 Publication Date: Apr. 1991 10 pgs. |
Avitall, Boaz; “The Effects of Electrode-Tissue Contact on Radiofrequency Lesion Generation”; PACE, vol. 20; Reference pp. 2899-2910; Publication Date: Dec. 1997. |
Chakraborty, D. P.; “ROC curves predicted by a model of visual search”; Institute of Physics Publishing, Phys. Med. Biol. 51; Reference pp. 3463-3482; Publication Date: Jul. 6, 2006. |
Cho, Sungbo, Design of electrode array for impedance measurement of lesions in arteries, Physiological Measurement, vol. 26 S19-S26, Apr. 2005. |
Dumas, John H.; “Myocardial electrical impedance as a predictor of the quality of RF-induced linear lesions”; Physiological Measurement, vol. 29; Reference Pages Abstract only; Publication Date: Sep. 17, 2008. 2 pgs. |
Fenici, R. R.; “Biomagnetically localizable multipurpose catheter and method for MCG guided intracardiac electrophysiology, biopsy and ablation of cardiac arrhythmias”; International Journal of Cardiac Imaging 7; Reference pp. 207-215; Publication Date: Sep. 1991. |
Gao et al. “Computer-Assisted Quantitative Evaluation of Therapeutic Responses for Lymphoma Using Serial PET/CT Imaging”, Academic Radiology, vol. 17, No. 4, Apr. 2010, 8 pgs. |
He, Ding Sheng; “Assessment of Myocardial Lesion Size during In Vitro Radio Frequency Catheter Ablation”; IEEE Transactions on Biomedical Engineering, vol. 50, No. 6; Reference pp. 768-776; Publication Date: Jun. 2003. |
Himel, Herman D.; “Development of a metric to assess completeness of lesions produced by radiofrequency ablation in the heart”; Dept. of Biomedical Engineering, University of NC, Chapel Hill; Reference pp. i-xvii; 1-138; Pubication Date: 2006. |
Holmes, Douglas, Tissue Sensing Technology Enhances Lesion Formation During Irrigated Catheter Ablation, HRS, Reference Pages: Abstract only, Publication Date: May 2008, 1 pg. |
Salazar, Y; “Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium”, Transactions on Biomedical Engineering, vol. 51, No. 8, Aug. 2004. 7 pgs. |
Thomas, Stuart P., et al., Comparison of Epicardial and Endocardial Linear Ablation Using Handheld Probes, The Annals of Thoracic Surgery, vol. 75, Issue 2, pp. 543-548, Feb. 2003. |
Zheng, Xiangsheng; “Electrode Impedance: An Indicator of Electrode-Tissue Contact and Lesion Dimensions During Linear Ablation”; Journal of Interventional Cardiac Electrophysiology 4; Reference pp. 645-654; Publication Date: Dec. 2000. |
International Search Report for PCT Application No. PCT/US2006/048565, dated May 2, 2007. 1 page. |
International Search Report and Written Opinion for PCT Application No. PCT/US2006/061716, dated Oct. 4, 2007. 7 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2006/061712, dated Oct. 29, 2007. 7 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2006/061710, dated Feb. 15, 2008. 10 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2006/061711, dated Oct. 5, 2007. 8 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2006/061713, dated Oct. 3, 2007. 1 page. |
International Search Report and Written Opinion for PCT Application No. PCT/US2006/061717, dated Oct. 4, 2007. 9 pages. |
Supplementary European Search Report for EP Application No. 06839102.8, dated Nov. 16, 2009. 7 pages. |
Supplementary European Search Report for EP Application No. 06848530.9, dated Nov. 17, 2009. 7 pages. |
Supplementary European Search Report for EP Application No. 06840133.0, dated Nov. 16, 2009. 8 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2010/034412, dated Jun. 29, 2010. 1 page. |
Supplementary European Search Report for EP Application No. 10775417.8, dated Oct. 25, 2013. 5 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2008/084200, dated Jan. 22, 2009. 1 page. |
International Search Report and Written Opinion for PCT Application No. PCT/US2010/034414, dated Sep. 1, 2010. 13 pages. |
Supplementary European Search Report for EP Application No. 11842330.0, dated Jan. 20, 2014. 9 pgs. |
International Search Report and Written Opinion for PCT Application No. PCT/US2011/047235, dated Dec. 14, 2011. 14 pgs. |
International Search Report and Written Opinion for PCT Application No. PCT/US2006/061714, dated Sep. 22, 2008. 10 pgs. |
International Search Report and Written Opinion for PCT Application No. PCT/US2008/084194, dated Feb. 5, 2009. 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20160220298 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
60748234 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12096071 | US | |
Child | 13593676 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13593676 | Aug 2012 | US |
Child | 15013065 | US |