The field of invention relates to physical key pads residing in hand-held remote control devices which are used on electronic devices such as, but not limited to, TV sets, multimedia players, game consoles, or any other electronic devices where said external remote control is used to provide character input on the viewing screen of the electronic device.
The advent of devices such as Smart TV's, streaming media-players, optical media players, and game consoles has driven the requirement for users of these electronic devices to enter a great deal of data required for the proper setup and operation of the electronic device. These requirements can include inputting personal information required for setup and registration, search terms, license acceptances, personal favorites indicators and content selections among other functions. This data entry task is today typically handled by the use of a virtual keyboard embedded in the firmware of the electronic device, where such virtual keyboard can be operated by either a touch screen mode if supported, or by using an external device such as an external IR/WiFi/Bluetooth remote control device with an embedded physical keypad, or by interfacing an external wired or wireless physical keyboard for the inputting of DATA such as letters, characters, numbers, strokes and symbols as well as text and navigation entries. Using a keypad on an external remote control can be very frustrating for the user, as it requires the sustained use of what are known as the remote transport keys (up/down & right/left) in order to move the selection focus to the proper character on the virtual keyboard within the electronic device. When smart devices began to appear, full keyboards began to be virtualized. These are also often referred to as soft keyboards. These keyboards are displayed on a portion of the display screen of the electronic device, generally at the bottom of the display screen. Typically a virtual/soft keyboard will display a QWERTY based keyboard design of a-z where an additional key has a “Shift” function which changes the appearance of the keyboard to all capital letters. If the user wants to enter a complete word in capitals they have to press the shift key prior to entering each letter in the word or engage a “Caps Lock” key, if supported by the device. Often, if the user wants to enter numbers and symbols they often must press another special key that gives them access to numbers and symbols on another layer of their virtual/soft keyboard. When they have finished entering the numbers and symbols from that secondary layer, they must often then press another special key to revert back to the lower case alpha library shown of the first layer of the virtual/soft keyboard. Because of the need to use the transport keys on the external remote control to bring into focus the desired character, it often requires the user to execute many more transport key movements than would have been required if using the technology referenced in this disclosure.
What is needed is a method of simplifying and improving the DATA entry process on non-touch screen electronic devices such as TV, streaming media-players and game consoles that rely on external remote control units to supply user input to the electronic device.
The following presents a simplified summary of the disclosure in order to provide a basic understanding to the reader. This summary is not an extensive overview of the disclosure and it does not identify key/critical elements of the invention or delineate the scope of the invention. Its sole purpose is to present some concepts disclosed herein in a simplified form as a prelude to the more detailed description that is presented later.
The shortcomings of relying on the transport keys on an external remote control device to bring the desired data into focus on the viewing screen of the electronic device are evident in the level of user frustration that exists in the market. Embedding a new character selection methodology into an external remote control can drastically reduce the amount of effort required to enter data as well as reducing the expense of embedding the technology into the display device. This methodology will also enable users to save keystrokes (and time) by using the DATA assigned to said key more quickly, as it can be accessed by the continued touch/press of said physical key on the external remote control device, which causes the DATA assigned to said physical key to come into focus in a rotary fashion.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Continued press of said physical key: The measurement of elapsed time of the continued touch/press of a physical key located on the physical keypad or physical keyboard.
DATA: This represents the common and uncommon representations of letters, characters, numbers, strokes, symbols, and URLs used to communicate and can support multiple language sets as well as scientific notation.
DATA assigned to said physical key: This represents the letters, characters, numbers, strokes, symbols, and URLs that have been assigned from a plurality of arrays, for use by a individual physical key on the external remote control device.
Data Character: Any one of the letters, characters, numbers, strokes, symbols, or URLs defined in the above definitions.
Designated data entry area on the viewing screen of an electronic device to be controlled: A data entry location displayed on the display screen of an electronic device being controlled.
Duration of Time: The elapsed time during which DATA assigned in sequence to that physical key is in focus.
Electronic Device: A device containing a microprocessor and memory with computational capabilities.
External remote control device—An external device, usually hand-held, that can be hard wired to an electronic device to be controlled or may be connected to the electronic device to be controlled via a wireless communications link that is used to send control signals to the electronic device to be controlled
In Focus: The letter, character, number, stroke, symbol or URL that is currently at the top of the priority stack to be inserted into the designated data entry area of the viewing screen of the electronic device.
Order of Sequence: The order of assignment of letters, characters, numbers, strokes, symbols and URLs to said physical key in a hierarchical manner.
Physical Keyboard—Used interchangeably with Physical Keypad
Physical Keypad—A collection of physical data input buttons or keys on an external remote control device.
Rotary Effect: The circular repetition of DATA assigned to said physical key, once the total time duration assigned to said physical key has been completed and the touch/press of said physical key continues
Termination of the touch/press of a physical key: The release by the user of the continued touch/press of the physical key.
Touch Sensitive Viewing Screen: A display device for displaying DATA from an electronic device to a user that is constructed to respond to touch directly to the surface of the display screen.
Non-Touch Sensitive Viewing Screen: A display screen for displaying DATA from an electronic device to a user that is NOT constructed to respond to touch directly to the surface of the display device.
Viewing Screen of an Electronic Device: A display screen for presenting DATA from an electronic device to a user
Virtual Keyboard: Can also be defined as a soft keyboard that is displayed on the viewing screen of an electronic device and is used for DATA entry.
Now referencing the drawings where:
Objects and advantages of the present invention will become apparent to those skilled in the art upon reading this description in conjunction with the accompanying drawings, in which like reference numerals have been used to designate like or analogous elements.
Now referencing
Now referencing
Now referencing
Now referencing
Now referencing
Now referencing
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the exemplary embodiments of the invention.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein, may be implemented or performed with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor can be part of a computer system that also has a user interface port that communicates with a user interface, and which receives commands entered by a user, has at least one memory (e.g., hard drive or other comparable storage, and random access memory) that stores electronic information including a program that operates under control of the processor and with communication via the user interface port, and a video output that produces its output via any kind of video output format, e.g., VGA, DVI, HDMI, display port, or any other form. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. These devices may also be used to select values for devices as described herein.
The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. The memory storage can also be rotating magnetic hard disk drives, optical disk drives, or flash memory based storage drives or other such solid state, magnetic, or optical storage devices. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blue-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. The computer readable media can be an article comprising a machine-readable non-transitory tangible medium embodying information indicative of instructions that when performed by one or more machines result in computer implemented operations comprising the actions described throughout this specification. Operations as described herein can be carried out on or over a website. The website can be operated on a server, computer, or operated locally, e.g., by being downloaded to the client computer, or operated via a server farm. The website can be accessed over a mobile phone or a PDA, or on any other client. The website can use HTML code in any form, e.g., MHTML, or XML, and via any form such as cascading style sheets (“CSS”) or other.
Also, the inventors intend that only those claims which use the words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims. The computers described herein may be any kind of computer, either general purpose, or some specific purpose computer such as a workstation. The programs may be written in C, or Java, Brew or any other programming language. The programs may be resident on a storage medium, e.g., magnetic or optical, e.g. the computer hard drive, a removable disk or media such as a memory stick or SD media, or other removable medium. The programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.
Where a specific numerical value is mentioned herein, it should be considered that the value may be increased or decreased by 20%, while still staying within the teachings of the present application, unless some different range is specifically mentioned. Where a specified logical sense is used, the opposite logical sense is also intended to be encompassed.
The previous description of the disclosed exemplary embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these exemplary embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Assignment and characteristics of multiple letters, characters, numbers, strokes and symbols to an individual physical key on a physical keypad integrated into an external remote control device and used for data input on the screen of the electronic device. This application claims priority from provisional application No. 62/062,841, filed Oct. 11, 2014, the entire contents of which are herewith incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62062841 | Oct 2014 | US |