Not Applicable
Not Applicable
N/A
Straw bale wall construction is becoming more popular. A growing number of people consider it superior to other contemporary construction techniques in several ways, the most notable being that it gives the wall of the structure a high thermal energy efficiency because of its excellent insulating qualities. However, the current techniques of straw bale construction are labor intensive and unfamiliar to construction tradesmen such as carpenters, plasterers, laborers, and cabinet installation crews.
One technique uses the bales to bear the loads of the roof, snow, and wind. This method is not only unfamiliar to most of the tradesmen in the construction field, but it is also unfamiliar to the building code enforcement officials which makes it difficult to have plans approved in many areas. The construction of this type of straw bale walls requires windows and doors to rely on the bales for support and stability. The bales are also to be the support for the exterior lathe prior to plastering, and the cabinets and other finishes in the interior. This is accomplished by various fastening systems such as bucks, wedges, and other items installed into the straw. The straw itself is not always completely uniform in thickness which provides varying stability and can present problems using the fasteners. The fasteners themselves are also unfamiliar to most building trades such as carpenters, plasterers, laborers, cabinet installation crews, etc.
The second technique is referred to as post-and-beam construction. It uses posts extending from the footing to the roof which are connected at the top to support beams, which in turn support the roof. Straw bales are then stacked between the posts to provide insulation and a surface for finishing. This type of wall is also labor-intensive. The large-dimension lumber or steel for the post-and-beam frame used in this type of wall is difficult to use in conjunction with straw bales due to the need to shape the straw bales around these solid members by cutting out the open sides of the bales. This allows the posts to be inside the plane of the wall.
Another technique by Gard in patent U.S. Pat. No. 5,937,588 uses metal framing as an interior system in conjunction with straw bale wall construction. This “preferred embodiment” (on page 10,
Gard touched upon the concept that some type of metal framing and straw bales could be used together to form a system however, a new system with the correct materials, allowing for an acceptable sequence of construction is needed. The technique used in this invention assimilates straw bales with light gauge metal framing, a standard material utilized as vertical structural framing in the current construction of commercial projects, public schools and hospitals. This technique can utilize shop fabrication combined with fabrication on the construction site. Another beneficial factor is that the fasteners for light gauge metal framing are typically screws This also saves time and money compared to welding of structural angles.
Exterior walls of a building constructed of metal frame cladding around a straw bale wall with said straw bales providing insulation. Metal stud framing provides a skeleton casing on the exterior of the bales which are stacked end to end, row upon row, in a running bond pattern. The open ends of the pieces of straw within the bale are on the sides rather than the top and bottom. The vertical metal framing is situated outside of the bales with the flanges embedded into the exterior sides of the bales thereby maintaining the straw bale position, and providing fastening of adjacent finishes and/or fixtures.
The figures and summary will help to clarify the statement above.
1. Straw bales
2. Light gauge metal studs
3. Light gauge metal angles
4. Light gauge metal track
5. Wood sill plates
6. Concrete floor below the wall.
This invention is a straw bale wall with an exterior cladding of light gauge metal framing. The framing is installed on opposed side surfaces of the bales, directly in line as a mirror image. The framing provides uniformity to the wall plane, and load bearing structural support to the roofing system. This framing helps to maintain the position of the straw bales, and provides for standard fastening of adjacent finishes and/or fixtures. The utilization of light gauge metal framing is a market standard product in commercial, school, and hospital construction thereby creating efficiency in the approval process of blueprints by building departments, and providing for efficient construction by professional tradesmen whether on the jobsite or in a manufacturing plant. The application of framing on the exterior surface of straw bales allows the use of bales with minimal modifications to the typical bale on the market. This invention will make straw bale walls less labor intensive and more uniform.