This invention relates generally to natural gas and oil fired boilers and, more particularly, to combustion control systems for industrial and commercial natural gas and oil fired, steam/hot water boilers.
Combustion controllers are commonly employed in connection with industrial and commercial boilers for modulating air flow and fuel flow to the burner or burners of the boiler. One type of combustion controller uses parallel positioning of air flow and fuel flow actuators to modulate air flow and fuel flow over the entire operating range of the boiler to ensure the safety, efficiency, and environmental requirements of combustion can be satisfied across the entire operating range. In parallel positioning control systems, the combustion controller controls air flow by manipulating actuators associated with a set of air dampers and/or a variable frequency driver operatively associated with a variable speed air flow fan. The combustion controller also independently controls fuel flow by manipulating fuel actuators, such as solenoid valves or other types of flow servo valves, to increase or decrease fuel flow to match the desired firing rate.
The operating range of a boiler is generally defined by its firing range between a low fire point commensurate with the minimum firing rate at which combustion is sustainable and a high fire point commensurate with the maximum energy output of the burner. The firing range depends on the boiler's burner's turndown ratio, that is, the ratio between the highest energy output and the lowest energy output. For each given firing rate within the boiler firing range a pair of suitable positions of the air supply and fuel supply actuators must be defined. Each pair of actuator positions then corresponds to a defined air/fuel ratio that in turns determines efficiency, emissions and stability of combustion for a resultant firing rate. The determined set of coordinated air and fuel actuator positions provides a map or algorithm that is used by the boiler controller during operation of the boiler to modulate the burner fuel valve and the air damper in response to firing rate.
When a combustion control system is first installed on a boiler, the desired air and fuel actuator positions need to be defined at a number of points, i.e. firing rates, within the firing range, because the relationship between the sets of air and fuel actuator positions to firing rate is non-linear. The process of defining the proper fuel and air actuator positions throughout the firing range is commonly referred to as commissioning of the boiler combustion control system. The purpose of the commissioning process is to find a set of coordinated air and fuel actuator positions at various points across the operating range such that safety, efficiency, and environmental requirements can be achieved.
In conventional practice for industrial boilers, commissioning is currently performed manually. A commissioning technician will first set up two pairs of the fuel and air actuator positions conforming to the so-called “ignition point” and “low fire point”. Next the technician would select and preset the respective air and fuel actuator positions for all of the firing rates, typically more than a dozen points, from the low firing point to the high firing point. Then, the technician uses a trial and error approach at each these points to search for the acceptable fuel and air actuator positions at each of the firing rate points. Due to the nonlinearities between the actuators, and the flows and the desired air/fuel ratios, this searching process is tedious and the performance is dependent on the experience of the commissioning technician. Further more, it is required to repeat such commissioning within a certain period of time due to either process condition change, such as fuel change, or regulatory requirements.
A method is provided for commissioning a combustion control system for controlling operation of a boiler combustion system having a burner, a fuel flow control device operatively associated with the burner and an air flow control device operatively associated with the burner. The method includes the step of mapping a plurality of sets of coordinated servo positions for the fuel flow control device and the air flow control device at a plurality of selected firing rate points between a minimum firing rate and a maximum firing rate. The mapping step includes, for at least one of the plurality of selected firing rate points, the steps of:
(a) determining one of either the servo position of the fuel flow control device or the servo position of the air flow control device associated with the selected firing rate point;
(b) defining an excess oxygen content target value for the selected firing rate point;
(c) repositioning the other of the air flow control device or the fuel flow control device from a previous servo position known to be associated with a measured excess oxygen content value less than the excess oxygen content target value to a current servo position estimated to be associated with an excess oxygen content value greater than the target value;
(d) estimating an optimum servo position of the other of the air flow control device or the fuel flow control device for the selected firing rate by applying an algorithm comprising a function of the previous servo position, the current servo position, a measured value of the excess oxygen content at the previous servo position, a measured value of the excess oxygen content at the current servo position, and said excess oxygen target value; and
(e) repeating steps (c) and (d) until the measured value of the excess oxygen content at the current servo position falls within a preselected range of said excess oxygen target value, thereby defining the optimum servo position for the other of the air flow control device or the fuel flow control device at the selected firing rate; and
(f) saving the optimum servo position for the other of the air flow control device or the fuel flow control device at the selected firing rate and the servo position of the one of the fuel flow control device or the air flow control associated with the selected firing rate at step (a) as a coordinated set associated with the selected firing rate.
In an embodiment, the method of commissioning a combustion control system further includes the step of terminating the repetition of steps (c) and (d) after a preselected number of iterations if the measured excess oxygen content at the then current servo position at the selected firing rate does not fall within the preselected range of the excess oxygen content target value and defining the then current servo positions as the coordinated set associated with the selected firing rate. In an embodiment, the method of commissioning a combustion control system includes the further step of: repeating steps (a) to (f) until a coordinated set of fuel flow control servo position and air flow control servo position has been established at each of a desired plurality of selected firing rate points between the minimum firing rate and the maximum firing rate.
In an embodiment of the method of the invention, the mapping process is conducted with first selecting the fuel flow control servo positions for the selected firing rates and then applying the method of the invention to determine the optimum air flow control servo position at each of the selected firing rates. In another embodiment of the method of the invention, the mapping process is conducted with first selecting the air flow control servo positions for the selected firing rates and then applying the method of the invention to determine the optimum fuel flow control servo position at each of the selected firing rates.
In an embodiment of the method of the invention, the step of estimating an optimum servo position of the other of the air flow control device or the fuel flow control device for the selected firing rate by applying an algorithm comprising a function of the previous air servo position, the current air servo position, a measured value of the excess oxygen content at the previous air servo position, a measured value of the excess oxygen content at the current air servo position, and the excess oxygen target value, comprises applying one of the following two formulae:
where: νa denotes the servo position at the previous firing rate and νb denotes the initial servo position at the current firing rate, δ denotes the firing rate change between the current firing rate and the previous firing rate, O2t, O2a, and O2b represent the target excess oxygen content, the measured concentrations of excess oxygen content at the servo positions νa and νb, respectively. The first of the formulae is generally applied when the servo position for one of the air flow control device or the fuel flow control device at the second firing rate is different from it respective servo position at the first firing rate. The second of the formulae is generally applied when the servo position for one of the air flow control device or the fuel flow control device at the second firing rate is not changed.
For a further understanding of the invention, reference will be made to the flowing detailed description of the invention which is to be read in connection with the accompanying drawing, wherein:
Referring now to
Referring now to
The air servo transfer function, Ga, converts an air servo position, ua, inputted to the air flow control device 26 to a corresponding air mass flow rate, {dot over (m)}a. The fuel servo transfer functions, Gf, coverts a fuel servo function, uf, inputted to the fuel flow control device 24 to a corresponding fuel mass flow rate, {dot over (m)}f. The boiler transfer function, G, models the boiler fire-side operation and provides as output, a boiler steam pressure and flue gas excess oxygen content for an inputted fuel mass flow rate and an inputted air mass flow rate. The boiler water-side transfer function, Gd, translates an input change in a boiler water-side parameter, such as boiler water level, feed water mass flow rate, and/or steam (hot water) mass flow rate into a boiler pressure change.
The boiler feedback loop 30 includes a boiler pressure controller 32 that adjusts the burner firing rate in response to a change in one or more operating parameters impacting boiler steam pressure (hot water temperature) in order to maintain a desired set point pressure. The boiler pressure controller 32 receives as input a signal indicative of the change in the boiler steam pressure (hot water temperature) from a negative feedback circuit 34 attendant to a change in one or more water-side operating parameters, such as boiler water level, boiler feedwater mass flow rate, and boiler steam (hot water) mass flow rate, or a change in a fire-side operating parameter, such as fuel mass flow rate or air mass flow rate, reflected in a signal output from the addition circuit 36.
The controller 22 determines an adjusted firing rate as needed to maintain boiler load at the set point boiler pressure and uses that adjusted firing rate in controlling the fuel flow control device 24. The controller 22 selects the desired fuel servo position, uf, associated with that firing rate from reference to the air/fuel servo map 50 programmed into the controller and repositions the fuel flow control 24 to the desired fuel servo position, uf, which changes the fuel mass flow rate to the burner 24.
The controller 22 also uses the adjusted firing rate in controlling the air flow control device 26. If the controls system 20 includes an oxygen trim control feedback loop 40, as in the exemplary embodiment depicted in
The controller 22 references the air/fuel servo map 50 programmed into the controller to select the air servo position, ua, associated with the further adjusted firing rate, if the control system 20 includes an oxygen trim control feedback loop, or simply the adjusted firing rate, if no oxygen trim control feedback loop is included. The controller 22 then repositions the air flow control 26 to the selected air servo position, ua, which changes the air mass flow rate to the burner 24.
Referring now to
One pair of coordinated actuator positions for each firing rate is found through setting the servo position of one of either the fuel flow control device or the air flow control device and manipulating the other of the fuel flow control device 24 or the air flow control device 26 for adjusting either the fuel flow or the air flow to the burner such that the amount of excess oxygen in the exhaust stack is maintained at the target excess oxygen level. Typically, the target excess oxygen level represents the combustion conditions at which the concentrations of carbon monoxide and other undesirable emissions, such as oxides of nitrogen, are kept at minimum level. In an embodiment of the method of the invention, the mapping process is conducted with first selecting the fuel flow control servo positions for the selected firing rates and then applying the method of the invention to determine the optimum air flow control servo position at each of the selected firing rates. In another embodiment of the method of the invention, the mapping process is conducted with first selecting the air flow control servo positions for the selected firing rates and then applying the method of the invention to determine the optimum fuel flow control servo position at each of the selected firing rates.
To commission the combustion control system 20, the technician performing the commissioning task needs to manually define the optimal fuel servo position, i.e. the position of the fuel flow control device 24, and the optimal air servo position, i.e. the position of the air flow control device 26, for the ignition point and the low firing rate as in conventional practice. After defining the fuel servo position and the air servo position for the ignition point and the low firing point, rather then proceeding by the conventional trial and error process, in the method of the invention for commissioning the combustion control system 20 an algorithm is used to assist in identifying a series of coordinated fuel and air actuator positions for a plurality of firing rate points over the entire operating range.
The method of the invention will be described hereinafter with reference to an exemplary embodiment wherein the air servo position is iterated upon for each firing rate at a set fuel servo position associated with the firing rate. Referring now the
At step 108, the controller 22 calculates the fuel servo position associated with each of the selected firing rate points from low to high firing rate. If the fuel flow characteristic versus servo position for the fuel flow control device 24 is relatively linear between the low firing rate and the high firing rate, the fuel servo positions are selected at evenly spaced increments of fuel servo position between the fuel servo position at the low firing rate and the fuel servo position at the high firing to correspond to an equal number of firing rates. However, if the fuel flow characteristic versus servo position for the fuel flow control device 24 is severely non-linear between the low firing rate and the high firing rate, the fuel servo positions are selected at evenly spaced increments of fuel flow between the minimum fuel flow at the low firing rate and the maximum fuel flow at the high firing to correspond to an equal number of firing rates.
For the first point at which commissioning is to occur, which is the first firing rate point of the selected points next greater than the low firing rate point, for example a firing rate in the vicinity of 3% of the maximum firing rate, the controller at step 110 calculates an initial air servo position for the first selected commissioning firing rate based on the change of the fuel servo positions between the first selected commissioning firing rate and the low firing rate. Next, at step 112, the controller 22 sets the fuel flow control device 24 according to the fuel servo position associated with that firing rate point as determined at step 108, and sets the air flow control device 26 according to the air servo position associated with that firing rate point as determined in step 110. After waiting a preselected period of time, such as for example about 1 minute for settling of combustion species (CO, excess O2, NOx), a sampling of the combustion flue gases is obtained at step 114. Allowing a short period of time for species collection, such as for example another minute, the controller 22 next, at step 116, verifies whether the excess oxygen content is within an acceptable range of its target valve and whether the sensed CO and NOx emissions are within acceptable limits.
If the excess oxygen content is not within its target range and/or the CO or NOx emissions is not within acceptable limits, the controller 22 calculates, at step 118, a new servo position for the air flow control device 26 using one of the following two formulas:
where: νa denotes the air servo position at the previous firing rate and νb denotes the initial air servo position at the current firing rate, δ denotes the firing rate change between the current firing rate and the previous one, O2t, O2a and O2b represent the target excess oxygen content value, the measured excess oxygen content values at the servo positions νa and νb, respectively. The first of the formulae is generally applied when the fuel flow control servo position at the second firing rate is different from the fuel flow control servo position at the first firing rate. The second of the formulae is generally applied when the fuel flow control servo position at the second firing rate is not changed.
Having calculated the new air servo position, the controller 22 returns to step 112 and moves the air flow control device 26 to the position associated with the new air servo position and again performs steps 112 through 118 repeatedly until the excess oxygen content is within an acceptable range of its target valve and the sensed CO and NOx emissions are within acceptable limits, or until a preselected maximum number of iterations has been performed.
When the excess oxygen content is within an acceptable range of its target valve and the sensed CO and NOx emissions are within acceptable limits, or after a preselected maximum number of iterations have been performed, the controller 22 proceeds to the next greater commissioning firing rate of the selected number of commissioning firing rates and, at step 120, calculates an initial air servo position for the next selected commissioning firing rate based on the change between the air servo positions associated with the two previous firing rates, that is the change between the determined air servo positions associated with the first commissioning firing the low firing rate or between the air servo positions associated with the two most previous commissioning firing rate points, as the case may be. Next, at step 122, the controller 22 sets the fuel flow control device 24 according to the fuel servo position associated with that firing rate point as determined at step 108, and sets the air flow control device 26 according to the air servo position associated with that firing rate point as determined in step 120. After waiting a preselected period of time, such as for example about 1 minute for settling of combustion species (CO, excess O2, NOx), a sampling of the combustion flue gases is obtained at step 124. Allowing a short period of time for species collection, such as for example another minute, the controller 22 next, at step 126, verifies whether the excess oxygen content is within an acceptable range of its target valve and whether the sensed CO and NOx emissions are within acceptable limits.
If the excess oxygen content is not within its target range and/or the CO or NOx emissions is not within acceptable limits, the controller 22 calculates, at step 128, a new servo position for the air flow control device 26 using one of the following two formulas:
where: νa denotes the air servo position at the previous firing rate and νb denotes the initial air servo position at the current firing rate, δ denotes the firing rate change between the current firing rate and the previous one, O2t, O2a, and O2b represent the target excess oxygen content value, the measured excess oxygen content value at the servo positions νa and νb, respectively. As noted previously, the first of the formulae is generally applied when the fuel flow control servo position at the second firing rate is different from the fuel flow control servo position at the first firing rate. The second of the formulae is generally applied when the fuel flow control servo position at the second firing rate is not changed.
Having calculated the new air servo position, the controller 22 returns to step 122 and moves the air flow control device 26 to the position associated with the new air servo position and again performs steps 122 through 128 repeatedly until the excess oxygen content is within an acceptable range of its target valve and the sensed CO and NOx emissions are within acceptable limits, or until a preselected maximum number of iterations was been performed.
When the excess oxygen content is within an acceptable range of its target valve and the sensed CO and NOx emissions are within acceptable limits, or after a preselected maximum number of iterations have been performed, the controller 22 proceeds to the next greater commissioning firing rate of the selected number of commissioning firing rates and repeats steps 120 through 128 until the coordinated fuel and air servo positions have been determined for the last of the selected commissioning firing rates, at which point the commissioning process has been completed.
The coordinated sets of fuel flow control servo position and air flow control servo position developed at the various selected firing rates between the minimum firing rate and the maximum firing rate are stored in a memory bank operative associated with the controller 22 and are used to develop the air/fuel servo position map 50 exemplified by the graph illustrated in
The method of commissioning a combustion control system of a steam/hot water boiler as disclosed herein provides a reliable formula based, iterative method to identify the coordinated air and fuel actuator positions. Compared to the typical trial and error method in conventional use, this formula based, iterative commissioning method provides improved precision of the coordinated fuel flow control and air flow control servo positions, significantly reduces the time required for commissioning, and reduces the tedious work and the dependency on the experience of the commissioning person associated with the conventional trial and error method of commissioning.
The foregoing description is only exemplary of the teachings of the invention. Those of ordinary skill in the art will recognize that various modifications and variations may be made to the invention as specifically described herein and equivalents thereof without departing from the spirit and scope of the invention as defined by the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/054393 | 2/20/2008 | WO | 00 | 11/12/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/105094 | 8/27/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3405998 | Walbridge | Oct 1968 | A |
3441356 | Walbridge | Apr 1969 | A |
3504992 | Walbridge | Apr 1970 | A |
3770364 | Walbridge | Nov 1973 | A |
3987346 | Riordan | Oct 1976 | A |
4087230 | Matthews | May 1978 | A |
4133629 | Clark | Jan 1979 | A |
4389184 | Tanaka et al. | Jun 1983 | A |
4438497 | Willis et al. | Mar 1984 | A |
4474549 | Capone | Oct 1984 | A |
4531905 | Ross | Jul 1985 | A |
4676734 | Foley | Jun 1987 | A |
4695246 | Beilfuss et al. | Sep 1987 | A |
4783600 | Chang | Nov 1988 | A |
4891004 | Ballard et al. | Jan 1990 | A |
4927351 | Hagar et al. | May 1990 | A |
5049063 | Kishida et al. | Sep 1991 | A |
5601071 | Carr et al. | Feb 1997 | A |
5785512 | Cormier | Jul 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
6024561 | Kemp et al. | Feb 2000 | A |
6042365 | Chen | Mar 2000 | A |
6338018 | Baker | Jan 2002 | B1 |
6764298 | Kim et al. | Jul 2004 | B2 |
20060078837 | Jaeschke et al. | Apr 2006 | A1 |
20060106498 | Jaeschke et al. | May 2006 | A1 |
20060172238 | Cook | Aug 2006 | A1 |
20080003530 | Donnelly et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
1240957 | Jul 1971 | GB |
Entry |
---|
Boiler Combustion Control; Eurotherm Boiler Combustion Control; http://www.eurotherm.com/boiler/Combustion.htm, Dec. 12, 2007; 1 pg. |
Burner Combustion Control for Boilers; Boiler Industry; Part No. HR084053U001, Issue 2, Printed in England Feb. 2003, 2 pgs. |
Combustion Control Strategies for Single and Dual Element Power Burners, David C. Farthing, Federal Corporation, Steam Digest 2002, pp. 29-34. |
Optimizing Combustion Controls, posted Oct. 9, 2007, http://www.industrialheating.com/copyright/BNP—GUID—9-5-2006—A—10000000000000183794?view= . . . , Nov. 27, 2007, pp. 1 of 5. |
International Search Report and Written Opinion mailed Jul. 14, 2008, 10 pgs. |
Number | Date | Country | |
---|---|---|---|
20110162591 A1 | Jul 2011 | US |