The present invention relates to an assisted manual injection device for injecting a composition contained in a container.
Prefilled injection devices are containers currently used for injecting pharmaceutical or cosmetic compositions, and comprise in particular syringes, cartridges and autoinjectors. These containers typically comprise a sealing piston capable of being moved in translation within the container, the container being filled with a pharmaceutical or cosmetic composition in order to provide healthcare workers with ready-to-use injection devices for treating patients.
The container is cylindrical in shape and comprises an open proximal end through which the piston may be inserted in order to sealably close an internal volume of the container enclosing the composition to be injected, a distal end usually provided with a needle through which the composition is injected, and a lateral surface that extends between the proximal end and the distal end of the container. In practice, the piston is capable of being moved following a mechanical effort exerted thereupon by a piston rod movable in translation inside the container, from the proximal end of the container towards the distal end thereof, in order to inject the composition. Such prefilled containers are standard in the medical industry, and are for example prefilled syringes (PFS) with or without needle attached at their distal end, as well as the cartridges. The cartridges further include a septum that will be pierced by a needle at the distal end thereof for the injection.
Compared to empty injection devices that are filled just prior to injection with compositions previously stored in vials, the use of prefilled injection devices has several advantages. In particular, by limiting the preparation steps before the injection, prefilled injection devices are simpler to use, make it possible to improve asepsis, and contribute to reducing dosing errors. Prefilled injection devices encourage and simplify the administration or self-administration of the composition, which reduces the cost of care and facilitates treatment. Finally, prefilled injection devices reduce losses of pharmaceutical or cosmetic composition that may occur when the composition is transferred from a storage vial into a non-prefilled type of injection device. This results in reduced purchase and supply chain costs.
In some cases, the injection of the composition contained in the container with a manual injection device, such as a syringe, can be difficult to achieve because of the effort that must be exerted on the piston rod to expel the composition from the container. This occurs, for example, when a small diameter needle is associated with a specific volume to be injected in an allotted time and certain rheological characteristics of the composition such as high viscosity, and/or when the injection is performed manually by a user who is incapable of pushing hard enough on the piston rod with his fingers.
Thus, for the manual injection of gels, cements, suspensions and other highly viscous products, the operator must exert great force on the piston of the injection syringe in order to ensure passage of the material into the needle. The result:
For manual injection devices, manufacturers have added to injection devices gripping surfaces or parts, such as large flanges against which the index and middle finger or thumb can press when the device is held in a tri-dactyl manner, the thumb pressing against the proximal end of the piston rod in order to push said piston rod in the distal direction for injecting the composition. Passive devices have also been added in which the syringe slides.
These surfaces and the gripping parts only resolve the facility of gripping, i.e., the ergonomics, or the mechanical capacity of exerting strong force by increasing the gripping surface. Nevertheless, the problems relative to the maximum force that the hand can exert, muscular fatigue or muscular trembling that result from the muscular contraction of the hand, are unresolved.
Effort-multiplying devices have also been developed.
However, in these effort-multiplying devices, the effort that the user must apply to perform the injection is reduced, but the variation in injection muscular contraction with the resumption of stroke (relaxing the injection means, generally a trigger, that returns to its point of origin, then resuming the pressure) requires a delicate coordination during an injection with progressive movement of the needle, for example the injection of a wrinkle filling gel or a bone cement, and induces a parasitic movement of the hand that can result in possible injury to the patient by the needle.
A purpose of the invention is therefore to remedy the disadvantages of the prior art.
To that end, the present invention relates to an assisted manual injection device for injecting a composition contained in a container, wherein the container is fitted with a needle at the distal end thereof and contains a piston, the injection device comprising:
According to other aspects, the injection device has the following different features taken alone or in their technically possible combinations:
Other advantages and features of the invention will be seen by reading the following description provided by way of non-limiting illustrative example, with reference to the following appended figures:
The invention relates to an assisted manual injection device for injecting a composition contained in a container.
The container 40, which may also be designated as “primary container,” comprises a body 41 delimited by a lateral surface 42 that extends along a longitudinal axis A between a proximal end 43 and a distal end 44 of the body, and defines a chamber capable of containing a composition to be injected. The container preferably comprises an end 45 to which a needle 46 is attached. It preferably involves a prefilled type container, i.e., filled, sealed with a piston 50, and packaged prior to its subsequent use for injection. Alternatively, the container may initially be empty, then filled and sealed just prior to injection. This last alternative is particularly advantageous when the composition to be injected is obtained by mixing different components, for example during the preparation of a bone cement to be injected. After filling the container with the composition to be injected, the piston 50 is inserted from the proximal end 43 of the container and it separates the composition from the external environment. The container is then mounted in a stationary manner on the injection device of the invention.
The piston is in contact with the composition to be injected, and is configured to be moved by means of the injection device, in a translational movement distally along the longitudinal axis A of the container, in order to inject the composition. This aspect will be explained in more detail in the remainder of the present text.
With reference to
The device 1 also comprises a system for holding the container, configured to receive and hold the container in a stationary manner relative to the body of the device. The container 1 is removably mounted on the holding system. Thus, the user can change containers for the different injections that must be carried out.
On the device shown in
The proximal end 43 of the container is inserted into the orifice 7 the diameter and geometry whereof are adapted for that purpose and for holding the container on the device during its use. For example, as shown in
The mounting ring 5 is adjusted based on the dimensions of the containers 40 before being mounted. For example, in
According to a preferred embodiment, the cover 4 is pivotable. One end of the cover is pivotably mounted on the body of the device along an axis C parallel to the axis B, in such a way that the cover extends perpendicular to the axis B.
The cover 4 is movable in rotation around the axis C, between an injection position in which the orifice of the ring is aligned with the axis B, and a free position in which the orifice of the ring is offset in relation to the axis B.
In the free position, the orifice 7 is accessible by the user who can then position the container in the orifice by sliding the ring along the orifice. The user then pulls the cover down towards the body of the device to the injection position.
According to an alternative of the preceding embodiment, the pivotable cover 4 is produced in several parts, at least the first part 10 of which is integral with the body of the device, and at least a second part 11 of which is movable in rotation relative to the first part along the axis of rotation C. Both parts of the holding system thus form a clamp of variable spacing, allowing the container to be received and clamped in order to maintain it stationary during the injection.
According to this alternative, the second part 11 of the holding system is interchangeable so as to adapt to containers of different dimensions by simply changing this second part by the user for another one having an orifice of dimensions adapted to the container. This second interchangeable part can also be color-coded to be easily identifiable by the user or provided with a recognition and electronic reading device in order to specify to the device the geometric or rheological characteristics of the container and its contents so that the recognition device can automatically calculate the dose of composition delivered for a unitary movement of the piston rod, as well as other characteristics in order to quickly select the control law.
The body 2 of the injection device is configured to be held in the user's hand.
To that end, the body 2 of the device comprises one or more gripping zones 12a, 12b, 12c where the user can position his fingers in order to hold the device securely by hand, avoiding having it slip out of his hands.
Each gripping zone 12a is preferably in the form of a surface against which one or more of the operator's fingers presses. Alternatively, the gripping zones can comprise a recess 13 wherein the user can insert his finger to make the grip more secure. In this latter case, the user's finger presses against the inner surface of the recess.
With reference to
According to the syringe-type grip, the user positions his index finger on the first gripping zone 12a on the distal surface 14 of the body, and positions his middle and possibly ring finger on the second gripping zone 12b. The user positions his thumb on the third gripping zone 12c constituting the pressure zone of the piston rod 3. The index and middle finger are thus placed on either side of the axis B.
The syringe-type grip offers the advantage of being familiar to the user in terms of ergonomics and sensations, whether he or she is a medical professional or a patient. Furthermore, it offers a good view of the movement of the piston rod via the thumb, and therefore of the dose injected during the injection. This allows the user to adjust the injection speed easily by varying the effort exerted by the thumb on the pressure zone of the piston rod and concomitantly on the other fingers in opposite pressure.
In
In
Another possible grip of the injection device 1 according to the invention is the so-called “pen type” grip, in that it mimics the usual handgrip of a writing pen. This grip is shown in
According to the most common pen-type grip, the user positions the index finger, middle finger and thumb on three respective gripping zones 12a, 12b, 12c located around the body of the device, preferably on a distal portion of said body. The first 12a and second 12b gripping zones, configured to receive the index finger and middle finger, are located substantially along the same axial position along the longitudinal axis of the body. The third gripping zone 12c, configured to receive the thumb, is located proximally with respect to the first 12a and the second 12b gripping zones. The index finger, middle finger and thumb are thus arranged around the axis B.
In
The pen-type grip offers the advantage of allowing a firm, secure grip of the injection device, since the index finger, middle finger and thumb are all three exerting an effort substantially perpendicular to the longitudinal axis A and oriented towards the body of the device. Furthermore, with this type of grip the hand is closer to the end of the needle, which improves accuracy during the shot, although it does not make it possible to give the movement of the piston rod directly to the user.
However, the grip of the device according to the invention is not limited to the syringe and pen type grips previously described or combinations thereof, so that the device can be produced and gripped differently from these two particular grips.
The device according to the invention comprises at least one force sensor 16a, 16b, 16c which makes it possible to know the force, also called “effort,” exerted by the user to carry out the injection. The force sensor can be static or dynamic.
A static force sensor measures the actual force exerted by the user. It may require calibration in order to calibrate the signal corresponding to a force considered to be zero by the sensor, while the value of the force actually exerted by the user on the sensor may be zero or non-zero.
A dynamic force sensor measures the variations of force. If a force exerted on the sensor is maintained constant over a specific period of time, the sensor considers that there is no more force being applied. It is therefore necessary to carefully choose the time period as a function of the planned usage. One advantage of this type of sensor is that it self-calibrates at rest.
The force sensor 16a, 16b, 16c is configured to receive at the input an effort exerted by the user on said sensor. This sensor, by means of an electromechanical control system, makes it possible to control an actuator according to a control law based on objectives specific to the injection of the composition.
The force sensor 16a, 16b, 16c is positioned in a gripping zone of the body of the injection device. In this way, the force sensor is directly accessible by the user, since he can use his fingers both for gripping the device and for applying pressure to the sensor, and does not need to use other fingers or the other hand to press the sensor. The sensor or sensors are positioned in different gripping zones depending on the type of grip of the device, in order to optimize the ergonomics of the device.
With reference to
Alternatively, the device may comprise only one or two of the three aforementioned sensors.
According to a preferred embodiment, the device 1 comprises at least the third sensor 16c located in the proximal pressure zone 12c of the piston rod 3. This embodiment offers the advantage that the effort exerted by the user on the sensor is independent of the distribution of the effort exerted on the other fingers at the distal end of the device. The effort exerted by the user on the sensor is directed in the same direction as the movement of the piston rod during the injection, i.e., translation along the axis B in the distal direction. This allows the user to have tactile feedback about the force he is exerting on the sensor as a function of the resultant movement of the piston rod 3 throughout the injection, as well as about the dose injected via the movement of the piston rod, thus improving the precision of the injection.
Quite obviously, the device 1 can comprise only the first sensor 16a and/or the second sensor 16b on the distal surface 14 of the body. In this case, the effort exerted on the sensor is parallel to the movement of the piston rod 3, but oriented in the opposite direction, i.e. in a proximal direction. This embodiment also provides feedback to the operator, although it is less intuitive.
According to the embodiment of
Again according to
With reference to
When the device 1 is designed to function according to the pen-type grip, the presence of the three sensors 16a, 16b, 16c allows the device to receive at the input three efforts of similar intensities directed radially towards the body of the device. This facilitates the use of the device by improving the balance of the body in the user's hand during the injection, which thus greatly improves the precision of the injection.
The injection device 1 further comprises an electromechanical system, said system comprising the piston rod 3, a system 17 for actuating the piston rod, and a processor 18. These different elements are all particularly visible in
The injection device comprises an ON/OFF switch 19 enabling it to be operated or stopped.
The injection device may comprise an on-board electric energy source 20 for the operation of the electromechanical system, such as a battery or electric cells, thus functioning autonomously. Alternatively, the injection device may be provided with an electrical cable enabling connection to an external source of electrical energy, which allows the device to be made lighter and of smaller size.
The electromechanical system comprises an electric motor 21 and a mechanical reducer 22 allowing the speed of rotation of the motor to be reduced. Such reducer is known per se and conventionally comprises gears 23, which are arranged in proximity to the distal surface 14 of the body of the device of
The processor 18 is configured to receive at the input a measurement signal from the sensor(s) 16a, i.e., a signal representing a value of force exerted by the user on each sensor, and provides at the output an instruction for the actuation system 17, which is a function of the signal from the sensor.
From the instruction from the processor 18, the actuation system converts the value of the effort measured by the sensor 16a (“input force” or “input effort”) into an effort (or a speed) applied by the piston rod 3 (“output force” or “output effort”) during the use of the device, particularly in order to inject the composition contained in the container 40.
The more sensors 16a, 16b, 16c there are, the greater the amount of input information there is, and the more precisely the output effort is determined from the input effort, by means of the control law.
In particular, the output effort can be a torque. Indeed, according to the embodiment of the device shown in
The instruction sent by the processor 18 to the actuation system 17 is based on a control law programmed and recorded in the processor. The control of the piston rod 3 via the control law may be done by force or by speed. When control is done by speed, the processor 18 receives at the input the force signal from the sensor 16a and provides an output signal to the actuation system 17 in order to control said actuation system in accordance with a certain speed as a function of the input signal.
The processor 18 is advantageously provided with a memory in which control laws and other operating parameters of the device can be recorded.
For example, in order to neutralize the efforts needed for gripping the device without performing an injection, the input force can be corrected from a specific threshold, as well as by linearity, in order to take into account rheological properties of the injected composition and of the needle used, or of the sensitivity desired by the user in particular in the work zone relevant for the usage.
The control law may comprise different operation processes in order to carry out different respective functions.
The injection device 1 preferably comprises a programming connector 24 for connecting the injection device to an electronic apparatus from which the user may configure the injection device. Such an electronic apparatus may for example be a computer, an electronic tablet or a portable phone. By means of the programming connector 24, the user can in particular import control laws into the memory of the device, configure control laws depending on the usage desired, and perform different adjustments of the components of the injection device.
The injection device 1 is advantageously provided with selection means 25, such as an actuable button, making it possible to select one control law from among those that are recorded in the memory, in order for said law to be implemented during the usage of the device.
The injection device 1 is advantageously provided with an adjustment means, such as an actuable button, making it possible to adjust the trigger threshold F1s of the assistance by control law, i.e., the value of the input effort from which the triggering of the selected control law takes place. Thus, as long as the input effort is lower than the trigger threshold F1s, the assistance by control law is not triggered. The value of the input effort corresponds to the value of the output effort. When the input effort becomes greater than or equal to the trigger threshold F1s, the assistance by control law is triggered and assists the user in the use of the device. In order to simplify the use of the device, a unique means 25 can allow both the adjustment of the trigger threshold F1s for assistance and the selection of a control law, as is the case for the device shown in
The injection device 1 can be provided with a user interface, comprising a screen 26 as shown in
The operation of the injection device 1 will now be described with reference to
With reference to
The second part 11 of the cover is then joined with the first part 10 in order to clamp the proximal part of the syringe 40 and to maintain said syringe in a stationary manner and in alignment with the travel path of the piston rod. The injection device is then as represented in
The gripping zone 12c of the piston rod 3 is in contact with a proximal stop element 27 that limits the proximal end-of-travel of the piston rod. In other words, the piston rod 3 cannot be in a proximal position further than that of
With reference to
At the end of the approach step, the distal end or head 3a of the piston rod 3 is inserted into the piston 50, the piston being advantageously provided with a recess 51 the shape whereof corresponds to that of the distal end 3a of the piston rod in order to ensure better contact between the piston rod and the piston, which improves the precision of the injection. Moreover, the gripping zone 12c of the piston rod is located at a specific distance from the proximal stop element 27. This distance is detected by the processor. The piston rod is then located in a position called “starting position”, and is ready to be actuated.
The user may then proceed with the injection of the composition by exerting a force on one or more sensors 16a, 16b, 16c of the device.
The piston rod 3 is moved distally in the container 40, driving the piston 50 with it as the composition is injected.
With reference to
The piston rod is located outside the container, which container may then be removed from the holding system of the device. The user can then proceed with loading a new container and proceed with another injection, or may turn off the device.
Examples of operating processes corresponding to control laws will now be described according to several embodiments. The embodiments may be combined with each other in such a way that the device may be configured to operate according to one or several of the operating processes described.
According to a first example shown in
Since the injection device according to the invention is also speed-controllable, the speed furnished by the actuation system at the output is measured on the y-axis, in parallel to the output effort F2. The observations made with regard to the output effort F2 and the output speed F2 are the same.
The output effort F2 remains zero until the input effort F1 exerted by the user on the sensor(s) reaches the trigger threshold F1s after which assistance by control law is triggered. The output effort F2 then increases with the input effort F1.
In
The output effort F2 increases up to a limit F2max when the input effort reaches F1I. This value F2max is recorded in the memory of the injection device particularly during its manufacture, and makes it possible to avoid any risk of explosion of the syringe or inadvertent ejection of the needle due to excessive output effort F2.
In a second example, the control law comprises an effort multiplication process. According to this process, the output effort F2 (respectively the output speed) of the actuation system is increased primarily according to a multiple of the value of the input effort F1.
To that end, the actuation system 17 comprises an effort multiplication system configured to furnish an output effort F2 for actuating the piston rod 3 which is a multiple of the value of the effort F1 received at the input by the processor 18.
In the injection devices of the state-of-the-art, the internal pressure in the container and the deformation in the actuation system of the piston rod during injection of viscous products results in an injection residue of the composition, even though the operator has ceased pressing on the piston rod of the syringe, by a mechanism of releasing the built-up internal pressure. This surplus of injected composition, which is undesirable, is problematic in a case where a very precise dose of composition is required or the user wishes to quickly move the needle and extraneous material should not be deposited during removal of the needle, as is the case for some bone cements that polymerize quickly, used in vertebroplasty, which should not be deposited outside the treated vertebrae.
In order to overcome this disadvantage, according to a third example, the controller comprises a process that makes it possible to carry out a backwards return of the piston rod 3, in other words a movement of the piston rod in the proximal direction relative to the body 2 of the device according to a specific distance, when the user wishes to stop the injection, either definitively for example when all the composition has been injected and the piston rod 3 is at end-of-travel, or from time to time for example when the operator carries out a series of injections while including a stop time between two consecutive injections.
This process thus makes it possible to eliminate any surplus composition, and thus to inject a precise dose of composition at selected sites, without smears.
When the injection is interrupted, momentarily or definitively, the effort F1 exerted by the user on the sensor 16a, 16b, 16c falls below a specific retraction threshold F1ad, equal to or less than the activation threshold F1s, without becoming zero. The value of the effort F1 of the signal received by the processor 18 from the sensor decreases even though the injection device is in operation. In this case, the processor 18 is configured to send an instruction to the actuation system 17 that moves the piston rod 3 backwards as soon as the input effort F1 becomes less than or equal to the threshold F1ad. The retraction threshold F1ad is adjustable depending on the type of injection carried out by the user. When the injection requires great precision, the F1ad threshold can be raised near the trigger threshold of assistance F1s. In this case, a slight relaxation of the user makes it possible to stop the injection and to activate the return backward. On the other hand, when less precision is required, the F1ad threshold can be lower, and even zero. In this case, stopping the injection and activating the return backward are only effective when the user completely relaxes pressure exerted on the sensor.
In order to avoid any inadvertent backward return, a time value is recorded in the memory so that the return backward is only performed when the time interval Δt elapsed after the end of the injection is equal to this time value. The processor is advantageously provided with a clock programmed to measure the time interval Δt.
The intake effort F1 is not completely zero, because the user still has the device in hand and therefore is exerting an effort, although weak, on the sensor. As long as the input effort is between F1ad and F1s, assistance remains deactivated.
During injection of a composition into irrigated tissues, the needle could puncture a blood vessel. Injection devices of the state-of-the-art offer no possibility of detecting the penetration of a blood vessel by the needle.
In order to overcome this disadvantage, according to a fourth example, the control law comprises a process that makes it possible to carry out a calibrated aspiration in order to detect the aspiration of blood by the end of the needle that flows back to the proximal end of the needle. If the user determines that no blood has been aspirated, he can continue the injection. Otherwise, he moves the needle in the tissues. The triggering of the blood detection procedure by the user can be done by a dedicated pushbutton or by using time information from one of the force sensors, for example by pressing twice quickly.
(a) The device is placed in operation. The piston rod 3 seeks its starting position and is therefore moved distally until coming into contact with the proximal stop element 27. In the graph, this is represented by a decrease of Z as a function of t. The electromechanical system then launches an automated step of approaching the piston 50 by the piston rod 3. The piston rod is therefore moved distally automatically until it is pressed against the piston. In the graph, this is represented by an increase in Z.
(b) The device then performs a process of detecting a blood vessel when triggered by the user. The calibrated aspiration and the rearward movement of the piston rod 3 results in a small decrease in Z. The curve is then flat during a specific period of time, which corresponds to a waiting phase during which no effort is exerted on the sensor 16a, 16b, 16c.
(c) The injection is then carried out. The piston 50 is moved distally following the effort exerted by the user on the sensor, and a corresponding dose of composition is injected. Z increases then as a function of t.
(d) The device then performs an anti-drip process. The backward return of the piston rod 3 results in a small decrease in Z.
The series of injections is then continued, each injection (c′), (c″), etc., preferably being followed by an anti-drip process (d′), (d″), etc., and a waiting phase.
(e) At the end-of-travel of the piston rod, the device automatically starts a backward return step of the piston rod 3 of separating the piston rod from the piston 50. The piston rod is therefore moved automatically without intervention from the user on the piston rod, in the proximal direction until the gripping zone of the piston rod comes into contact with the proximal stop element 27.
Number | Date | Country | Kind |
---|---|---|---|
1900613 | Jan 2019 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2020/050093 | 1/23/2020 | WO | 00 |