The invention described herein relates to systems employing audio signal processing to improve speech intelligibility, including for example assistive listening devices (hearing aids) and computerized speech recognition applications (human-computer interfaces).
Several circumstances and situations exist where it is challenging to hear voices and conversations of other people. As one example, while in crowded areas or large crowds, it can often be challenging for most individuals to carry on a conversation with select people. The background noise can be somewhat extreme making it virtually impossible to hear comments/conversation of individual people. In another situation, those with hearing ailments can struggle with hearing in general, especially when trying to separate the comments/conversation of one individual from others in the area. This can even be a problem while in relatively small groups. In these situation, hearing assistance devices provide an invaluable resource.
Speech recognition is also a continual challenge for automated systems. Although great strides have been made, allowing automated voice recognition to be implemented in several devices and/or systems, further advances are possible. Generally, these automated systems still have difficulty identifying a specific voice, when other conversations are happening. This situation often occurs where an automated system is being used in open areas (e.g. office complexes, coffee shops, etc.).
The “cocktail party problem” presents a challenge for both established and experimental approaches from different fields of inquiry. There is the problem itself, isolating a target talker in a mixture of talkers, but there is also the question of whether a solution can be arrived at in real time, without context-dependent training beforehand, and without a priori knowledge of the number, and locations, of the competing talkers. This has proved to be an especially challenging problem given the extremely short time-scale in which a solution must be arrived at. In order to be usable in an assistive listening device (i.e., hearing aid), any processing would have to solve this sound source segregation problem within only a few milliseconds (ms), and must arrive at a new solution somewhere in the range of every 5 to 20 ms, given that the spectrotemporal content of the challenging listening environment changes rapidly over time.
The hard problem here is not the static noise sources (think of the constant hum of a refrigerator); the real challenge is competing talkers, as speech has spectrotemporal variations that established approaches have difficulty suppressing. Stationary noise has a spectrum that does not change over time, whereas interfering speech, with its spectrotemporal fluctuations, is an example of non-stationary noise.
There are various established methods that are effective for suppressing stationary noise. However, these established methods do not provide an intelligibility benefit in non-stationary noise (i.e., interfering talkers). What is needed to solve this problem is a time-varying filter capable of computing a new set of frequency channel filter weights every few milliseconds, so as to suppress the rapid spectrotemporal fluctuations of non-stationary noise (i.e., interfering talkers). Various attempts to address these problems have been made, however many are not able to operate efficiently, or in real-time. Consequently, the challenge of suppressing non-stationary noise from interfering sound sources still exists.
What is needed to solve the above mentioned problem is a time-varying filter capable of computing a new set of frequency channel weights every few milliseconds, so as to suppress the rapid spectrotemporal fluctuations of non-stationary noise. The devices described herein compute a time-varying filter, with causal and memoryless “frame by frame” short-time processing that is designed to run in real time, without any a priori knowledge of the interfering sound sources, and without any training. The devices described herein enhance speech intelligibility in the presence of both stationary and non-stationary noise (i.e., interfering talkers).
The devices described herein leverage the computational efficiency of the Fast Fourier Transform (FFT). Hence, they are physically and practically realizable as devices that can operate in real-time, with reasonable and usable battery life, and without reliance on signifcant computational resources. The processing is designed to use short-time analysis windows in the range of 5 to 20 ms; for every analysis frame, frequency-domain signals are computed from time-domain signals, a vector of frequency channel weights are computed and applied in the frequency domain, and the filtered frequency domain signals are converted back into time domain signals.
In one variation, an Assistive Listening Device (ALD) employs an array (e.g., 6) of forward-facing microphones whose outputs are processed by Short-Time Target Cancellation (STTC) to compute a Time-Frequency (T-F) mask (i.e., time-varying filter) used to attenuate non-target sound sources in Left and Right near-ear microphones. The device can enhance speech intelligibility for a target talker from a designated look direction while preserving binaural cues that are important for spatial hearing.
In another application, STTC processing is implemented as a computer-integrated front-end for machine hearing applications such as Automatic Speech Recognition (ASR) and teleconferencing. More generally, the STTC front-end approach may be used for Human-Computer Interaction (HCI) in environments with multiple competing talkers, such as restaurants, customer service centers, and air-traffic control towers. Variations could be integrated into use-environment structures such as the dashboard of a car or the cockpit of an airplane.
More particularly, in one aspect an assistive listening device is disclosed that includes a set of microphones generating respective audio input signals and including an array of the microphones being arranged into pairs about a nominal listening axis with respective distinct intra-pair microphone spacings, and a pair of ear-worn loudspeakers. Audio circuitry is configured and operative to perform arrayed-microphone short-time target cancellation processing including (1) applying short-time frequency transforms to convert the audio input signals into respective frequency-domain signals for every short-time analysis frame, (2) calculating respective pair-wise ratio masks and binary masks from the frequency-domain signals of respective microphone pairs of the array, wherein the calculation of a ratio mask includes a frequency domain subtraction of signal values of a microphone pair, (3) calculating a global ratio mask from the pair-wise ratio masks and a global binary mask from the pair-wise binary masks, (4) calculating a thresholded ratio mask, an effective time-varying filter with a vector of frequency channel weights for every short-time analysis frame, from the global ratio mask and global binary mask, and (5) applying the thresholded ratio mask, and inverse short-time frequency transforms to selected ones of the frequency-domain signals to generate audio output signals for driving the loudspeakers. Although the preferred processing involves using the thresholded ratio mask to produce the output, an effective assistive listening device that enhances speech intelligibility could be built using only the global ratio mask.
In another aspect, a machine hearing device is disclosed that includes processing circuitry configured and operative to execute a machine hearing application to identify semantic content of a speech signal supplied thereto and to perform an automated action in response to the identified semantic content, and a set of microphones generating respective audio input signals and including an array of the microphones arranged into pairs about a nominal listening axis with respective distinct intra-pair microphone spacings. Audio circuitry is configured and operative to perform arrayed-microphone short-time target cancellation processing including (1) applying short-time frequency transforms to convert the audio input signals into respective frequency-domain signals for every short-time analysis frame, (2) calculating respective pair-wise ratio masks and binary masks from the frequency-domain signals of respective microphone pairs of the array, wherein the calculation of a ratio mask includes a frequency domain subtraction of signal values of a microphone pair, (3) calculating a global ratio mask from the pair-wise ratio masks and a global binary mask from the pair-wise binary masks, (4) calculating a thresholded ratio mask, an effective time-varying filter with a vector of frequency channel weights for every short-time analysis frame, from the global ratio mask and global binary mask, and (5) applying the thresholded ratio mask and inverse short-time frequency transforms to selected ones of the frequency-domain signals to generate audio output signals for driving the loudspeakers. Although the preferred processing involves using the thresholded ratio mask to produce the output, an effective machine hearing device could be built using only the global ratio mask.
There are existing methods, including adaptive beamformers such as the Multichannel Wiener Filter (MWF) and Minimum Variance Distortionless Response (MVDR) beamformers, that use past values (i.e., memory) to compute a filter that can attenuate stationary sound sources; these methods are appropriate for attenuating the buzz of a refrigerator or the hum of an engine, which are stationary sound sources that do not have unpredictable spectrotemporal fluctations. The approach described herein uses Short-Time Target Cancellation (STTC) processing to compute a time-varying filter using only the data from short-time analysis windows; it computes a time-varying filter, in the form of a vector of frequency channel weights for every analysis frame, using only the data from the current analysis frame. As such, it is causal, memoryless, is capable of running in real time, and can be used to attenuate both stationary and non-stationary sound sources.
The approach and devices described herein can attenuate interfering talkers (i.e., non-stationary sound sources) using real-time processing. Another advantage of the approach described herein, relative to adaptive beamformers such as the MWF and MVDR, is that the time-varying filter computed by the STTC processing is a set of frequency channel weights that can be applied independently to signals at the Left and Right ear, thereby enhancing speech intelligibility for a target talker while still preserving binaural cues for spatial hearing.
The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views.
The general arrangement of
Briefly, the selection/combination [36] may or may not include frequency domain signals X that are also used in the pair-wise mask calculations [26]. In an ALD implementation as described more below, it may be beneficial to apply the mask-controlled scaling [34] to signals from near-ear microphones that are separate from the microphones whose outputs are used in the pair-wise mask calculations [26]. Use of such separate near-ear microphones can help maintain important binaural cues for a user. In a computer-based implementation also described below, the mask-controlled scaling [34] may be applied to a sum of the outputs of the same microphones whose signals are used to calculate the masks.
I. System Description of 6-Microphone Short-Time Target Cancellation (STTC) Assistive Listening Device (ALD).
Generally, the inputs from the six forward-facing microphones [42] are used to compute a Time-Frequency (T-F) mask (i.e. time-varying filter), which is used to attenuate non-target sound sources in the Left and Right near-ear microphones [44-L], [44-R]. The device boosts speech intelligibility for a target talker [13-T] from a designated look direction while preserving binaural cues that are important for spatial hearing.
The approach described herein avoids Interaural level Difference (ILD) compensation by integrating the microphone pairs [42] into the frame [40] of a pair of eyeglasses and giving them a forward facing half-omni directionality pattern; with this microphone placement, there is effectively no ILD and thus no ILD processing is required. One downside to this arrangement, if one were to use only these forward facing microphones, is the potential loss of access to both head shadow ILD cues and the spectral cues provided by the pinnae (external part of ears). However, such cues can be provided to the user by including near-ear microphones [44]. The forward-facing microphone pairs [42] are used to calculate a vector of frequency channel weights for each short-time analysis frame (i.e., a time-frequency mask); this vector of frequency channel weights is then used to filter the output of the near-ear microphones [44]. Notably, the frequency channel weights for each time slice may be applied independently to both the left and right near-ear microphones [44-L], [44-R], thereby preserving Interaural Time Difference (ITD) cues, spectral cues, and the aforementioned ILD cues. Hence, the assistive listening device described herein can enhance speech intelligibility for a target talker, while still preserving the user's natural binaural cues, which are important for spatial hearing and spatial awareness.
It is noted that the ALD as described herein may be used in connection with separate Visually Guided Hearing Aid (VGHA) technology, in which a VGHA eyetracker can be used to specify a steerable “look” direction. Steering may be accomplished using shifts, implemented in either the time domain or frequency domain, of the Left and Right signals. The STTC processing [20-1] boosts intelligibility for a target talker [13-T] in the designated “look” direction and suppresses the intelligibility of non-target talkers (or distractors) [13-NT], all while preserving binaural cues for spatial hearing.
STTC processing consists of a computationally efficient implementation of the target cancellation approach to sound source segregation, which involves removing target talker sound energy and computing gain functions for T-F tiles according to the degree to which each T-F tile is dominated by energy from the target or interfering sound sources. The STTC processing uses subtraction in the frequency domain to implement target cancellation, using only the Short-Time Fourier Transforms (STFTs) of signals from microphones.
The STTC processing computes an estimate of the Ideal Ratio Mask (IRM), which has a transfer function equivalent to that of a time-varying Wiener filter; the IRM uses the ratio of signal (i.e., target speech) energy to mixture energy within each T-F unit:
where S2(t, f) and N2(t, f), are the signal (i.e., target speech) energy and noise energy, respectively. The mixture energy is the sum of the signal energy and noise energy.
The time-domain mixture xi [m] of sound at the ith microphone is composed of both signal (si) and noise (ηi) components:
xi[m]=si[m]+ηi[m] (2)
Effecting sound source segregation amounts to an “unmixing” process that removes the noise (η) from the mixture (x) and computes an estimate (ŝ) of the signal (s). Whereas the IRM is computed using “oracle knowledge” access to both the “ground truth” signal (si) and the noise (ηi) components, the STTC processing has access to only the mixture (xi) at each microphone. For every pair of microphones, the STTC processing computes both a Ratio Mask (RM) and a Binary Mask (BM) using only the STFTs of the sound mixtures at each microphone. The STFT Xi[n,k] of the sound mixture xi[m] at the ith microphone is as follows:
where w[n] is a finite-duration Hamming window; n and k are discrete indices for time and frequency, respectively; H is a temporal sampling factor (i.e., the Hop size between FFTs) and F is a frequency sampling factor (i.e., the FFT length).
The logic underlying the STTC processing involves computing an estimate of the noise (η), so as to subtract it from the mixture (x) and compute an estimate (ŝ) of the signal (s). This filtering (i.e. subtraction of the noise) is effected through a T-F mask, which is computed via target cancellation in the frequency domain using only the STFTs. The STTC processing consists of Short-Time Fourier Transform Magnitude (STFTM) computations, computed in parallel, that yield Mixture ({circumflex over (M)}) and Noise ({circumflex over (N)}) estimates that can be used to approximate the IRM, and thereby compute a time-varying filter. The Mixture ({circumflex over (M)}), Noise ({circumflex over (N)}) and Signal (Ŝ) estimates for each T-F tile are computed as follows using the frequency-domain signals (Xi) from a pair (i=[1, 2]) of microphones:
{circumflex over (M)}[n,k]=(|X1[n,k]|+|X2[n,k]|), (4)
{circumflex over (N)}[n,k]=(|X1[n,k]−X2[n,k]|), (5)
Ŝ[n,k]={circumflex over (M)}[n,k]−{circumflex over (N)}[n,k] (6)
The processing described here assumes a target talker “straight ahead” at 0°. With the target-talker waveforms at the two microphones in phase (i.e., time-aligned) with each other, the cancellation process can be effected via subtraction in either the time domain (e.g., x1[m]−x2[m]) or the frequency domain, as in the Noise ({circumflex over (N)}) estimate shown above.
The Noise estimate ({circumflex over (N)}) is computed by subtracting the STFTs before taking their magnitude, thereby allowing phase interactions that cancel the target spectra. The Mixture ({circumflex over (M)}) estimate takes the respective STFT magnitudes before addition, thereby preventing phase interactions that would otherwise cancel the target spectra. A Signal (Ŝ) estimate can be computed by subtracting the Noise ({circumflex over (N)}) estimate from the Mixture ({circumflex over (M)}) estimate. The processing described in this section assumes a target talker “straight ahead” at 0°. However, the “look” direction can be “steered” via sample shifts implemented in the time domain prior to T-F analysis. Alternatively, these “look” direction shifts could be implemented in the frequency domain.
Assuming a perfect cancellation of only the target (i.e., Signal) spectra, the {circumflex over (N)} term contains the spectra of all non-target sound sources (i.e., Noise) in each T-F tile. The STTC processing uses the Mixture ({circumflex over (M)}) and Noise ({circumflex over (N)}) STFTM computations to estimate the ratio of Signal (Ŝ) (i.e., target) energy to mixture energy in every T-F tile:
The Mixture ({circumflex over (M)}) and Noise ({circumflex over (N)}) terms are short-time spectral magnitudes used to estimate the IRM for multiple frequency channels [k] in each analysis frame [n]. The resulting Ratio Mask RM[n, k] is a vector of frequency channel weights for each analysis frame. RM[n, k] can be computed directly using the STFTs of the signals from the microphone pair:
A Binary Mask BM[n, k] may also be computed using a thresholding function, with threshold value ψ, which may be set to a fixed value of ψ=0.2 for example:
In the illustrated example, three microphone pairs having respective distinct spacings (e.g. 140, 80 and 40 mm) are used, and their outputs are combined via “piecewise construction”, as illustrated in the bottom panel of
1. Short-Time Fourier Transform (STFT) processing [50], converts each microphone signal into frequency domain signal
2. Ratio Mask (RM) and Binary Mask (BM) processing [52], applied to frequency domain signals of microphone pairs
3. Global Ratio Mask (RMG) and Thresholded Ratio Mask (RMT) processing [54], uses ratio masks of all microphone pairs
4. Output signal processing [56], uses the Thresholded Ratio Mask (RMT) to scale/modify selected microphone signals to serve as output signal(s) [16]
The above stages of processing are described in further detail below.
1. STFT Processing [50]
Short-Time Fourier Transforms (STFTs) are continually calculated from frames of each input signal x[m] according to the following calculation:
where i is the index of the microphone, w[n] is a finite-duration Hamming window; n and k are discrete indices for time and frequency, respectively; H is a temporal sampling factor (i.e., the Hop size between FFTs) and F is a frequency sampling factor (i.e., the FFT length).
2. STTC Processing [52]
Pairwise ratio masks RM, one for each microphone spacing (140, 80 and 40 mm) are calculated as follows; i.e., there is a unique RM for each pair of microphones ([1,2], [3,4], [5,6]):
Pairwise Binary Masks BM are calculated as follows, using a thresholding function ψ, which in one example is a constant set to a relatively low value (0.2 on a scale of 0 to 1):
In the low frequency channels, a ramped binary mask threshold may be used for the most widely spaced microphone pair (BM1,2) to address the issue of poor cancellation at these low frequencies. Thus at the lowest frequencies, where cancellation is least effective, a higher threshold is used. An example of such a ramped threshold is described below.
3. Global Ratio Mask (RMG) and Thresholded Ratio Mask (RMT) Processing [54]
As mentioned above, a piecewise approach to creating a chimeric Global Ratio Mask RMG from the individual Ratio Masks for the three microphone pairs ([1,2], [3,4], [5,6]) is used. In one example, the RMG is constructed, in a piece-wise manner, thusly (see bottom panel of
The illustration of piecewise selection of discrete frequency channels (k) shown above is for a sampling frequency (Fs) of 50 kHz and an FFT size (F) of 1024 samples; the discrete frequency channels used will vary according to the specified values of Fs and F. The piecewise-constructed Global Ratio Mask RMG is also given conjugate symmetry (i.e. negative frequencies are the mirror image of positive frequencies) to ensure that the STTC processing yields a real (rather than complex) output. Additional detail is given below.
A singular Global Binary Mask BMG is computed from the three Binary Masks (BM1,2, BM3,4, BM5,6), where x specifies element-wise multiplication:
BMG[n,k]=BM1,2[n,k]×BM3,4[n,k]×BM5,6[n,k] (13)
Multiplication of the Global Ratio Mask RMG with the Global Binary Mask BMG yields a Thresholded Ratio Mask RMT[n, k] that is used for reconstruction of the target signal in the output signal processing [56], as described below. Note that RMT[n, k] has weights of 0 below the threshold ψ and continuous “soft” weights at and above ψ.
The Global Ratio Mask (RMG), the Global Binary Mask (BMG) and the Thresholded Ratio Mask (RMT) are all effective time-varying filters, with a vector of frequency channel weights for every analysis frame. Any one of the three (i.e., RMG, BMG or RMT) can provide an intelligibility benefit for a target talker, and supress both stationary and non-stationary interfering sound sources. RMT is seen as the most desirable, effective and useful of the three; hence it is used for producing the output in the block diagram shown in
4. Output Signal Processing [56]
The output signal(s) may be either stereo or monaural (“mono”), and these are created in correspondingly different ways as explained below.
Reconstruction of Target Signal with STEREO Output
Stereo output may be used, for example in applications such as ALD where it is important to preserve binaural cues such as ILD, ITD. The output of the STTC processing is an estimate of the target speech signal from the specified look direction. The Left and Right (i.e. stereo pair) Time-Frequency domain estimate (YL[n, k] and YR [n, k]) of the target speech signal (yL [m] and yR[m]) can be described thusly, where XL and XR are the Short Time Fourier Transforms (STFTs) of the signals xL and xR, from the designated Left and Right in-ear or near-ear microphones [44] (
YL[n,k]=RMT[n,k]×XL[n,k]YR[n,k]=RMT[n,k]×XR[n,k] (14)
Alternatively, the Global Ratio Mask (RMG) could be used to produce the stereo output:
YL[n,k]=RMG[n,k]×XL[n,k]YR[n k]=RMG[n,k]×XR[n,k] (15)
Synthesis of a stereo output (yL[m] and yR[m]) estimate of the target speech signal consists of taking the Inverse Short Time Fourier Transforms (ISTFTs) of YL[n, k] and YR[n, k] and using the overlap-add method of reconstruction.
While the Global Binary Mask BMG could also be used to produce the stereo output, the continuously valued frequency channel weights of the RMG and RMT are more desirable, yielding superior performance in speech intelligibility and speech quality performance than the BMG. RMT is seen as the most desirable, effective and useful of the three; hence it is used for producing the output in the block diagram shown in
Reconstruction of Target Signal with MONO Output
A mono output (denoted below with the subscript M) may be used in other applications in which the preservation of binaural cues is absent or less important. In one example, a mono output can be computed via an average of the STFTs across multiple microphones, where I is the total number of microphones:
Alternatively, the Global Ratio Mask (RMG) could be used to produce the mono output:
YM[n,k]=RMG[n,k]×XM[n,k] (18)
The Mono output yM [m] is produced by taking Inverse Short Time Fourier Transforms (ISTFT) of YM [n, k] and using the overlap-add method of reconstruction.
Steering the Nonlin-ear Beamformer's “Look” Direction
The default target sound source “look” direction is “straight ahead” at 0°. However, if deemed necessary or useful, an eyetracker could be used to specify the “look” direction, which could be “steered” via τ time shifts, implemented in either the time or frequency domains, of the Left and Right signals. The STTC processing could boost intelligibility for the target talker from the designated “look” direction and suppress the intelligibility of the distractors, all while preserving binaural cues for spatial hearing.
The τ sample shifts are computed independently for each pair of microphones, where Fs is the sampling rate, d is the inter-microphone spacing in meters, λ is the speed of sound in meters per second and θ is the specified angular “look” direction in radians:
These τ time shifts are used both for the computation of the Ratio Masks (RMs) as well as for steering the beamformer used for the Mono version of the STTC processing.
An STTC ALD as described herein can improve speech intelligibility for a target talker while preserving Interaural Time Difference (ITD) and Interaural Level Difference (ILD) binaural cues that are important for spatial hearing. These binaural cues are not only important for effecting sound source localization and segregation, they are important for a sense of Spatial Awareness. While the processing described herein aims to eliminate the interfering sound sources altogether, the user of the STTC ALD device could choose whether to listen to the unprocessed waveforms at the Left and Right near-ear microphones, the processed waveforms, or some combination of both. The binaural cues that remain after filtering with the Time-Frequency (T-F) mask are consistent with the user's natural binaural cues, which allows for continued Spatial Awareness with a mixture of the processed and unprocessed waveforms. The ALD user might still want to hear what is going on in the surroundings, but will be able to turn the surrounding interferring sound sources down to a comfortable and ignorable, rather than distracting, intrusive and overwhelming, sound level. For example, in some situations, it would be helpful to be able to make out the speech of surrounding talkers, even though the ALD user is primarily focused on listening to the person directly in front of them.
Brief Summary of the STTC Assistive Listening Device Embodiment of the Invention.
An Assistive Listening Device (ALD) embodiment of the claimed invention computes a ratio mask in real-time using signals from microphones and Fast Fourier Transforms (FFTs) thereof, and without any knowledge about the noise source(s). As set forth in ¶0025-0045, the invention's Ratio Mask RM[n, k] can be computed using the Short-Time Fourier Transforms (STFTs) of signals from a microphone pair (e.g., i=[1, 2]):
The Mixture ({circumflex over (M)}) and Noise ({circumflex over (N)}) terms are short-time spectral magnitudes used to estimate the Ideal Ratio Mask (IRM) for multiple frequency channels [k] in each analysis frame [n]. The resulting Ratio Mask RM[n, k] is a vector of frequency channel weights for each analysis frame. An embodiment of the invention, an eyeglass-integrated assistive listening device, is shown in
Absolute phase differences for three microphone spacings (140, 80 and 40 mm) and three Direction of Arrival (DOA) angles (±30, ±60, ±90) are plotted in the top row of
Example Time-Frequency (T-F) masks for a mixture of three talkers are shown in
The processing computes multiple pairwise ratio masks for multiple microphone spacings (e.g., 140, 80 and 40 mm). Each of the three Ratio Masks (RM1,2, RM3,4 and RM5,6) has frequency bands where the T-F tiles are being overestimated (see horizontal white bands with values of “1” in
where S2(t, f) and N2(t, f), are the signal (i.e., target speech) energy and noise energy, respectively; i.e., the Ideal Ratio Mask has “oracle knowledge” of the signal and noise components. The STTC ALD is capable of computing a T-F mask, in real-time, that is similar to the IRM (see
The hard problem here is not the static noise sources (think of the constant hum of a refrigerator); the real challenge is competing talkers, as speech has spectrotemporal variations that established approaches have difficulty suppressing. Stationary noise has a spectrum that does not change over time, whereas interfering speech, with its spectrotemporal fluctuations, is an example of non-stationary noise. Because the assistive listening device computes a time-varying filter in real-time, it can attenuate both stationary and non-stationary sound sources.
The invention employs causal and memoryless “frame-by-frame” processing; i.e., the T-F masks are computed using only the information from the current short-time analysis frame. Because of this, it is suitable for use in assistive listening device applications, which require causal and computationally efficient (i.e., FFT-based) low-latency (≤20 ms) processing. The assistive listening device's time-varying filtering, which can attenuate both stationary and non-stationary noise, can be applied on a frame-by-frame basis to signals at the Left and Right ears, thereby effecting real-time (and low-latency) sound source segregation that can enhance speech intelligibility for a target talker, while still preserving binaural cues for spatial hearing.
The audio circuitry of the invention operates on a frame-by-frame basis, with processing that is both causal and memoryless; i.e., it does not use information from the future or the past. There are existing methods that can segregate competing talkers by computing a Time-Frequency (T-F) mask, which is effectively a time varying filter with a vector of frequency channel weights for every analysis frame. However, many of these methods, including Deep-Neural-Network (DNN) based approaches, use noncausal block processing to compute T-F tiles for each analysis frame. In order for an assistive listening device to operate on a “frame by frame” basis, it cannot use data from the future. This is illustrated in
These concerns regarding causality also relate to processing latencies for assistive listening devices. A device might violate the causality requirement by looking only a handful of frames into the future. However, one has to be mindful of the latency constraints; in order for an assistive listening device to be useful, the overall processing delay must be ≤20 ms (i.e., 1/50th of a second) for closed-fit hearing aids and ≤10 ms (i.e., 1/100th of a second) for open-fit hearing aids. If an assistive listening device were to look even just a few frames into the future, it would fail to meet these strict latency requirements.
Because the invention operates on a frame-by-frame basis, and the ratio mask computation requires only FFTs from microphone signals, the processing latency is determined by the length of the analysis window. An estimate of the processing latency is 2.5× the duration of the analysis window; this takes into account the fact that the Inverse Short-Time Fourier Transform (ISTFT) reconstruction requires two frames for Overlap-Add (OLA). Hence, a 20 ms latency for the invention can be achieved by using an 8 ms analysis window; likewise, a 10 ms latency can be achieved by using a 4 ms analysis window. The invention is capable of running in real-time with low latency. Equation 22 below is a variation of Equation 8 (and Equation 20) that further illustrates that the frame-by-frame computation is effected with vectors of frequency channel weights (k). Those skilled in the art of audio signal processing will understand that the STFTs in equation 8 (and equation 20) can be computed on a frame-by-frame basis using vectors (indicated by “:”) of frequency channel (k) values for every analysis frame (n):
The invention computes a time-varying filter, in the form of a vector (:) of frequency channel (k) weights for every analysis frame (n), using only the data from the current analysis frame. As such, it is causal, memoryless, is capable of running in real time, and can be used to attenuate both stationary and non-stationary sound sources. The invention computes a real-time ratio mask, and does so with efficient low-latency frame-by-frame processing.
Using a Phase Difference Normalization Vector (PDNV) to Scale the Noise Estimate.
A variation on the processing described in ¶0025-0045 of this and the original specification, and summarized herein in ¶0056-0064, involves scaling the Noise estimate ({circumflex over (N)}) used to compute a pairwise Ratio Mask (RM) by what is hereby referred to as a discrete-frequency (k) dependent Phase Difference Normalization Vector (PDNV), denoted as Γ[k] in Equation 23 below:
Note that Γ[k] is discrete-frequency (k) dependent but is not time-dependent, nor is it computed using signal values. For a known microphone spacing, Γ[k] can be pre-computed so as to scale and normalize the discrete-frequency (k) dependent elements of the Noise estimate ({circumflex over (N)}) for each analysis frame n. The scaling of the Noise estimate ({circumflex over (N)}) by Γ[k] is effected through element-wise multiplication, which is denoted by the symbol ⊙ in equation 24 below:
Those skilled in the art of audio signal processing will understand that the STFTs in equations 23 and 24 can be computed on a frame-by-frame basis using vectors (indicated by “:” in equation 24) of frequency channel (k) values for every analysis frame (n). To summarize, the pairwise noise estimate ({circumflex over (N)}) used to compute a pairwise ratio mask (RM) is scaled by a pre-computed frequency-dependent Phase Difference Normalization Vector (PDNV) Γ[k], which normalizes the noise estimate ({circumflex over (N)}), at each discrete frequency (k), in a manner dependent on the value of the maximum possible phase difference, at each discrete frequency (k), for a given microphone pair spacing.
A Phase Difference Normalization Vectors (PDNV) Γ[k] can be computed for a given microphone spacing. Assuming a distant sound source, the Time Difference of Arrival (TDOA) for a sensor pair is computed as follows, where d is the distance in meters between the two microphones, λ is the speed of sound in m/s and θ is the DOA angle in radians:
The corresponding wrapped absolute phase difference (ρ), as a function of frequency (f) in Hz, and as plotted in the top row of
ρ(f)=|∠ej2πfτ| (26)
where ∠ indicates the phase angle wrapped to the interval [−π, π]. Likewise, the discrete-frequency wrapped absolute phase difference (), as a function of discrete frequency (wk), for a microphone pair spacing d, and a DOA angle θ in radians, can be computed as follows:
A discrete-frequency Phase Difference Normalization Vector (PDNV) Γ[k] can be pre-computed, for a given microphone pair spacing (d), for a given maximum possible angular separation (θmax) in radians, and for a scaling parameter β (for now, β=1), as being equivalent to the inverse of the discrete-frequency wrapped absolute phase difference below a given Frequency cutoff (Fc):
Below the pre-determined frequency cutoff Fc, Γ[k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 27) at the maximum possible angular separation of θmax. The pre-computed frequency-dependent PDNV Γ[k], is used to scale (i.e., normalize) the Noise ({circumflex over (N)}) term in a manner dependent on the value of the maximum possible phase difference, at each discrete frequency (k), for a given microphone pair spacing.
Alternative STTC Processing [52] with Phase Difference Normalization
Pairwise ratio masks RM, one for each microphone spacing (140, 80 and 40 mm) can also be calculated as follows; i.e., there is a unique RM for each pair of microphones ([1,2], [3,4], [5,6]):
A pairwise Phase Difference Normalization Vector (PDNV) Γ[k], which scales the respective pairwise Noise ({circumflex over (N)}) estimate, can be pre-computed for each microphone pair spacing:
Below a pre-determined frequency cutoff, Γ[k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 27) at a maximum possible angular separation of
radians. Although the PDNV Γ[k] can be equivalent to the inverse of across all discrete frequencies wk, here Γ[k] is set to unity at and above a pre-determined frequency cutoff (see equation 30). This alternative processing, for the STTC ALD “listening glasses” shown in
Alternative Embodiments of the STTC Assistive Listening Device (ALD).
Further theme and variation, with varied placement of the microphones used to compute the pairwise ratio masks, is described below and shown in
Generally, the inputs from the four eyeglass-integrated microphones [42] are used to compute a Time-Frequency (T-F) mask (i.e. time-varying filter), which is used to attenuate non-target sound sources in the Left and Right near-ear microphones [44-L], [44-R]. The device boosts speech intelligibility for a target talker [13-T] from a designated look direction while preserving binaural cues that are important for spatial hearing.
In the illustrated example shown in
1. Short-Time Fourier Transform (STFT) processing [50], converts each microphone signal into frequency domain signal
2. Ratio Mask (RM) processing [52], applied to frequency domain signals of microphone pairs
3. Piecewise Construction of a Global Ratio Mask (RMG) [54] processing, uses ratio masks of all microphone pairs
4. Output signal processing [56], uses the Global Ratio Mask (RMG), or a post-processed variant thereof, to scale/modify selected microphone signals to serve as output signal(s) [16]
In this second example embodiment of the STTC ALD, alternative STTC processing, post-processing and time-domain signal reconstruction is illustrated in
The alternative STTC processing (
A pairwise Phase Difference Normalization Vector (PDNV) Γ[k], which scales the respective Noise {circumflex over (N)} terms, can be pre-computed for each microphone pair spacing:
Below a pre-determined frequency cutoff, the pairwise Γ[k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 27) at the maximum possible angular separation of θmax=π/2 radians. The frequency dependent PDNV Γ[k], is used to scale (or normalize) the Noise ({circumflex over (N)}) term according to how little phase difference is available at each discrete frequency wk. This helps alleviate the problem of having very little phase difference, for the STTC processing to work with, at relatively low frequencies. Although the PDNV Γ[k] can be equivalent to the inverse of across all discrete frequencies wk, here Γ[k] is set to unity at and above a pre-determined frequency (see equation 32).
The two eyeglass-integrated microphone pairs ([1, 2], [3, 4]) yield two unique ratio masks (RM1,2, RM3,4), which are interfaced with each other so as to provide a positive absolute phase difference for STTC processing to work with (see bottom row of
The positive exponent (i.e., RMG[n, k]+) indicates that any negative T-F values in RMG are set to zero. The piecewise-constructed Global Ratio Mask RMG is also given conjugate symmetry (i.e., negative frequencies are the mirror image of positive frequencies). This ensures that the processing yields a real (rather than complex) output.
Because of the fundamental tradeoff between spectral and temporal resolution, when using a relatively short analysis window, the resolution along discrete-frequency can be rather course, which unfortunately can result in rather subpar and unpleasant speech quality. However, the speech quality can be improved by “Channel Weighting”, which consists of smoothing along the frequency axis. This “frequency smoothing” can be effected in various ways, for example through use of a mean filter or convolution with a gammatone weighting function. When using relatively long analysis windows, this post-processing step is not necessary or useful. However, when using relatively short analysis windows, this “Channel Weighting” (i.e., smoothing along the frequency axis) post-processing step can noticeably improve speech quality. As illustrated in
The output of the STTC processing is an estimate of the target speech signal from the specified look direction. The Left and Right (i.e. stereo pair) Time-Frequency domain estimates (L[n, k] and R[n, k]) of the target speech signal can be described thusly, where XL and XR are the Short Time Fourier Transforms (STFTs) of the signals xL and xR, from the designated Left and Right microphones, and RMS[n, k] is the conjugate-symmetric Smoothed Ratio Mask (i.e., the set of short-time weights for all frequencies, both positive and negative):
L[n,k]=RMS[n,k]×XL[n,k]R[n,k]=RMS[n,k]×XR[n,k] (33)
Those skilled in the art of audio signal processing will understand that RMG, or any post-processed variant thereof, can be used to compute the output of STTC processing:
L[n,k]=RMG[n,k]×XL[n,k]R[n,k]=RMG[n,k]×XR[n,k] (34)
A user-defined “mix” parameter α would allow the user of an STTC “Assistive Listening Device” to determine the ratio of processed and unprocessed output. With α=0, only unprocessed output would be heard, whereas with α=1 only processed (i.e., the output of the STTC processing described herein) would be heard. At intermediate values, a user-defined ideal mix of processed and unprocessed output could be defined by the user, either beforehand or online using a smartphone application. The frequency-domain stereo output ([YL, YR]) would thus be some user-defined mixture of processed ([L, R]) and unprocessed ([XL, XR]) audio:
YL[n,k]=αR[n,k]+(1−α)XR[n,k]
YR[n,k]=αR[n,k]+(1−α)XR[n,k]
Synthesis of a stereo output (yL [m] and yR[m]) estimate of the target speech signal consists of taking the Inverse Short Time Fourier Transforms (ISTFTs) of YL[n, k] and YR[n, k] and using the overlap-add method of reconstruction. Alternative processing would involve using RMS as a postfilter for a fixed and/or adaptive beamformer, and giving the user control over the combination of STTC processing, beamforming, and unprocessed audio.
Generally, the inputs from the four eyeglass-integrated microphones [42] are used to compute a Time-Frequency (T-F) mask (i.e. time-varying filter), which is used to attenuate non-target sound sources in the Left and Right near-ear microphones [44-L], [44-R]. The device boosts speech intelligibility for a target talker [13-T] from a designated look direction while preserving binaural cues that are important for spatial hearing.
1. Short-Time Fourier Transform (STFT) processing [50], converts each microphone signal into frequency domain signal
2. Ratio Mask (RM) processing [52], applied to frequency domain signals of microphone pairs
3. Piecewise Construction of a Global Ratio Mask (RMG) [54] processing, uses ratio masks of all microphone pairs
4. Output signal processing, uses the Global Ratio Mask (RMG), or a post-processed variant thereof, to scale/modify selected microphone signals to serve as output signal(s) (as in
In this third example embodiment (see
radians); i.e., so as to steer the “look” direction towards a target directly in front of the ALD user.
The τ sample shifts are computed independently for each pair of microphones, where Fs is the sampling rate, d is the inter-microphone spacing in meters, λ is the speed of sound in meters per second and θ is the specified angular “look” direction in radians (here
Because here we are shifting the “look” direction by 90° (i.e.,
via these pairwise τ sample shifts, it is in this case necessary to modify the computation of the discrete-frequency wrapped absolute wrapped phase difference () so as to incorporate a scaling parameter β; here β=2.
A modified discrete-frequency wrapped absolute phase difference (), as a function of, discrete frequency (wk) in Hz, DOA angle θ in radians, and here with a scaling parameter of β=2, can be computed as follows, where d is the microphone pair spacing in meters:
A pairwise discrete-frequency Phase Difference Normalization Vector (PDNV) Γ[k] can be precomputed, for a given microphone pair spacing (d), and for a given maximum possible angular separation (θmax) in radians, as being equivalent to the inverse of the discrete-frequency wrapped absolute phase difference below a given Frequency cutoff (Fc):
Below the pre-determined frequency cutoff Fc, Γ[k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 37) at the maximum possible angular separation of θmax. The pre-computed frequency-dependent PDNV Γ[k], is used to scale (i.e., normalize) the Noise ({circumflex over (N)}) term in a manner dependent on the value of the maximum possible phase difference, at each discrete frequency (k), for a given microphone pair spacing.
As illustrated on the left hand side of
In this third example embodiment of the STTC ALD, alternative STTC processing is illustrated in
The alternative STTC processing (
A pairwise Phase Difference Normalization Vector (PDNV) Γ[k], which scales the respective pairwise Noise ({circumflex over (N)}) estimate, can be pre-computed for each microphone pair spacing, using the modified PDNV computation in ¶0088 that incorporates a parameter β (here β=2):
Below a pre-determined frequency cutoff, Γ[k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 37) at the maximum possible angular separation of η=π/2 radians. The frequency dependent PDNV Γ[k], is used to scale (or normalize) the Noise ({circumflex over (N)}) term according to how little phase difference is available at each discrete frequency wk. This helps alleviate the problem of having very little phase difference, for the STTC processing to work with, at relatively low frequencies. Although the PDNV Γ[k] can be equivalent to the inverse of across all discrete frequencies wk, here Γ[k] is set to unity at and above a pre-determined frequency (see equation 40).
The three eyeglass-integrated microphone pairs ([1, 2], [1, 3], [1, 4]) yield pairwise ratio masks (RM1,2, RM1,3, RM1,4), which are interfaced with each other to construct the chimeric Global Ratio Mask (RMG), which can be constructed via “Piecewise Construction” as follows when using a sampling rate of Fs=32 kHz and short-time analysis windows of 4 ms duration:
RMG[n, k]=RMG[n, k]+. The positive exponent (i.e., RMG[n, k]+) indicates that any negative T-F values in RMG are set to zero. The piecewise-constructed Global Ratio Mask RMG is also given conjugate symmetry (i.e., negative frequencies are the mirror image of positive frequencies). This ensures that the processing yields a real (rather than complex) output.
II. System Description of 8-Microphone Short-Time Target Cancellation (STTC) Human-Computer Interface (HCI)
1. Short-Time Fourier Transform (STFT) processing [90], converts each microphone signal into frequency domain signal. 2. Ratio Mask (RM) and Binary Mask (BM) processing [92], applied to frequency domain signals of microphone pairs. 3. Global Ratio Mask (RMG) and Thresholded Ratio Mask (RMT) processing [94], uses ratio masks of all microphone pairs.
4. Output signal processing [96], uses the Thresholded Ratio Mask (RMT) to scale/modify selected microphone signals to serve as output signal(s) [16].
In the STFT processing [90], individual STFT calculations [90] are the same as above. Two additional STFTs are calculated for the 4th microphone pair (7,8). In the RM processing [92], a fourth RM7,8 is calculated for the fourth microphone pair:
Also, as shown in the bottom panel of
Similarly, the pairwise BM calculations include calculation of a fourth Binary Mask, BM7,8, for the fourth microphone pair [7, 8]:
And the Global Binary Mask BMG uses all four BMs:
BMG[n,k]=BM1,2[n,k]×BM3,4[n,k]×BM5,6[n,k]×BM7,8[n,k] (43)
For the Output Signal Reconstruction [96], both stereo and mono alternatives are possible. These are generally similar to those of
Alternative STTC HCI Processing [52] with Phase Difference Normalization.
Pairwise ratio masks RM, one for each microphone spacing (320, 160, 80 and 40 mm) can also be calculated as follows, using the Phase Difference Normalization Vectors (PDNV) described in ¶0065-0068; there is a unique RM for each pair of microphones ([1,2], [3,4], [5,6], [7,8]):
A pairwise Phase Difference Normalization Vector (PDNV) Γ[k], which scales the respective pairwise Noise ({circumflex over (N)}) estimate, can be pre-computed for each microphone pair spacing:
Below a pre-determined frequency cutoff, Γ[k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 27) at a maximum possible angular separation of θmax=π/2 radians. Although Γ[k] can be equivalent to the inverse of across all discrete frequencies wk, here Γ[k] is set to unity at and above a pre-determined frequency cutoff (see equation 47). This alternative processing, for the Human-Computer Interface (HCI) shown in
Absolute phase differences for the four microphone spacings (320, 180, 80 and 40 mm) and three DOA angles (±30, ±60, ±90) are plotted in the top row of
Example Time-Frequency (T-F) masks for a mixture of three talkers are shown in
The processing computes multiple pairwise ratio masks for multiple microphone spacings (e.g., 320, 160, 80 and 40 mm). Each of the four Ratio Masks (RM1,2, RM3,4, RM5,6 RM7,8) has frequency bands where the T-F tiles are being overestimated (see horizontal white bands with values of “1” in
where S2(t, f) and N2(t, f), are the signal (i.e., target speech) energy and noise energy, respectively; i.e., the Ideal Ratio Mask has “oracle knowledge” of the signal and noise components. The STTC ALD is capable of computing a T-F mask, in real-time, that is similar to the IRM (see
Alternative Embodiments of STTC Human-Computer Interface (HCI).
Alternative embodiments of an STTC Human-Computer Interface (HCI) could use a variety of microphone array configurations and alternative processing. For example, a “broadside” and/or “endfire” array of microphone pairs could be incorporated into any number of locations and surfaces in the dashboard or cockpit of a vehicle, or in the housing of a smartphone or digital home assistant device. Furthermore, as described in ¶0051 herein and in the original specification, τ sample shifts can be used to steer the “look” direction of the microphone array. Hence, any number of microphone orientations, relative to the location of the target talker, can be used for an HCI application embodiment of the invention. For example, the alternative processing for the third embodiment of the STTC ALD, described in paragraphs ¶0083-0093 and illustrated in
Embodiment in a 2-Microphone Binaural Hearing Aid.
Although the devices described thus far have leveraged multiple microphone pairs to compute an effective time-varying filter that can suppress non-stationary sound sources, the approach could also be used in binaural hearing aids using only two near-ear microphones [44], as shown in
The STTC processing [98] would use only the signals from the binaural microphones, the Left and Right STFTs XL[n, k] and XR[n,k] [24], to compute a Ratio Mask (RM):
If there is only one pair of microphones, and therefore only one Ratio Mask (RM) is computed, then the Global Ratio Mask (RMG) and the single Ratio Mask (RM) are equivalent; i.e., RMG[n, k]=RM[n, k].
For the output signal reconstruction [99], the RMG[n, k] T-F mask (i.e., time-varying filter) can be used to filter the signals from the Left and Right near-ear microphones [44]:
YL[n,k]=RMG[n,k]×X[n,k]YR[n,k]=RMG[n,k]×XR[n,k] (50)
Synthesis of a stereo output (yL[m] and yR[m]) estimate of the target speech signal consists of taking the Inverse Short Time Fourier Transforms (ISTFTs) of YL[n, k] and YR [n, k] and using the overlap-add method of reconstruction. The minimalist processing described here would provide a speech intelligibility benefit, for a targer talker “straight ahead” at 0°, while still preserving binaural cues. Alternative processing might include using a Thresholded Ratio Mask (RMT), as described in the previous sections, for computing the outputs YL and YR.
A Binary Mask BM[n, k] may also be computed using a thresholding function, with threshold value ψ, which may be set to a fixed value of ψ=0.2 for example:
When using only one pair of microphones, the Thresholded Ratio Mask (RMT) is the product of the Ratio Mask and Binary Mask:
RMT[n,k]=RM[n,k]×BM[n,k] (52)
For this alternative processing for the output signal reconstruction [99], when using only one pair of microphones, the RMT[n, k] T-F mask (i.e., time-varying filter) can be used to filter the signals from the Left and Right near-ear microphones [44]:
YL[n,k]=RMT[n,k]×XL[n,k]YR[n,k]=RMT[n,k]×XR[n,k] (53)
Alternative Processing and Alternative Embodiments of an STTC Binaural Hearing Aid.
Alternative processing, which now incorporates the Phase Difference Normalization Vector (PDNV) computation described earlier in ¶0065-0068, is illustrated in the following pages and in
Alternative Two-Microphone Binaural Processing with Phase Difference Normalization
A pairwise “Left,Right” Ratio Mask RML,R can also be calculated as follows, using the signals from a “Left, Right” ([L,R]) pair of binaural microphones:
A pairwise Phase Difference Normalization Vector (PDNV) ΓL,R[k], which scales the pairwise Noise ({circumflex over (N)}) estimate, can be pre-computed for the [L,R] microphone pair spacing:
Here we assume that the target talker is “straight ahead” at 0°; i.e., directly in front of the ALD user. Hence, the “Left,Right” processing does not need to be steered via τ sample shifts and βL,R is given the default unity value (i.e., βL,R=1). Note that in order to compute Γ[L,R][k], the distance in meters between the two microphones, dL,R, needs to be either known or estimated. Hence, this dL,R value may need to be determined and/or tuned for users, since these are binaural microphones and there is a range of human head widths. As a default value, we can assume that dL,R=150 mm, which is the width of the average human head. Modifications might also have to be made to the computation of Γ[L,R][k], shown in equation 55, to account for frequency-dependent ITD, ILD and interaural phase differences caused by head shadowing.
Below a pre-determined frequency cutoff Fc, the PDNV Γ[L,R][k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 27) at a maximum possible angular separation of θmax=π/2 radians. Although the PDNV Γ[k] can be equivalent to the inverse of across all discrete frequencies wk, here Γ[k] is set to unity at and above a pre-determined frequency cutoff. This alternative processing, for two-microphone binaural processing with Phase Difference Normalization, is illustrated in the block diagram in
Alternative Dual-Monaural STTC Processing with Binaural Microphone Pairs
A second embodiment in a binaural hearing aid would use a pair of near-ear microphones in each ear, and would adapt the pairwise processing to compute a Ratio Mask independently for the Left and Right ears, respectively. This is illustrated in the block diagram shown in
As described in ¶0051 herein and in the original specification, τ sample shifts can be used to steer the “look” direction of the microphone array. As shown on the far Left side of
Values of
and d=10 mm (i.e., dL=10 mm and dR=10 mm) are used for the processing and array configuration illustrated in
radians), a value of β=2 is used for the scaling parameters βL and βR (i.e., βL=2 and βR=2) that are used to compute the ΓL [k] and ΓR[k] Phase Difference Normalization Vectors (PDNV) for the Left ([L,L2]) and Right ([R,R2]) microphone pairs, respectively.
Pairwise Left and Right ratio masks, RML and RMR, can be calculated as follows; i.e., there is a unique RM for the respective Left and Right microphone pairs ([L, L2], [R, R2]):
Left and Right side pairwise Phase Difference Normalization Vectors (PDNV)ΓL[k] and ΓR[k], which scale the respective pairwise Noise ({circumflex over (N)}) estimates in equation 57, can be pre-computed for the dL and dR microphone pair spacings, which are 10 mm in the example illustrated in
Below a pre-determined frequency cutoff Fc, the pairwise PDNV Γ[k] is inversely proportional to the discrete-frequency wrapped absolute phase difference (see equation 58) at a maximum possible angular separation of
radians. Although the pairwise PDNV Γ[k] can be equivalent to the inverse of across all discrete frequencies wk, here Γ[k] is set to unity at and above a pre-determined frequency cutoff. This alternative processing is illustrated in the block diagram in
Alternative STTC Binaural Hearing Aid with Phase Difference Normalization
A third example embodiment of a binaural hearing aid with STTC processing combines the first and second embodiments, with both binaural and “dual monaural” processing. The “piecewise construction” approach, described herein and in the original specification, is used to compute a Global Ratio Mask RMG from pairwise Ratio Masks (RM) computed with varied microphone spacings. This third example embodiment uses both a 150 mm spacing ([L, R]) and a 10 mm spacing ([L, L2] and [R, R2]), as illustrated in
Absolute phase differences for the two microphone spacings (150 and 10 mm) and three Direction of Arrival (DOA) angles (±30, ±60, ±90) are plotted in the top row of
One disadvantage of using narrowly spaced microphones is that there isn't much phase difference for the STTC processing to work with, especially at low frequencies. Hence the approach taken with this third embodiment is to use the wider spacing of the binaural ([L,R]) microphone pair for the lower frequencies (<2 kHz), and to use the more narrowly spaced “dual monaural” ([L, L2] and [R, R2]) microphone pairs for the ≈2-3 kHz frequency range(s) where the binaural microphone pair suffers from null phase differences; this “piecewise construction” approach is illustrated in the bottom row of
Block diagrams for this third example embodiment, of a binaural hearing aid with STTC processing, are shown in
As described in ¶0051 herein and in the original specification, τ sample shifts can be used to steer the “look” direction of the microphone array. Here we assume that the target talker is “straight ahead” at 0°; i.e., directly in front of the ALD user. Hence, the “Left, Right” processing for the binaural microphone pair ([L,R]) does not need to be steered via τ sample shifts and βL,R is given the default unity value (i.e., βL,R=1). However, the “look” directions of the [L, L2] and [R, R2] microphone pairs will be steered 90°; i.e., towards the target talker.
As shown on the far Left side of
Values of
and d=10 mm (i.e., dL=10 and dR=10 mm) are used for the processing and array configuration illustrated in
radians), a value of β=2 is used for the scaling parameters βL and βR (i.e., βL=2 and βR=2) used to compute ΓL [k] and ΓR[k] for the Left ([L,L2]) and Right ([R,R2]) microphone pairs, respectively. As illustrated on the left hand side of
The “piecewise construction” STTC processing for this third embodiment is illustrated in
Pairwise ratio masks RM are calculated as follows; i.e., there is a unique RM for each pair of microphones ([L,R], [L,L2], [R,R2]):
A pairwise Phase Difference Normalization Vector (PDNV) Γ[k], which scales the respective pairwise Noise ({circumflex over (N)}) estimate, can be pre-computed for each microphone pair spacing:
Below the pre-determined frequency cutoffs Fc
The block diagrams in
Yet another variation on the processing described here could use the reconstruction stage described in ¶0081-0082, and illustrated on the right side of
STTC Processing can be Used as a Post-Filter for Fixed and/or Adaptive Beamforming.
Alternative processing could also involve using the Global Ratio Mask RMG, or a post-processed variant thereof, as a postfilter for a fixed and/or adaptive beamformer. The beamforming could be implemented using the same array of microphones, or a subset thereof, used for the STTC processing. This was described in ¶0049-0052 and
As mentioned in ¶0013 herein and in the original specification, an advantage of the STTC processing described herein, relative to adaptive beamforming techniques, such as the MWF and MVDR beamformers, which generally have diotic (i.e., mono) outputs, is that the time-varying filter computed by the STTC processing is a set of frequency channel weights that can be applied independently to signals at the Left and Right ear, thereby enhancing speech intelligibility for a target talker while still preserving binaural cues for spatial hearing.
When using the STTC T-F mask as a post-filter for fixed and/or adaptive beamforming, any benefit measured in objective measures of performance (i.e., noise reduction, speech intelligibility, speech quality) may be offset by the loss of binaural cues for spatial hearing, which are important for maintaining a sense of spatial and situational awareness. The user of the assistive listening device, or machine hearing device, can determine for themselves, and for their current listening environment, the ideal combination of STTC processing, fixed and/or adaptive beamforming, and unprocessed output via a user-interface.
STTC Processing can be Used for Online Remote Communication Between Conversants.
As mentioned in ¶0009 herein and in the original specification, STTC processing can be implemented as a computer-integrated front-end for teleconferencing (i.e., remote communication); more generally, the STTC front-end approach may be used for Human-Computer Interaction (HCI) in environments with multiple competing talkers, such as air-traffic control towers, and variations could be integrated into use-environment structures such as the cockpit of an airplane. Hence the STTC processing, which can enhance speech intelligibility in real-time, could be used on both ends of an online remote communication between multiple human conversants, for example, between an air-traffic controller and an airplane pilot, both of whom might be in a noisy environment with multiple stationary and/or non-stationary interfering sound sources.
While various embodiments of the invention have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
This application is a Continuation-in-Part (CIP) of U.S. application Ser. No. 16/514,669, filed on Jul. 17, 2019, which is a continuation of PCT Application No. PCT/US2019/0420046, filed Jul. 16, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/699,176, filed on Jul. 17, 2018, each of which is incorporated herein by reference in its entirety.
The invention was made with U.S. Government support under National Institutes of Health (NIH) grant no. DC000100. The U.S. Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
6983055 | Luo | Jan 2006 | B2 |
8521518 | Jung et al. | Aug 2013 | B2 |
20080181422 | Christoph | Jul 2008 | A1 |
20080215651 | Sawada | Sep 2008 | A1 |
20150112672 | Giacobello | Apr 2015 | A1 |
20160111108 | Erdogan et al. | Apr 2016 | A1 |
20190139563 | Chen | May 2019 | A1 |
20200027451 | Cantu | Jan 2020 | A1 |
Entry |
---|
International Search Report, International Application No. PCT/US2019/042046, dated Nov. 14, 2019, 2 pages. |
Written Opinion, International Application No. PCT/US2019/042046, dated Nov. 14, 2019, 6 pages. |
Wang, Z-Q., and Wang, D., “Robust Speech Recognition from Ratio Masks.” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) May 19, 2016 (May 19, 2016) entire document [online] URL: https://ieeexplore.ieee.org/abstract/document/7472773, retrieved on Sep. 27, 2021. |
Williamson, D.S., and Wang, D., “Speech Dereverberation and Denoising using Complex Ratio Masks.” 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Jun. 19, 2017 (Jun. 19, 2017), entire document [online] URL: https://ieeexplore.ieee.org/abstract/document/7953226, retrieved on Sep. 27, 2021. |
Number | Date | Country | |
---|---|---|---|
20210029473 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62699176 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/042046 | Jul 2019 | US |
Child | 16514669 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16514669 | Jul 2019 | US |
Child | 16948902 | US |