Associating Metro Street Address Guide (MSAG) validated addresses with geographic map data

Abstract
Master Street Address Guide (MSAG)-validated street address data is correlated with real-world geographic (e.g., latitude/longitude) data. Conventional MSAG-validated street address data is processed, or geocoded, into an additional (or integrated) database that associates latitude/longitude information with a particular entry in the existing MSAG-validated database. The association of the lat/lon data may be direct, or indirect using link ID or other unique tags indicating a particular entry in the MSAG-validated database. The geocoding need be performed only once by a service provider, e.g., as part of the deployment of an emergency service system. In this way, the closest public service answering point (PSAP) to a given latitude/longitude position of a wireless or VoIP device may be determined quickly, providing emergency services with the smallest possible reliable response time.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts the geocoding process of MSAG-validated street address data, and the creation of a lat/lon-to-MSAG record database, in accordance with the principles of the present invention.



FIG. 2 shows an exemplary call handling process using a table associating at/long data with a closest MSAG record, formed from geocoding, in accordance with the principles of the present invention.



FIG. 3 shows a conventional E911 VoIP scenario.



FIG. 4 shows exemplary call flow for the conventional E911 VoIP scenario shown in FIG. 3.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention correlates Master Street Address Guide (MSAG)-validated street address data with real-world geographic (e.g., latitude/longitude) data. According to the invention, conventional MSAG-validated street address data is processed, or geocoded, into an additional (or integrated) database that associates latitude/longitude information with a particular entry in the existing MSAG-validated database. The association of the lat/lon data may be direct, or indirect using link ID or other unique tags indicating a particular entry in the MSAG-validated database.


Ideally the geocoding need be performed only once by a service provider, e.g., as part of the deployment of an emergency service system. Of course, updated geocoding may be performed from time to time as the content of the MSAG-validated street address database changes or is otherwise revised. In this way, the closest public service answering point (PSAP) to a given latitude/longitude position of a wireless or VoIP device may be determined quickly, providing emergency services with the smallest possible reliable response time.



FIG. 1 depicts the geocoding process of MSAG-validated street address data, and the creation of a lat/lon-to-MSAG record database, in accordance with the principles of the present invention.


In particular, as shown in FIG. 1, MSAG-validated street address data, as depicted by the MSAG database 150, is geocoded by a geocoder 160, to generate associations between entries in the MSAG database 150 and lat/lon positions. These associations are stored in a separate database 100 associating lat/lon positions to a respective closest entry from the MSAG database 150.


The geocoder 160 may be any suitable computer, and need not be performed via a network. Preferably the geocoder 160 is operated by a third party software provider rather than by a wireless or VoIP carrier. However, operation of the geocoder 160 by a wireless or VoIP provider is entirely within the present invention.


The lat/lon association database 100 is shown in FIG. 1 separate from the MSAG-validated street address database 150. Of course, information from the two databases 150, 100 may be integrated into a common database, in accordance with the principles of the present invention.


The disclosed geocoder 160 geocodes, or divides each road in a given area into lengths, or links, and associates each link with a given ID. The number of links for any given street-addressable road is preferably determined by the number of intersections therewith by other streets, the number of driveways, and/or any other relevant points of distinction. Another factor for dividing a street into links are the places on that street where the street address number changes.


It is entirely possible and feasible that more than one link will be associated with a same entry in the MSAG-validated street address database 150. For instance, multiple intersections may occur on a street in front of a single street addressed home or business. In this case, the multiple intersections would each associate to a same entry in the MSAG-validated street address database 150 for that single home or business.


A dataset contained in the MSAG-validated street address database 150, and/or in the lat/lon association database 100, may describe a small region, state, or even the entire country. In any event, it is import that each link have an identifier that's unique in a given geographic data set. But again, it's entirely possible that multiple identifiers point to a same entry in the MSAG-validated street address database 150.


Geocoding 160 of the MSAG-validated street address database 150 takes each street address entry in the MSAG-validated street address database 150 as input, and outputs an associated latitude/longitude for each input street address entry.


The exact latitude/longitude designated for any given link is preferably that of a central point of the link. The central point may be determined in any suitable mathematical method for determining a center of an area. As another example, the central point for which the lat/lon data is assigned may be a 2-dimensional calculation measured as a midpoint of a linear line drawn along the pathway of the centerline of the street link. If the link is rectangular, the center point may be the cross-point of two straight lines drawn from opposing corners of the rectangle. The central point may also be calculated in 3-dimensions using not only the geographic shape of the length and width of the link, but also variation in altitude.


The lat/lon assigned to any given link may be a range of lat/lon values, though such implementation adds significantly to complexity of the lat/lon association database 100.


In addition to the exact latitude/longitude, the geocoding also determines a unique link ID for each link in the lat/lon association database 100. The format of the link ID may be any suitable format for a database. In the preferred embodiment, the link ID is uniquely assigned for each entry in the lat/lon association database 100.


Each MSAG record in the MSAG-validated street address database 150 associates an address range with an emergency services number (ESN), and therefore a particular public safety answering point (PSAP) responsible for that geographic location. The present invention associates MSAG record entries with IDs for all links in the address range, thus solving the conventional problem of reliably locating the closest PSAP to a given lat/lon position as a simple lookup of the link ID for a given lat/lon position.



FIG. 2 shows an exemplary call handling process using a table associating lat/long data with a closest MSAG record, formed from geocoding, in accordance with the principles of the present invention.


In particular, as shown in step 202 of FIG. 2, an emergency 911 call is placed from a wireless or VoIP device.


In step 204, the lat/lon of the 911 caller is determined. This determination may be performed in any conventional manner, including cell site location, global positioning satellite (GPS), etc.


In step 206, the closest street link ID entry in the lat/lon association database 100 is determined, based on the latitude/longitude data determined in step 204.


In step 208, using the closest link ID determined in step 206, a look up is performed in the MSAG-validated database 150, to find the associated MSAG-validated record in the MSAG-validated database 150.


In step 210, the emergency services number (ESN) of the PSAP assigned to the location of the wireless or VoIP 911 caller is extracted from the associated MSAG-validated record matched in step 208.


Thus, each MSAG address range in an otherwise conventional MSAG-validated street address database 150 is geocoded to find associated link IDs and corresponding latitude/longitude data for each link ID, and that association is stored in a data table. Then, when an emergency call arrives, the link ID is determined based on a lat/lon of a calling wireless or VoIP party via look up in a lat/lon association table. If it is present in the lat/lon association database 100, the link ID of that match in the lat/lon association table is used in a look up in the MSAG-validated street address database 150 to find the relevant MSAG-validated record nearest to the current position of the wireless or VoIP 911 caller. The emergency services number (ESN) is extracted from the matched MSAG-validated record.


If the emergency caller's link ID isn't found in the lat/lon association table, it would indicate that the data contained in the MSAG-validated street address database 150 is incomplete. To this end, the geocoding process of each MSAG record in the MSAG-validated street address database 150 helps to validate the MSAG data. If a particular MSAG record fails to geocode, it indicates that something is inconsistent between the MSAG and the real-world geographic data. It is also possible for MSAG records to overlap. Thus, the present invention not only provides reliable MSAG-validated street address information to emergency services for wireless and/or VoIP 911 callers, it actually improves the quality and reliability of the MSAG-validated database 150 itself, by way of resolution of any inconsistencies in the geocoding process.


Since geocoding in accordance with the present invention occurs early in the process, it is possible to resolve these inconsistencies ahead of time, before any negative impact to emergency calls can occur, again not only equaling the reliability of wireline emergency calls with wireless and/or VoIP callers, but actually improving upon it.


The present invention has particular applicability to providers of E911 emergency services for wireless devices, especially mobile phones.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. A geocoder device, comprising: a module to input data from a metro street address guide (MSAG) database;a module to associate a latitude/longitude location with a plurality of entries in said MSAG database; anda module to store said associated latitude/longitude location information in a lat/lon association database.
  • 2. The geocoder device according to claim 1, wherein: said lat/lon association database is integrated with said MSAG database.
  • 3. The geocoder device according to claim 1, wherein: said lat/lon association database is maintained separate from said MSAG database.
  • 4. The geocoder device according to claim 1, further comprising: a module to generate street link data from geographic map data; anda module to assign a unique link ID to each generated street link;wherein said associated lat/lon association database associates each unique link ID with a latitude/longitude location of a network device.
  • 5. The geocoder device according to claim 4, wherein: said latitude/longitude location is a location of a center of a respective street link.
  • 6. A lat/lon association database for communication over a phone network, comprising: a plurality of entries, each of said plurality of entries associating a street link with its latitude/longitude.
  • 7. The lat/lon association database for communication over a phone network according to claim 6, wherein: said street link is identified by a link ID.
  • 8. The lat/lon association database for communication over a phone network according to claim 6, wherein: said phone network is an emergency services network.
  • 9. The lat/lon association database for communication over a phone network according to claim 6, wherein: said phone network is a wireless network.
  • 10. The lat/lon association database for communication over a phone network according to claim 6, wherein: said phone network is a voice over Internet Protocol (VoIP) network.
  • 11. A method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location, comprising: obtaining a latitude/longitude of an active network device;determining an addressable street link associated with said obtained latitude/longitude of said active network device; andsearching in a metro street address guide (MSAG) database for a matching MSAG-validated street address entry to said determined addressable street link.
  • 12. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 11, further comprising: extracting an emergency services number (ESN) associated with said matching MSAG-validated street address entry.
  • 13. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 12, further comprising: routing a call from said active network device based on said extracted ESN.
  • 14. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 13, wherein: said network device is a wireless phone.
  • 15. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 13, wherein: said network device is a voice over Internet Protocol (VoIP) device.
  • 16. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 15, wherein: said VoIP network device is a wireless VoIP network device.
  • 17. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 11, wherein: said network device is a wireless phone.
  • 18. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 11, wherein: said network device is a voice over Internet Protocol (VoIP) device.
  • 19. The method of determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 18, wherein: said VoIP device is a VoIP phone.
  • 20. Apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location, comprising: means for obtaining a latitude/longitude of an active network device;means for determining an addressable street link associated with said obtained latitude/longitude of said active network device; andmeans for searching in a metro street address guide (MSAG) database for a matching MSAG-validated street address entry to said determined addressable street link.
  • 21. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 20, further comprising: means for extracting an emergency services number (ESN) associated with said matching MSAG-validated street address entry.
  • 22. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 21, further comprising: means for routing a call from said active network device based on said extracted ESN.
  • 23. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 22, wherein: said network device is a wireless phone.
  • 24. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 22, wherein: said network device is a voice over Internet Protocol (VoIP) device.
  • 25. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 24, wherein: said VoIP network device is a wireless VoIP network device.
  • 26. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 20, wherein: said network device is a wireless phone.
  • 27. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 20, wherein: said network device is a voice over Internet Protocol (VoIP) device.
  • 28. The apparatus for determining a validated entry in a metro street address guide (MSAG) associated with a given geographic location according to claim 27, wherein: said VoIP device is a VoIP phone.
  • 29. A method to geocode validated metro street address guide (MSAG) data, comprising: inputing data from a metro street address guide (MSAG) database;associating a latitude/longitude location with a plurality of entries in said MSAG database; andstoring said associated latitude/longitude location information in a lat/lon association database.
  • 30. The method to geocode validated metro street address guide (MSAG) data according to claim 29, wherein: said lat/lon association database is integrated with said MSAG database.
  • 31. The method to geocode validated metro street address guide (MSAG) data according to claim 30, further comprsing: maintaining said lat/lon association database separate from said MSAG database.
  • 32. The method to geocode validated metro street address guide (MSAG) data according to claim 29, further comprising: generating street link data from geographic map data; andassigning a unique link ID to each generated street link;wherein said associated lat/lon association database associates each unique link ID with a latitude/longitude location of a network device.
  • 33. The method to geocode validated metro street address guide (MSAG) data according to claim 32, wherein: said latitude/longitude location is a location of a center of a respective street link.
  • 34. Apparatus for geocoding validated metro street address guide (MSAG) data, comprising: means for inputing data from a metro street address guide (MSAG) database;means for associating a latitude/longitude location with a plurality of entries in said MSAG database; andmeans for storing said associated latitude/longitude location information in a lat/lon association database.
  • 35. The apparatus for geocoding validated metro street address guide (MSAG) data according to claim 34, wherein: said lat/lon association database is integrated with said MSAG database.
  • 36. The apparatus for geocoding validated metro street address guide (MSAG) data according to claim 35, further comprsing: means for maintaining said lat/lon association database separate from said MSAG database.
  • 37. The apparatus for geocoding validated metro street address guide (MSAG) data according to claim 34, further comprising: means for generating street link data from geographic map data; andmeans for assigning a unique link ID to each generated street link;wherein said associated lat/lon association database associates each unique link ID with a latitude/longitude location of a network device.
  • 38. The apparatus for geocoding validated metro street address guide (MSAG) data according to claim 37, wherein: said latitude/longitude location is a location of a center of a respective street link.