Asymmetric design of hip socket for reducing socket deformations

Abstract
A hip socket for use in a hip joint prosthesis comprising a shaft on which a ball head may be fixed, the ball head may be rotatably inserted in a socket insert and the socket insert may be inserted and fixed in the hip socket the shaft and the hip socket being implantable in the thigh bone and the pelvic bone respectively. Damages to the socket insert and/or limitation of the function of the sliding pair of ball head/socket insert may be avoided by local reduction of the calotte diameter of the socket insert, such that the hip socket has an asymmetrical design with regard to the stiffness and/or geometry thereof in two different directions (x, y) orthogonal to each other and to the symmetry axis (z) of the hip socket.
Description

This application is a §371 of PCT/EP2007/058127 filed Aug. 6, 2007, which claims priority from DE 10 2006 036 924.6 filed Aug. 4, 2006 and DE 10 2007 031 669.2 filed Jul. 6, 2007.


The invention relates to a hip socket for use for a hip-joint prosthesis that consists of a shaft on which a ball head can be fastened, which ball head can be inserted into a socket insert in a rotatable manner, and the socket insert can be inserted and fixed in the hip socket, wherein the shaft can be implanted into the femur, and the hip socket can be implanted into the pelvic bone.


Hip sockets are coupled with the pelvic bone by means of various techniques during the course of the operation for the purposes of primary fixation. A common way of fixing is to clamp the socket by means of a press fit. This represents a form of coupling which in the technical sense can be classed with interference connections. This means that the outer geometry of the hip socket is greater than the socket receiver that has been created by the doctor by milling out the acetabulum. The normal forces that act on the socket through the bone after the introduction of the socket and consequently friction forces guarantee the primary anchorage of the hip socket.


On account of the inhomogeneous rigidity of the pelvic bone, as a rule asymmetrical loading of the hip socket ensues in the press-fit situation, the consequence of which can be asymmetrical deformation of the hip socket. This is basically undesirable, since the deformation of the hip socket makes the introduction of the socket inserts difficult and, furthermore, can lead to the loading and asymmetrical deformation of the socket inserts. Possible further effects are then damage to the socket insert and/or limitation of the function of the sliding pairing as a result of a local reduction in the hemispherical-recess diameter of the socket insert.


The inhomogeneity of the pelvic bone with regard to rigidity as a rule is always in the same direction so the doctor can estimate the direction of the greatest load for the hip socket in the press fit with sufficient accuracy with respect to the patient.


The underlying object of the invention is to develop further a hip socket in accordance with the preamble of claim 1 in such a way that damage to the socket insert and/or a limitation of the function of the sliding pairing ball-head/socket-insert as a result of a local reduction in the hemispherical-recess diameter of the socket insert are/is avoided.


In accordance with the invention, this object is achieved in that the hip socket is formed asymmetrically with regard to its rigidity and/or geometry in two directions that are orthogonal to each other and to the axis of symmetry of the hip socket. As a result of this specific asymmetrical design of the hip socket with regard to its rigidity and/or geometry, it is possible to counteract the asymmetrical outer loading in the press-fit situation. The hip socket thus has different rigidities in two orthogonal directions.


The axis of higher rigidity of the hip socket can be aligned during the implantation so as to be collinear with respect to the direction of the greatest rigidity of the pelvic bone. The result of corresponding dimensioning of the rigidities of the hip socket in relation to the rigidities of the pelvic bone can be that the unavoidable deformation of the hip socket as a result of the press-fit situation occurs uniformly, that is, with deformation paths that are almost identical in terms of amount over the whole socket periphery.


In an inventive development, the hip socket has in a first direction a minimum wall thickness and in a second direction a maximum wall thickness. This asymmetrical design of the wall thickness of the hip socket is achieved, for example, in such a way that in the region of the end face in one direction a minimum wall thickness is realized and orthogonally thereto a maximum wall thickness is realized. On account of the differing wall thicknesses, the hip socket likewise has differing rigidity in the two directions mentioned.


In a further development, stiffening or weakening elements are introduced into the hip socket in one direction in relation to the other direction. By introducing stiffening elements—elements made from a material with a higher level of rigidity—into the casing of the hip socket, likewise differing rigidities of the hip socket can be achieved in various loading directions.


A development of the invention is characterised in that the stiffening or weakening elements of one direction constantly reduce or increase the rigidity thereof towards the other direction. The weakening elements can also be recesses in the hip socket.


By introducing elements made from a material with a lower level of rigidity, the rigidity of the hip socket is weakened at the site of the material with a lower level of rigidity, with the measure of the decrease in rigidity being directionally dependent. The hip socket consequently has with regard to different loading directions likewise different levels of rigidity. In the extreme case, no elements are introduced, but material is just recessed in a corresponding manner in order to reduce the rigidity in a directionally dependent manner.


In a further embodiment, the geometry of the hip socket is formed asymmetrically in such a way that in the case of asymmetrical loading a symmetrical geometry that is as circular-ring-shaped as possible results. Advantageously, the cross-section of the hip socket is oval perpendicularly to the axis of symmetry in the unloaded state.


By means of an asymmetrical design of the socket geometry, for example of the loaded socket cross-section, it is possible to achieve a situation where, when there is asymmetrical loading, a likewise asymmetrical deformation occurs that leads to the formation of a symmetrical socket geometry. In the concrete example, an oval socket cross-section is deformed in consequence of the asymmetrical loading in the press fit until the cross-section has an almost circular-ring-shaped geometry.


The hip socket is preferably made from at least one metal.







The prior art and the invention are explained in greater detail in the following with the aid of figures.



FIGS. 1
a, 1b, 1c show the prior art. A hip-joint prosthesis as a rule consists of a shaft 1 coupled with a ball head 2 and of a hip socket 4 coupled with a socket insert 3. The shaft 1 and the hip socket 4 are connected to the body of the patient as a result of growing into the femur 20 and the pelvic bone 21 respectively and are carriers for the ball head 2 and the socket insert 3 respectively. The ball head 2 is rotatably mounted in the hemispherical recess 5 of the socket insert 3. The hip socket 4 is formed in a rotationally symmetrical manner with regard to its axis of symmetry z, whereby the wall thicknesses a1, b2 of the hip socket 4 are identical in all directions x, y, and the consequence of asymmetrical loading of the hip socket 4 in the press-fit situation can be asymmetrical deformation of the hip socket 4.



FIG. 2
a, b shows a hip socket 4 in accordance with the invention that is set up so that it is not symmetrical in the plane of the end face 7 (see FIG. 2a). The wall thickness a in a direction that is orthogonal to the axis of symmetry z is the maximum and the wall thickness b likewise in a direction y that is likewise orthogonal to the axis of symmetry z is the minimum. The directions x, y are then arranged orthogonally, that is, at right angles to each other.


On account of the different wall thicknesses a, b, the hip socket 4 has different rigidities in the two directions x, y mentioned.



FIG. 3 shows a hip socket 4 in accordance with the invention in which elements 6 that act in a stiffening or weakening manner in one direction x with regard to the other orthogonal direction y are introduced into the hip socket. As a result of introducing these stiffening or weakening elements 6—elements made from a material with a higher or lower level of rigidity than the rest of the material of the hip socket 4—into the casing of the hip socket 4, different levels of rigidity of the hip socket 4 are realized with regard to various loading directions.


The stiffening or weakening elements 6 of one direction x then cover an angular range a on the end face of approximately 90 degrees (see FIG. 3b). What is important is that the rigidity in one direction x differs from the rigidity in a direction y orthogonal to the direction x. In order to achieve a homogeneous change in rigidity between the two extreme values with regard to the direction x and y, the stiffening or weakening elements can cover an angle α of up to 180°, with the wall thickness of the respective element increasing continuously from one end as far as the centre of the element and decreasing again just as continuously towards the other end.


As a result of introducing elements 6 consisting of a material with, for example, a lower level of rigidity, the rigidity of the hip socket 4 is weakened at the site of the material with a lower level of rigidity, with the measure of the decrease in rigidity being directionally dependent. The hip socket 4 consequently has in the case of different loading directions likewise different levels of rigidity. In the extreme case, no elements are introduced, but material is just recessed out in a corresponding manner in order to reduce the rigidity in a directionally dependent manner.



FIG. 4
b shows a hip socket 4 whose geometry is formed asymmetrically in such a way that the cross-section of the hip socket 4 is oval perpendicularly with respect to the axis of symmetry z in the unloaded state (continuous line). In the event of asymmetrical loading, the hip socket 4 is deformed (see broken line in FIG. 4b) so that as a result a symmetrical geometry occurs. FIG. 4a shows the hip socket 4 in the loaded state. The forces that occur at points in the simplified model presentation are marked with F1, F2. In the case of this embodiment, it is to be ensured that given asymmetrical loading (in direction F1), a symmetrical geometry that is as circular-ring-shaped as possible results (see FIG. 4a).


As a result of this asymmetrical design of the geometry of the hip socket 4, with asymmetrical loading a likewise asymmetrical deformation can occur that can lead to the formation of a symmetrical socket geometry. In the concrete example, an oval socket cross-section is deformed in consequence of the asymmetrical loading in the press fit until the cross-section has an almost circular-ring-shaped geometry.

Claims
  • 1. A hip socket for a hip-joint prosthesis comprising: stiffening elements; wherein the hip socket has a dome shaped structure, an axis of symmetry extending along a length of the hip socket and an end face, the end face extending along a transverse plane that is orthogonal to the axis of symmetry of the hip socket; wherein the hip socket is asymmetrically structured so that the hip socket has at least one of a different rigidity in first and second directions, wherein the first and the second directions are orthogonal to each other and to the axis of symmetry of the hip socket, wherein the first and second directions extend along the transverse plane, wherein the axis of symmetry is coaxial with a central axis of the hip socket, wherein the stiffening elements are located in the hip socket in the first direction in relation to the second direction, and the stiffening elements are made from a material with a higher level of rigidity than the rest of the material of the hip socket, wherein a press-fit force to the hip socket causes deformation of the hip socket.
  • 2. A hip socket according to claim 1, wherein the stiffening elements of the first direction increase the rigidity along the first direction relative to the second direction.
  • 3. A hip socket according to claim 2, wherein the hip socket is made from at least one metal.
  • 4. A hip socket according to claim 1, wherein the hip socket is made from at least one metal.
  • 5. A hip socket comprising: an end face; wherein the hip socket has an asymmetrical geometry; wherein a cross-section of the hip socket is oval perpendicularly with respect to a central axis of symmetry in the unloaded state and wherein upon asymmetrical loading, the hip socket is deformed so that a symmetrical geometry of the hip socket occurs in a loaded state.
Priority Claims (2)
Number Date Country Kind
10 2006 036 924 Aug 2006 DE national
10 2007 031 669 Jul 2007 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2007/058127 8/6/2007 WO 00 1/30/2009
Publishing Document Publishing Date Country Kind
WO2008/015289 2/7/2008 WO A
US Referenced Citations (96)
Number Name Date Kind
2910978 Urist Nov 1959 A
3840904 Tronzo Oct 1974 A
3903549 Deyerle Sep 1975 A
4159544 Termanini Jul 1979 A
4324006 Charnley Apr 1982 A
4619658 Pappas et al. Oct 1986 A
4623352 Oh Nov 1986 A
4650491 Parchinski Mar 1987 A
4718911 Kenna Jan 1988 A
4778474 Homsy Oct 1988 A
4828565 Duthoit et al. May 1989 A
4834759 Spotorno et al. May 1989 A
4840631 Mathys Jun 1989 A
5108448 Gautier Apr 1992 A
5133764 Pappas et al. Jul 1992 A
5171286 Lawes et al. Dec 1992 A
5192329 Christie et al. Mar 1993 A
5226917 Schryver Jul 1993 A
5326368 Collazo Jul 1994 A
5370703 Willert et al. Dec 1994 A
5370704 DeCarlo, Jr. Dec 1994 A
5376122 Pappas et al. Dec 1994 A
5507824 Lennox Apr 1996 A
5507828 Maumy et al. Apr 1996 A
5725591 DeCarlo et al. Mar 1998 A
5824107 Tschirren Oct 1998 A
5879398 Swarts et al. Mar 1999 A
5928288 Wilson Jul 1999 A
5938702 Lopez et al. Aug 1999 A
5976148 Charpenet et al. Nov 1999 A
6059833 Doets May 2000 A
6136033 Suemer Oct 2000 A
6187050 Khalili et al. Feb 2001 B1
6290727 Otto et al. Sep 2001 B1
6293971 Nelson et al. Sep 2001 B1
6312473 Oshida Nov 2001 B1
6319285 Chamier et al. Nov 2001 B1
6325829 Schmotzer Dec 2001 B1
6454809 Tornier Sep 2002 B1
6475243 Sheldon et al. Nov 2002 B1
6488715 Pope et al. Dec 2002 B1
6517583 Pope et al. Feb 2003 B1
6537321 Horber Mar 2003 B1
6558428 Park May 2003 B2
6589284 Silberer Jul 2003 B1
6641617 Merrill et al. Nov 2003 B1
6682566 Draenert Jan 2004 B2
6811569 Afriat et al. Nov 2004 B1
6896703 Barbieri et al. May 2005 B2
6942701 Taylor Sep 2005 B2
6966932 Schroeder Nov 2005 B1
7074241 McKinnon Jul 2006 B2
7090678 Cotting et al. Aug 2006 B2
7169185 Sidebotham Jan 2007 B2
7241315 Evans Jul 2007 B2
7335231 McLean Feb 2008 B2
7553332 Bacon Jun 2009 B2
7572295 Steinberg Aug 2009 B2
7578851 Dong et al. Aug 2009 B2
7682398 Croxton et al. Mar 2010 B2
7695521 Ely et al. Apr 2010 B2
7776097 Tepic et al. Aug 2010 B2
7780740 Steinberg Aug 2010 B2
7794504 Case Sep 2010 B2
7819925 King et al. Oct 2010 B2
7896921 Smith et al. Mar 2011 B2
7938861 King et al. May 2011 B2
8021432 Meridew et al. Sep 2011 B2
8197550 Brown et al. Jun 2012 B2
8211184 Ries et al. Jul 2012 B2
8226728 Preuss et al. Jul 2012 B2
8574306 Ries et al. Nov 2013 B2
20010011190 Park Aug 2001 A1
20050060040 Auxepaules et al. Mar 2005 A1
20050071015 Sekel Mar 2005 A1
20050143836 Steinberg Jun 2005 A1
20060178497 Gevaert et al. Aug 2006 A1
20070150068 Dong et al. Jun 2007 A1
20070173948 Meridew et al. Jul 2007 A1
20070191962 Jones et al. Aug 2007 A1
20070219640 Steinberg Sep 2007 A1
20080208353 Kumar et al. Aug 2008 A1
20080255674 Rahaman et al. Oct 2008 A1
20090018666 Grundei et al. Jan 2009 A1
20090088865 Brehm Apr 2009 A1
20090088866 Case Apr 2009 A1
20090177282 Bureau et al. Jul 2009 A1
20090326670 Keefer et al. Dec 2009 A1
20100063596 Imhof Mar 2010 A1
20100179663 Steinberg Jul 2010 A1
20110015752 Meridew Jan 2011 A1
20110151027 Clineff et al. Jun 2011 A1
20110151259 Jarman-Smith et al. Jun 2011 A1
20110153025 McMinn Jun 2011 A1
20110190901 Weissberg et al. Aug 2011 A1
20130268084 McMinn Oct 2013 A1
Foreign Referenced Citations (6)
Number Date Country
44 42 559 Jun 1995 DE
197 01 778 Jun 1998 DE
203 00 018 Mar 2003 DE
O 380 045 Aug 1990 EP
O 472 318 Feb 1992 EP
0 640 324 Mar 1995 EP
Related Publications (1)
Number Date Country
20090287311 A1 Nov 2009 US