Internal combustion engine manufacturers are constantly seeking to increase power output and fuel efficiency of their products. One method of generally increasing efficiency and power is to reduce the oscillating mass of an engine, e.g., of the pistons, connecting rods, and other moving parts of the engine. Efforts to increase engine power and/or efficiency also may also result in an increase in pressure and/or temperature within the combustion chamber during operation.
Power in an engine is typically transferred from a piston reciprocating within a cylinder bore via a connecting rod linked to the piston by way of a piston pin received within a corresponding pin bore of the piston. Thus, as the air/fuel mixture expands within the combustion chamber, the piston is forced downward, pushing the connecting rod downward. The connecting rod is linked with a crankshaft, which is rotated as the piston reciprocates.
Pistons are typically provided with skirts or other cylindrical surfaces configured to slide along corresponding cylinder bore surfaces of an engine. The lateral movement of the lower or large end of the connecting rod results in the connecting rod being angled with respect to the piston/cylinder axis as the piston is forced downward by combustion pressure. Accordingly, one side of the piston, referred to as the “thrust side,” typically experiences a greater load against the cylinder bore, compared with the opposite or “anti-thrust side” of the piston. This imbalance causes vibrations such as secondary motions, which tends to cause cavitation of cylinder bore surfaces.
Accordingly, there is a need for a piston that addresses the above problems.
Referring now to the drawings, illustrative examples are shown in detail. Although the drawings represent the exemplary illustrations described herein, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an exemplary illustration. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricting to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations of the present invention are described in detail by referring to the drawings as follows:
Reference in the specification to “an exemplary illustration”, an “example” or similar language means that a particular feature, structure, or characteristic described in connection with the exemplary approach is included in at least one illustration. The appearances of the phrase “in an illustration” or similar type language in various places in the specification are not necessarily all referring to the same illustration or example.
Exemplary pistons are disclosed herein, which may include a crown defining a combustion bowl and a ring land extending circumferentially around the combustion bowl. Exemplary pistons may further include a skirt supporting the crown. The skirt may include a pair of pin bosses defining a pin bore configured to receive a piston pin, and two opposing skirt supports defining surfaces configured to slide along a cylinder bore surface. One of the skirt supports defines an opening such that the skirt supports each define a different radial stiffness.
Exemplary methods may include forming a crown defining a combustion bowl and a ring land extending circumferentially around the combustion bowl, and providing a skirt supporting the crown. The skirt may include a pair of pin bosses, each defining a pin bore configured to receive a piston pin. The skirt may further include two opposing skirt supports defining surfaces configured to slide along a cylinder bore surface. The method may further include establishing a first one of the skirt supports as defining an opening such that the skirt supports each define a different radial stiffness.
As noted above, skirt supports on opposing sides of the piston may define a different radial stiffness. Merely as one example, a thrust side of the piston (i.e., a side of the piston which receives a larger share of a load from the cylinder bore during reciprocation along the cylinder bore compared with the opposite side of the piston with respect to the piston pin) may have a greater stiffness than an anti-thrust side of the piston. As will be described further below, some exemplary pistons may have a different radial stiffness on opposing sides of the piston as a result of different structural characteristics of the skirts or structure thereof. For example, skirts on opposing sides of the piston may have different wall thicknesses, or other differences in structure connecting the skirt to the piston, thereby resulting in different radial stifihesses of the piston/skirt on either side. The asymmetric stiffness of exemplary pistons may even out lateral motion of the piston between the thrust side and anti-thrust side, thereby reducing noise/vibration/harshness associated with the piston. Moreover, a difference in radial stiffness between opposing skirt supports and/or sides of a piston may correspond to differences in radial loads experienced by each side of the piston during reciprocation within a cylinder bore. Merely as examples, in one exemplary approach a thrust side of the piston may have a radial stiffness that is approximately twice as great as a radial stiffness of the anti-thrust side of the piston. In another example, the skirt support on the thrust side of the piston may have a radial stiffness that is 2-3 times as large as that of the skirt support on the anti-thrust side.
Turning now to
The skirt 102 and/or crown 104 may define a combustion bowl 120. The crown 104 may include a ring belt portion 106 that is configured to seal against an engine bore (not shown) receiving the piston 100. For example, the ring belt portion 106 may define one or more circumferential grooves 107 that receive piston rings (not shown), which in turn seal against engine bore surfaces during reciprocal motion of the piston 100 within the engine bore.
The skirt 102 may include opposing skirt supports 130a, 130b defining respective skirt surfaces 103a, 103b that generally support the piston assembly 100 during engine operation, e.g., by interfacing with surfaces of an engine bore (not shown) to stabilize the piston assembly 100 during reciprocal motion within the bore. For example, the skirt surfaces 103 may generally define a circular outer shape about at least a portion of a perimeter of the piston assembly 100. The outer shape may correspond to the engine bore surfaces, which may be generally cylindrical.
The skirt 102 may also define piston pin bosses 105. The piston pin bosses 105 may generally be formed with apertures or pin bores 109 configured to receive a piston pin (not shown) along a pin bore axis B-B. For example, a piston pin may be inserted through the pin bores 109 in the piston pin bosses 105, thereby generally securing the piston 100 to a connecting rod (not shown). Various features of the piston 100, e.g., the ring grooves 107, pin bosses 105 and/or the pin bores 109 formed therein, may be provided by being formed integrally as part of the same process used to form the skirt 102 and/or crown 104, e.g., casting, forging, or the like. Alternatively, they may be formed subsequently, e.g., by machining, punching, or other material removal processes.
In exemplary approaches where the skirt 102 and crown 104 are initially formed as separate parts and subsequently joined together, the skirt 102 and body 104 may be joined such that upper surfaces of the skirt 102 define in part a lower portion of the combustion bowl. More specifically, the crown 104 may initially be formed in a ring shape which receives the skirt 102 therein at a joint 140. As shown in
In another exemplary approach shown in
Accordingly, the skirts 102, 202 and crowns 104, 204 of the above exemplary pistons 100, 200 may be fixedly joined in any process that is convenient. Merely as examples, the skirt 102, 202 and crown 104, 204 may be joined in a friction welding, laser welding, bonding, or brazing process. By fixedly joining the skirt 102, 202 and crown 104, 204 the piston 100, 200 may be generally formed as a one-piece assembly.
The piston skirt 102, 202 and crown 104, 204 may be constructed from any materials that are convenient. In examples where the skirt and crown are friction or laser welded together, the materials of each may be susceptible to being friction or laser welded, respectively. In one exemplary illustration, the skirt 102, 202 and crown 104, 204 are formed of different materials. Accordingly, a material used for each component may be more closely matched with the general requirements and operating conditions relevant to each. Piston skirt 102, 202 may, merely as examples, include different mechanical properties, e.g., yield point, tensile strength or notch toughness, than the crown 104, 204. Any material or combination may be employed for the skirt 102, 202 and crown 104, 204 that is convenient. Merely as examples, the skirt 102, 202 and/or crown 104, 204 may be formed of a steel material, cast iron, aluminum material, composite, or powdered metal material. Additionally, any forming processes that are convenient may be used for the skirt 102, 202 and crown 104, 204. Merely as examples, the crown 104, 204 and/or skirt 102, 202 may be formed by forging, casting, sintering, or any other process that is convenient. Moreover, any material and/or forming combination of the crown 104, 204 and skirt 102, 202 may be employed that is convenient.
Referring again to
Referring now to
In some exemplary illustrations, differences in radial stiffness may be provided, at least in part, by different thicknesses in skirt supports. For example, as shown in
As noted above, in some exemplary approaches the thrust side of pistons 100, 200, e.g., with skirt support 130a, 230a, defines a greater radial stiffness than that of the anti-thrust side of the piston, e.g., with skirt supports 130b, 130b. This may be particularly beneficial since the thrust side must typically support a larger radial load during reciprocation of the piston 100, 200 within a cylinder bore (not shown). The matching of greater radial stiffness on one side of the piston 100 or 200 with a side of the piston 100 or 200 which experiences greater load during operation may facilitate a balancing of lateral motion of the piston, thereby reducing noise/vibration/harshness of the engine during operation. Additionally, overall weight of the piston 100, 200 may be reduced by the fact that relatively less material is used on the anti-thrust side, i.e., with skirt support 130b, 230b, resulting from a decreased thickness of the skirt support 130b, 230b and/or the openings 150, 250.
The skirt supports 130 may also define a varying thickness as noted above, for example in a direction extending longitudinally with respect to the piston. More specifically, as shown in
Turning now to
Turning now to
Exemplary openings 150, 250, 350, and/or 450 may have any size that is convenient to establish a desired difference in radial stiffness between opposing sides of a piston. Merely as examples, as best seen in
Exemplary pistons 100 may be employed in small and large bore diameter applications, generally without limitation. Additionally, exemplary pistons 100 may be used in any fuel application that is convenient, including diesel, natural gas, gasoline, ethanol, and oil fuel applications typical of heavy duty marine applications.
Turning now to
Proceeding to block 504, a skirt may be provided. For example, a skirt 102, 202 may be provided. The skirt 102, 202 may be joined with the crown 104, 204 in any manner that is convenient, e.g., via welding or bonding, merely as examples. Alternatively, the skirt 102, 202 may be formed of a single monolithic piece with the crown 104, 204, e.g., via a forging operation. Process 500 may then proceed to block 506.
At block 506, a difference in radial stiffness may be established between opposing sides of the piston. In some exemplary illustrations, an opening 150, 250, 350, and/or 450 may be provided which establishes an asymmetric relationship between opposing sides of a piston, e.g., pistons 100, 200, 300, or 400. The lack of an opening on one side or different size/configuration in openings on each side of a piston may establish a difference in radial stiffness between the sides of the pistons 100, 200, 300, 400. Exemplary features creating an asymmetric relationship between opposing sides of a piston, e.g., openings, differences in material thickness, or the like, may be formed integrally or as part of a forming process used to form the piston or components thereof, e.g., by forging, casting, or sintering. Alternatively, opening, differences in material thickness, or the like may be formed via machining or other material removal process after the piston or component thereof is initially formed.
With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claimed invention.
Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.