The present invention relates to a rolling technology used to form a metal into a rolled material, and more particularly, to a rolling technology for improving formability or other physical properties of a rolled material by controlling texture of the rolled material.
In general, rolling is performed to process a metal into a sheet having a certain size. When rolling is performed, the volume of a rolling material changes and thus microstructures of the rolling material also change. When microstructures of a rolling material change, the rolling material has texture in which crystals are oriented in a particular direction. Texture formed due to rolling is closely related to formability of a rolling material. Accordingly, by controlling texture of a rolling material in a rolling process, formability of the rolling material after being rolled may be improved.
The present invention provides a rolling method capable of providing a high formability to a rolled material by controlling texture of the rolled material.
The present invention also provides a rolled material having a formability improved by performing the rolling method.
The present invention also provides a rolling apparatus for performing the rolling method.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the invention.
According to an aspect of the present invention, there is provided an asymmetric rolling method including disposing a rolling material having first and second surfaces between a first roll and a second roll having a diameter greater than that of the first roll; and rolling the rolling material by adjusting power provided from a power providing unit to each of the first and second rolls to control angular velocities of the first and second rolls to be different from each other such that a shear strain applied by the first roll to one of the first and second surfaces of the rolling material is different from that applied by the second roll to the other of the first and second surfaces.
The rolling material may be rolled by maintaining linear velocities of the first and second rolls to be the same.
A linear velocity difference between the first and second rolls, which is defined by Equation 1, may be equal to or less than 10%.
υ1: a linear velocity of the first roll
υ2: a linear velocity of the second roll
The rolling material may be rolled two or more times by allowing the first roll to apply a shear strain to the first surface and allowing the second roll to apply a shear strain to the second surface.
The rolling material may be rolled two or more times by switching surfaces of the rolling material, which receive shear strains from the first and second rolls, at least once.
The rolling material may be rolled two or more times in the same rolling direction.
The rolling material may be rolled two or more times by changing rolling directions of the rolling material at least once.
A third roll having a diameter greater than that of the first roll may be coupled to the first roll to support the first roll at a side opposite to the second roll.
According to another aspect of the present invention, there is provided an asymmetric rolling method for rolling a rolling material by using at least one pair of working rolls with different diameters and controlled to rotate at the same linear velocity by power provided by a power providing unit.
An asymmetric rolling method may be performed a plurality of times, and the plurality of times may include turning the rolling material upside down at least once between passes.
An asymmetric rolling method may be performed a plurality of times, and the plurality of times may include changing rolling directions of the rolling material at least once between passes.
A backup roll for supporting one of the working rolls, which has a relatively small diameter, may be coupled to the one of the working rolls at a side opposite to the other of the working rolls, which has a relatively large diameter.
According to another aspect of the present invention, there is provided a rolled material manufactured by using the above asymmetric rolling method.
The rolled material may have a hexagonal close-packed (HCP) crystal structure. Also, the rolled material may include magnesium (Mg), an Mg alloy, titanium (Ti), or a Ti alloy. Alternatively, the rolled material may include aluminum (Al), an Al alloy, or an iron-silicon (Fe—Si) alloy.
According to another aspect of the present invention, there is provided an asymmetric rolling apparatus including a first roll contacting a first surface of a rolling material; a second roll having a diameter different from that of the first roll and contacting a second surface of the rolling material opposite to the first surface; and a power providing unit for providing power to each of the first and second rolls so as to adjust linear velocities of the first and second rolls to be the same.
The power providing unit may control linear velocities of the first and second rolls to be the same.
The power providing unit may include first and second motors for respectively driving the first and second rolls; and a motor control unit for controlling angular velocities of the first and second motors.
The asymmetric rolling apparatus may further include a first gear coupled to the first roll and a second gear coupled to the second roll, wherein the second gear is coupled to the first gear with a gear ratio different from that of the first gear, and the power providing unit may include a motor for providing driving power to the first or second gear.
The asymmetric rolling apparatus may further include a third roll having a diameter greater than that of the first roll and coupled to the first roll to support the first roll at a side opposite to the second roll.
The power providing unit may include a first motor for driving the first or third roll, a second motor for driving the second roll, and a motor control unit for controlling angular velocities of the first and second motors.
The asymmetric rolling apparatus may further include a first gear coupled to the first or third roll and a second gear coupled to the second roll, wherein the second gear is coupled to the first gear with a gear ratio different from that of the first gear, and the power providing unit may include a motor for providing driving power to the first or second gear.
The first or second gear may be a variable gear for changing at least one gear ratio, and the asymmetric rolling apparatus may further include a gear control unit for controlling the gear ratio.
A rolling method and apparatus according to embodiments of the present invention may produce rolled material with improved formability compared to conventional systems. In particular, if a metallic material having a poor formability at room temperature such as a magnesium (Mg) alloy is rolled according to an embodiment of the present invention, slip systems may be oriented in such a way that shear strains are easily received even at room temperature. Thus, an excellent formability at room temperature may be achieved.
The effects of the present invention are not limited to the above-mentioned advantages, and may be applied to all materials of which formability is improvable through rolling. Additional effects of the present invention will be apparent to one of ordinary skill in the art from the following description.
Hereinafter, the present invention will be described in detail by explaining embodiments of the invention with reference to the attached drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention unclear.
A rolling apparatus and a rolling method, according to embodiments of the present invention, may be applied to any rolling material in order to improve formability of the rolling material, and the following embodiments exemplarily show the concept of the present invention.
The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to one of ordinary skill in the art. In the drawings, the sizes of elements may be exaggerated for convenience of explanation.
In the following description, the term “texture” may refer to the crystalline orientation of a polycrystalline material. The term “texture” does not limit the scope of the present invention. The texture of a material is used as a relative concept rather than an absolute concept. That is, if a material has texture in a predetermined direction, it means that most, not all, of crystalline grains of the material have texture in the mentioned direction.
A pole figure may be a figure showing a distribution of the direction of crystallographic lattice planes in the form of stereographic projection to show the orientation or texture of crystals of a material. The pole figure may be created by using X-ray diffraction (XRD).
Furthermore, as used herein, a rolling material refers to a target material to be rolled, and a rolled material refers to a resultant material obtained by rolling the rolling material.
Although, as working rolls, the first and second rolls 101 and 102 are oriented as upper and lower rolls in the embodiment shown in
The first and second rolls 101 and 102 are oriented in parallel and are spaced apart from a supporting plate 110, and are mounted between frames 111 fixed by a coupling member 112 such as a screw.
In an embodiment, as illustrated in
In this embodiment, the first and second motors 106 and 107 transfer rotatory power to the first and second rolls 101 and 102 via connection members 109.
The motor control unit 108 may control the angular velocities of the first and second rolls 101 and 102 connected to or coupled to the first and second motors 106 and 107 by controlling the angular velocities of the first and second motors 106 and 107, and thus may control linear velocities of the first and second rolls 101 and 102. The relationship between angular velocity and linear velocity can be represented by multiplying angular velocities of the first and second rolls 101 and 102 by radiuses of the first and second rolls 101 and 102.
By controlling the linear velocities of the first and second rolls 101 and 102 as described above, a first shear strain applied by the first roll 101 to the first surface 104a of the rolling material 104 may be controlled to be different from a second shear strain applied by the second roll 102 to the second surface 104b of the rolling material 104.
For example, the motor control unit 108 may control the first and second rolls 101 and 102 to roll the rolling material 104 by rotating the first and second rolls 101 and 102 to have the same linear velocity. That is, the linear velocities of the first and second rolls 101 and 102 may be the same by controlling a ratio between the angular velocities of the first and second rolls 101 and 102 to be the same as the inverse of the ratio between the radiuses of the first and second rolls 101 and 102. Although linear velocities have been described as being the same, the term “the same” should be regarded as substantial sameness including complete sameness and sameness within a process margin caused by an error that occurs due to process variations even when a user controls signals of the motor control unit 108 with an intention of controlling the angular velocities of the first and second rolls 101 and 102 to be the same. The “sameness” between the linear velocities of the first and second rolls 101 and 102 is also applied to the following descriptions.
Meanwhile, according to another embodiment of the present invention, as illustrated in
A power providing unit 105 may include the first motor 106 for driving the first or third roll 101 or 103, the second motor 107 for driving the second roll 102, and the motor control unit 108 for controlling the angular velocities of the first and second motors 106 and 107.
For example, as illustrated in
Meanwhile, according to another embodiment of the present invention, power provided by the power providing unit 105 may be transferred to the working rolls via gears. For example, as illustrated in
Although power of the motor 113 may be transferred to the second gear 115 via a driving gear 116 as shown in
Also, although the embodiment of the rolling apparatus 100 shown in
Meanwhile, the first or second gear 114 or 115 may be a geared for variably changing at least one gear ratio, and a gear control unit 117 coupled to the first or second gear 114 or 115 which may be configured for controlling the gear ratio may be further included.
In an embodiment of the rolling apparatus 100, the linear velocities of the first and second rolls 101 and 102 may be controlled by adjusting the gear ratios of the first and second gears 114 and 115 in consideration of the diameters of the first and second rolls 101 and 102. For example, power generated by the motor 113 may be transferred so that the first and second rolls 101 and 102 have the same linear velocity according to the gear configurations described above. Also, if the first and second gears 114 and 115 are variable gears, the gear ratios of the first and second gears 114 and 115 may be variably controlled by using the gear control unit 117 in consideration of the diameter of the first or second roll 101 or 102, and thus the linear velocities of the first and second rolls 101 and 102 may be controlled to be the same.
Meanwhile, although the first and second rolls 101 and 102 having different diameters form a pair of working rolls in
The rolling material 104 to be rolled by the above-described asymmetric rolling apparatus 100 may include magnesium (Mg) or a Mg alloy having a hexagonal close-packed (HCP) crystal structure. Research is being currently conducted on Mg as a next-generation lightweight material. Mg, which typically has a density of 1.74 g/cm3 has a low weight and excellent specific strength and specific modulus in comparison to iron (Fe) which typically has a density of 7.90 g/cm3 or aluminum (Al) which typically a density of 2.7 g/cm3. Also, due to high absorption of vibration, impact, electromagnetic waves, etc. and excellent electric and thermal conductivities, Mg is used as a lightweight material in motor vehicles, aircraft, etc. and is also used in electronic fields of mobile phones, laptop computers, etc.
However, Mg having a HCP crystal structure has poor slip systems and thus has a low formability at room temperature. That is, as illustrated in
When the basal plane slip system is parallel to rolling surfaces of the rolling material 104, i.e., perpendicular to a normal direction ND, as represented by crystal A in
However, if the basal plane slip system is tilted by a certain angle with respect to a main deformation direction as represented by crystal D in
The orientation and distribution of the basal plane slip systems in a material may be characterized as illustrated in the (0001) pole figure of
If a rolling process is performed by using the asymmetric rolling apparatus 100 illustrated in
In this case, the rolling material 104 may be rolled by maintaining, for example, linear velocities of the first and second rolls 101 and 102 to be the same.
The rolling material 104 may include an AZ31 alloy as an Mg alloy. Although embodiments are not limited thereto, in the following description, the rolling material 104 is assumed as an AZ31 alloy.
Meanwhile, an asymmetric rolling method according to an embodiment of the present invention includes a method of rolling the rolling material a plurality of times. The above rolling method may be used to prevent a problem caused when a large reduction ratio is applied to a rolling material, by repeatedly applying appropriately predetermined reduction ratios to the rolling material.
In an embodiment, the plurality of times refers to a total number of times that a rolling material is rolled by working rolls. In embodiments, a rolling material may be rolled a plurality of times by reinserting the material through the same set of working rolls, or by inserting the rolling material into a plurality of pairs of working rolls arranged in series in a continuous process. Embodiments of the present invention include continuous insertion and intermittent insertion of the rolling material between the working rolls.
A method of rolling a plurality of times may include reinsertion of the rolling material after being physically released from the working rolls, and reinsertion of the rolling material between the working rolls by allowing the working rolls to rotate in reverse while the rolling material is still disposed between the working rolls.
In some cases, each of the plurality of times that rolling is performed may be referred to as a “pass”.
As illustrated in
As comparative examples,
Based on the above results, if rolling is performed by using the conventional rolling apparatus including the first and second rolls having the same size, even when a reduction ratio or a rolling temperature is changed, the pole points of the basal plane are centered. Therefore, in comparison to an AZ31 alloy rolled using conventional rolling rolls having the same diameter, a texture of an AZ31 alloy rolled according to an embodiment of the present invention may have an orientation capable of greatly improving formability.
Meanwhile,
If differential speed rolling is performed as described above, regardless of reduction ratios and a linear velocity difference between the two rolls, orientations of crystals are centered in comparison to the embodiments shown in
As described above, in comparison to an AZ31 alloy rolled by using rolling rolls having the same diameter, an AZ31 alloy rolled by using an asymmetric rolling method according to an embodiment of the present invention may have an orientation of crystals on a basal plane which is capable of greatly improving formability.
In addition, if differential speed rolling is performed by using working rolls having the same diameter, since a rolling material slips due to a linear velocity difference between two rolls, shear strains may not be actually applied from rolling rolls to the rolling material. Also, the rolling material released out of the rolling rolls may be bent or may have rough surfaces.
However, if an asymmetric rolling method according to an embodiment of the present invention is used, since asymmetric shear strains due to different diameters of working rolls are applied using the same linear velocities, even though asymmetric rolling is performed, the rolling material may not slip. Also, defects such as bending or increased surface roughness of the rolling material, which occur in differential speed rolling, are not caused.
Meanwhile, if an asymmetric rolling method according to an embodiment of the present invention is used, angular velocities of the first and second rolls 101 and 102 may be controlled with in a range in which a linear velocity difference defined by Equation 1 is equal to or less than 10%.
υ1: a linear velocity of the first roll 101
υ2: a linear velocity of the second roll 102
In an embodiment, if the linear velocity difference between the first and second rolls 101 and 102 having different diameters, which is defined by Equation 1, is greater than 10%, the rolling material released from the two rolling rolls may be bent due to, for example, an imbalance in stress.
Another embodiment of an asymmetric rolling method performed a plurality of times includes switching surfaces of the rolling material 104, which receive shear strains from the first and second rolls 101 and 102, at least once between passes.
For example, in an embodiment illustrated in
In an embodiment, two or more passes may be performed between the same pair of rolling rolls in a batch process, or may be performed between different pairs of rolling rolls corresponding to the passes.
Thus, the asymmetric shear strains due to different diameters of the first and second rolls 101 and 102 may be alternately applied to the first and second surfaces 104a and 104b, so that shear strains applied to each surface in the first and second passes may be normalized to a certain degree. The number of times that rolling is performed may be two or more according to a desired reduction ratio. Embodiments of the present invention are not limited by the particular number of times that the first and second surfaces 104a and 104b of the rolling material 104 are switched, or the number or order of passes that may be performed between switching
Meanwhile, a rolling method according to another embodiment of the present invention includes rolling a plurality of times while changing rolling directions between passes.
For example, as illustrated in
In addition to reinserting a rolling material after being physically released from working rolls of a rolling apparatus as illustrated in
In addition to Mg or an Mg alloy, the above-described rolling apparatuses and rolling methods may be applied to any material for controlling texture of a rolled material. For example, a metallic material containing titanium (Ti) or a Ti alloy and having a HCP crystal structure, a metallic material containing Al or an Al alloy, or an iron-silicon (Fe—Si) alloy having magnetic properties influenced by an orientation of crystals of a rolled material may be used as a rolling material.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by one of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0024299 | Mar 2010 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2011/001781 | 3/15/2011 | WO | 00 | 9/18/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/115402 | 9/22/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1898061 | Otte | Feb 1933 | A |
2219665 | Simons | Oct 1940 | A |
4269055 | Sivachenko et al. | May 1981 | A |
4299103 | Marten | Nov 1981 | A |
4406715 | Nakayama et al. | Sep 1983 | A |
4566299 | Koyama et al. | Jan 1986 | A |
4625536 | Morooka | Dec 1986 | A |
4781050 | Winter et al. | Nov 1988 | A |
4903518 | Kimura et al. | Feb 1990 | A |
7546756 | Van Der Winden | Jun 2009 | B2 |
8250895 | Bozkaya | Aug 2012 | B2 |
20050034500 | Van Der Winden et al. | Feb 2005 | A1 |
20050172691 | Mondiere | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
53-133555 | Nov 1978 | JP |
54-110952 | Aug 1979 | JP |
54-149351 | Nov 1979 | JP |
55-50905 | Apr 1980 | JP |
56-158205 | May 1981 | JP |
58-043808 | Mar 1983 | JP |
59-127912 | Jul 1984 | JP |
60-003903 | Jan 1985 | JP |
60-108108 | Jun 1985 | JP |
10-296303 | Nov 1998 | JP |
2004-306046 | Nov 2004 | JP |
2004-311110 | Nov 2004 | JP |
2005-500164 | Jan 2005 | JP |
2005-298885 | Oct 2005 | JP |
10-0718071 | May 2007 | KR |
10-0775242 | Nov 2007 | KR |
WO 2008105453 | Sep 2008 | WO |
WO 2009103436 | Aug 2009 | WO |
Entry |
---|
“Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets”, Su-Hyeon Kim et al. published, Aug. 2005. |
International Search Report for PCT/KR2011/001781 filed on Mar. 15, 2011. |
Number | Date | Country | |
---|---|---|---|
20130017118 A1 | Jan 2013 | US |