The technical field generally relates to sensors, and more specifically relates to piezoelectric cantilever sensors having asymmetric anchors and/or electrodes.
Cantilever sensors have enjoyed considerable interest among researchers because of their high sensitivity and their potential for high throughput applications with label-free reagents. Resonant-mode cantilever sensors respond to attached analytes by reduction in resonant frequency. The change in resonant frequency is proportional to analyte concentration, and can be measured by a variety of methods, which can include integrated transducing elements within the oscillating cantilever and external instrumentation that measures the cantilever oscillation amplitude. In both cases, the actuation of the cantilever can be provided by natural thermal fluctuations or by actuating the base of the cantilever electromechanically.
There have been several attempted innovative methods for measuring resonance, both internal and external to the sensor. However, more sensitive sensors continue to be sought.
An asymmetric sensor having asymmetric electrodes and/or being asymmetrically anchored is described herein. In example embodiments, part of the electrode on a sensor is etched or removed, or a sensor is anchored asymmetrically, resulting in enhanced mass-change sensitive resonant modes. In an example embodiment, by asymmetrically anchoring a piezoelectric portion (such as a lead zirconate titanate, PZT, portion for example) of a sensor, resonant bending modes of the sensor can be measured electrically without external instrumentation that measures sensor oscillation. This approach is an improvement over bonding a non-piezoelectric material to induce measurable bending modes as it improves mass-change sensitivity due to avoidance of parasitic mass of non-piezoelectric layer. In another example embodiment, modifying the electrode of a piezoelectric cantilever enables expression of mass-change sensitive resonant modes that normally do not lend themselves to electrical measurement.
As described herein, part of the electrode on a sensor is etched or removed, or the sensor is anchored asymmetrically, which results in mass-change sensitive resonant modes that are expressed and enhanced by the device. This disclosure pertains to example methods of electroding lead zirconate titanate (PZT), for example, to induce electrically-observable resonant modes useful for biosensing, or the like Also, as described herein a sensor may comprise an asymmetric anchor.
Experiments were conducted to measure performance of asymmetric sensors. The experiments, results, and fabrication of the sensors are described herein.
Asymmetric Anchors
In example embodiments, piezoelectric cantilever sensors consisting only of lead zirconate titanate (PZT) are self-exciting and self-sensing of resonance if they are asymmetrically anchored. Symmetrically-anchoring has not been observed to give rise to electrically measurable resonant modes. As described herein, sensitivities of first and second bending mode resonances are characterized in a flow apparatus using small density changes in liquid and by chemisorptions of dodecanethiol at 60 pM. Density change experiments yielded mass-change sensitivity of ˜33 ng/Hz and 217 pg/Hz for the first two modes. In chemisorptions experiments, where binding was restricted to a 1 mm tip of the PZT cantilever sensor, sensitivity improved by an order of magnitude to 3.9 pg/Hz and 828 fg/Hz for the same two resonant modes.
In the conducted experiments, the PZT layer was excited at 103 v/m and the resulting current was measured. The phase angle (Φ) between the excitation voltage and the resulting electric current in the piezoelectric layer exhibited sharp change in Φ at resonance due to altered electrical impedance of PZT, caused by higher than normal strain at resonance. The glass layer served to constrain longitudinal deformation of PZT, thus inducing bending mode vibration of the integrated cantilever. Such an integrated sensor has yielded successful label-free biosensing in liquid at 50 picograms using low-order (<60 kHz) resonant modes. Described herein are PZT cantilever sensors that are devoid of the parasitic non-piezoelectric glass layer, and a novel approach for anchoring PZT that enables induction of measurable bending mode resonance is described. A PZT cantilever anchored uniformly or symmetrically and excited electrically exhibits longitudinal deformation, and weak transverse or bending vibration that are not transduced into electrical impedance change because the resulting symmetric mode shapes cause no net accumulation of charge in PZT. Since bending modes have been associated with detection sensitivity, methods and configurations that induce measurable impedance change at bending resonant modes of PZT cantilevers were investigated. By anchoring the PZT in epoxy asymmetrically, it was found that bending modes that are not normally measurable became electrically measurable. Because one side of the PZT cantilever is longer than the other, due to asymmetrical anchoring, differential longitudinal deformation occurs inducing transverse vibration that causes charge accumulation in PZT that the bending mode resonances become electrically measurable. As described herein, the low order bending modes are more sensitive than a PZT-glass and PZT-stainless steel cantilever sensors anchored symmetrically.
Materials utilized to conduct experiments included phosphate buffered saline solution (PBS, 10 mM, pH 7.4) purchased from Sigma-Aldrich (Alletown, Pa.) were prepared in deionized water (18 MΩ, Milli-Q system, Millipore), and subsequently diluted to obtain 2.5 and 5.0 mM solutions. Ethanol (analytical grade) and dodecanethiol (99%) were purchased from Sigma.
As shown in
Sensor 18 is asymmetrically anchored. Sensor 18 is anchored at the cross hatched portion 26. Sensor 18 is anchored at the left edge and at the bottom portion of the sensor 18. The top portion of sensor 18 is not anchored, thus anchoring the bottom portion of sensor 18 and not the top portion of sensor 18 results in sensor 18 being asymmetrically anchored. The length of the anchored bottom portion of the sensor 18 is depicted as αS1 in left panel 12 of
Sensor 20 is asymmetrically anchored. Sensor 20 is anchored at the cross hatched portion 28. Sensor 20 is anchored at the left edge and at the bottom portion of the sensor 20. The top portion of sensor 20 is not anchored, thus anchoring the bottom portion of sensor 20 and not the top portion of sensor 20 results in sensor 20 being asymmetrically anchored. The length of the anchored bottom portion of the sensor 20 is depicted as αS2 in left panel 12 of
Sensor 22 is asymmetrically anchored. Sensor 22 is anchored at the cross hatched portion 30. Sensor 22 is anchored at the left edge and at the bottom portion of the sensor 22. The top portion of sensor 22 is not anchored, thus anchoring the bottom portion of sensor 22 and not the top portion of sensor 22 results in sensor 22 being asymmetrically anchored. The length of the anchored bottom portion of the sensor 22 is depicted as αS3 in left panel 12 of
The piezoelectric sensors depicted in
The experimental setup comprised an impedance analyzer (HP 4192A or Agilent, HP4294A), a peristaltic pump, a custom flow cell and several fluid reservoirs. The flow cell has a hold-up volume of 120 μl, and was maintained in an incubator at 30±0.1° C. to ensure isothermal conditions. Prior to an experiment, the entire flow loop was rinsed with 100% ethanol followed by copious amount of DI water. The resonant frequency change during an experiment was monitored continuously by a custom-written LabView® program. The flow loop was operated in either a single pass mode or in a recirculation mode.
In a typical example experiment, a sensor was vertically installed in the flow cell and the flow rate was set at 0.6 mL/min. In the density change experiments the flow loop was filled with DI water and the resonant frequency was allowed to reach steady state. Subsequently, the flow was switched to PBS and the sensor was allowed to reach a new steady state. To confirm that the sensor response was due to density change experiments alternated between DI water and PBS of various concentrations. The chemisorption experiments were done with gold coating on the cantilever tip by sputtering 100 nm thick at the distal 1 mm2 area. After stabilizing the sensor in the flow cell at 0.6 mL/min ethanol, the flow was switched to 30 pM dodecanethiol in ethanol and the change in resonant frequency of the first two resonant modes were monitored.
The PZT cantilever of thickness t, and of free lengths L and Ls containing asymmetry α (=L−Ls) shown in
Constitutive equations that represent the coupling between the electric field and mechanical deformation of the PZT layer are given by:
T=cES−e′E (1)
D=eS+εSE (2)
where T, S, E, and D denote stress, strain, electric fields, and electric displacement (or induction), respectively. The term cE is the elasticity tensor evaluated at a constant (zero, short and open circuit) electric field, e is the piezoelectric tensor, and εs is the dielectric permittivity measured at constant (zero, clamped) strain.
The model included the coupling of electrical and mechanical effects in the PZT domain. Loss factor damping in PZT was adjusted manually until the results were close to the experimental quality factors. Loss factor used in this paper was 1% in all calculations. The total number of elements in each simulation ranged from 72 to 1152; convergence was observed with minimal mesh resolution due to the simple cantilever geometry. The number of elements used was increased such that the calculated resonance frequencies and phase angles converged within <0.01%. Initial charge in PZT, initial stress, and external force were set to zero. Using the principle of virtual work option, resonance frequencies of the finite element model were computed. An eigenvalue solver was used for determining resonance frequencies and eigenvalues. As a check, cantilevers of uniform cross-section and isotropic properties yielded eigenfrequency values within an accuracy of few part per million when compared with the analytical model (Equation (3)). Boundary current density obtained from the FEM calculation was integrated over the electrode area to obtain total current (I) as a function of excitation frequency. The response output variables, phase angle (Φ=tan−1 [Im(I)/Re(I)]) and impedance (Z=V/I) were then calculated.
Effect of Asymmetric Anchor on Resonance Measurability
In an example embodiment, the electrically measurable resonant modes of an excited PZT cantilever sensors manifest resonance by a sharp peak in phase angle (Φ) between excitation voltage (V) and resulting current (I) in PZT at the corresponding excitation frequency. PZT cantilevers that are anchored symmetrically (e.g., sensor 16 depicted in
Effect of Asymmetric Anchor Extent (α) on Resonant Frequency and its Intensity
To determine the effects of the asymmetry parameter α, sensors were fabricated with symmetric anchor first and then progressively increased asymmetry extent by adding epoxy to one side of the base of the PZT cantilevers in a pre-determined fashion. After the epoxy had cured, the frequency spectrum of the modified sensor was determined. This progressive approach allowed modification of a single sensor and evaluate changes in its spectral properties in a systematic fashion. In
Comparison of Finite Element Model and Experiments
A two dimensional (2D) FEM of the PZT cantilever was constructed to determine the effects of anchor asymmetry on resonance frequency and the corresponding charge accumulation in PZT at resonance. Magnitude of current correlates with phase angle. Mathematically, symmetric anchor is one in which no constraint is specified along both top and bottom length of the cantilever. The distal end is also unconstrained. Zero displacement is specified at the left plane (shown as hatched boundary) in
In
The FEM results correlate the increase in current density (I) at resonance to phase angle increases. For example, the current density change (ΔI) corresponding to the case α=0.5 mm was 12.2 and 127 A/m2 for the first and second modes, respectively. For the case of α=0.9 mm the phase angle values were higher compared to the α=0.5 mm case, and FEM results show that the current density change was also higher for both modes, being ΔI=19.4 and 199.8 A/m2, respectively. As observed experimentally the case α=1.2 mm led to the highest Φ and ΔI for both the modes (ΔI=33.3 and 316 A/m2, respectively). Since the frequency of resonant modes was dependent on the asymmetry level, the role of α on resonant frequency values was further investigated.
Role of Asymmetry Extent on Frequency Response of PZT Cantilevers
The PZT cantilevers were fabricated such that one of the flat sensor surfaces was fixed in epoxy to a greater extent than the other, thus introducing asymmetric anchor. This resulted in the length of one side of the cantilever to be longer than the other. Since low-order bending modes are measurable in asymmetrically anchored PZT cantilevers, an understanding of their dependence on the introduced asymmetry will be of great value in design. Resonant frequency (fn) of an uniform cross section cantilever depends on the spring constant and effective mass, and hence on the cantilever length.
where λn are the nth root of: 1+cos h(λn) cos(λn)=0. The parameters k and me,n are the effective spring constant (=3EI/L3; E is Young's modulus of PZT, I is moment of inertia wt3/12) and the effective cantilever mass (=3mc/λ4n, mc is cantilever mass ρcwtL), respectively. Equation (3) suggests that the resonant frequency depends on inverse of cantilever length squared.
Such a relationship holds true and is illustrated in
A plot similar to
Sensitivity of Asymmetrically-Anchored PZT Cantilever Sensors to Changes in Density of Surrounding Medium
The resonant modes respond in a symmetrically-anchored PZT cantilevers respond to mass addition. For example, when a PZT cantilever is immersed in DI water, the resonant frequency decreases because of the significant increase in the density of the surrounding medium. While such results give mass sensitivity information, it is important to investigate the frequency shifts for small density changes in liquid, as that more closely represents sensing response to target analytes. It was noted here that the purpose is not to show that the PZT cantilevers are density sensors, but use of such an experimental approach to calculate mass-change sensitivity. The fluid adjacent to the sensor acts as added mass and one can estimate the mass-change sensitivity using density change experiments. A change from DI water to 2.5 mM PBS is a small change in density of 0.003 g/cm3, and hence the frequency response to such a density change can provide a measure of sensitivity.
Considering the density change as an added mass (Δm) response, Equation (3) can be written as:
where the added fluid mass is assumed to be uniformly distributed along the entire cantilever length. Thus, the effective mass addition due to surrounding density change can be written as:
In the above, all parameters are known and thus the effective mass change due to density change can be calculated, and the sensor mass-change sensitivity (a=ratio of mass change/resonant frequency change) can be computed from:
For the case of shift from DI water to 2.5 mM PBS, the first mode and second mode responses were 3 and 10 Hz, and effective mass change for the two modes were 101.6 and 6.9 ng, yielding σ values of 33.9 pg/Hz and 217.8 pg/Hz. A plot of σ values of the two modes is plotted as a function of added equivalent mass computed using Equation (5) is shown in
An alternate method of analyzing density change is to use the density response relationship reported in the literature for uniform cross section cantilever sensors. That is:
where ffluid and fvac are resonant frequency in fluid of density (ρ) and resonant frequency in vacuum. The geometric factor ψ was originally introduced that corrects for the aspect ratio of the cantilever. The PBS density can be expressed as ρ(X)=ρw(1+αX) where X is the mass fraction of solute phosphate, ρw is the density of water at 20° C. (0.998 g/mL) and α is a dimensionless coefficient that fits experimentally determined solution density. Thus, Equation (8) can be arranged to:
where β=πρw/4ρct contains only physical properties and geometric parameters and ψ=0.613√{square root over (L)}/ρc√{square root over (t)} for the first mode and for higher modes the value is determined experimentally. Although ψ depends on the geometry and mode number, it is a constant for a given cantilever. Therefore, it was expected that a plot of (fw/fx)2 a against solute mass fraction X would be a straight line as given in
Sensitivity Measured Using A Binding Reaction
Density shifts provided an estimate of sensing sensitivity of the two modes. A density change causes a uniform loading of mass all along the entire cantilever. In a sensing application, the target analyte binds to receptor immobilized on the sensor. The receptor is often immobilized at the distal tip of the cantilever. Therefore, a truer measure of sensitivity is the response associated with binding reaction to the sensor surface. In order to examine this property of the fabricated PZT cantilevers, resonant frequency response to chemisorption reaction of dodecanethiol was measured. The sulfur in thiol binds to gold <111> sites with high affinity that is equivalent to a covalent bond.
A thin layer of gold (100 nm) was sputtered down at the distal end of ≈1 mm2, that provided Au <111> sites. This experiment was carried out in ethanol at a flow rate of 0.6 mL/min. Once the resonant frequency reached a steady state, the flow was changed from ethanol to 60 pM dodecanethiol in ethanol. As soon as dodecanethiol came in contact with the sensor the resonant frequency began to decrease monotonically and reached a new steady state resonant frequency in about 10 minutes. The resulting frequency shifts obtained were 26 Hz and 123 Hz for the first and second modes, respectively. The response reached steady state in 14 minutes during which the sensor was exposed to 101.8 pg of dodecanethiol. If assumed that all entering dodecane thiol chemisorbed to Au<111> sites on the sensor (an unlikely event) one would estimate sensitivity as 3.9 pg/Hz for the first mode and 828 fg/Hz for the second mode. As expected, the mass-change sensitivity for sensing application of the PZT cantilever is higher than the value calculated from density change experiments, because in the latter mass loading was on the entire sensor.
In a study with PZT composite cantilever sensors in which PZT was bonded to a stainless steel film to induce bending mode, a 1 nM hexadecane thiol induced a 116 Hz response when measured in batch mode. The sensor was wider (2 mm) and length of stainless steel was 3 mm and the third mode resonant frequency 45.5 kHz was used for sensing. If was assumed that all thiols in the 1 mL sample chemisorbed, sensitivity calculated is ˜2.2 pg/Hz and is poorer than the sensitivity value obtained for second mode in the present study. It is believed that the second mode PZT cantilever is more sensitive (lower σ) than the third mode of composite PZT/stainless steel sensor because of the absence of parasitic mass.
By asymmetrically anchoring PZT, one can measure the first two resonant bending modes electrically without any external instrumentation. This approach is a significant improvement over the previous approach of bonding a non-piezoelectric material to induce measurable bending modes as it improves mass-change sensitivity due to avoidance of parasitic mass of non-piezoelectric layer. The first mode sensitivity is ˜30 ng/Hz and ˜217 pg/Hz for the second mode when mass loading occurs along the entire cantilever length. In chemisorpton experiments where binding occurred in the tip region, the same sensor showed an order of magnitude higher sensitivity of 3.9 pg/Hz and 828 fg/Hz for the two modes. The latter is more sensitive than similar sized composite cantilever sensors consisting of PZT-glass or PZT-stainless steel.
Asymmetric Electrodes
The uniform cross-sectioned lead zirconate titanate (PZT) macro-cantilever fabricated with an asymmetric electrode increased the Q-value of electrically measured resonant bending modes which exhibit picogram level sensitivity in liquid. Significant responses to density changes as small as 0.004 g/mL were obtained. The third mode was the most sensitive and exhibited a limit of sensitivity of one picogram in liquid as determined from 1-dodecanethiol chemisorption experiments. The sensitivity decreased with chemisorbed mass, and was log-linear over five orders of magnitude. The observed resonance responses are in agreement with literature cantilever bending models.
Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors containing both a piezoelectric layer (PZT) and a non-piezoelectric layer (glass) enable excitation of mechanical resonant modes. Removal of the non-piezoelectric parasitic mass (glass), combined with an asymmetric electrode design makes excitation and measurement of mass-sensitive low-order resonant modes possible. When a symmetrically-electroded PZT cantilever is excited by an alternating electric field in the polarization axis, the cantilever deforms longitudinally in a harmonic fashion. On the other hand, if the electrode area on one side of the cantilever is less than on the other, the cantilever experiences differential longitudinal deformation, inducing bending modes.
The spectra of PZT cantilevers (3.4×1×0.127 mm3) prepared with symmetric and asymmetric electrodes were compared for verification of this approach in
The nth mode resonant frequency of a uniform cross-section cantilever subjected to small deformations (“plane stress” model) is fn=(½π)(k/meff, n)1/2, where meff,n=3 m/λn4 is effective mass, m=cantilever mass, k=3EIz/L3 is effective spring constant, E=Young's modulus (E1=66 GPa), I=moment of inertia (=1.71 10−4 mm4), L=cantilever length (=3.4 mm), and λn is nth eigenvalue of 1+cos h(λ)cos(λ)=0. Analytically, the first three bending modes are at 5.2, 32.4, and 90.6 kHz. Experimentally, the modes were measured at comparable values of 5.5±0.4, 30.8±1.4, and 89.1±3.7 kHz (n=3 devices). The corresponding Q-values in air were 47±8, 48±7, and 37±3, and 33±5, 43±6, and 29±2 in deionized water (DIW), respectively. The minimal change in Q is due to high Re (˜105) indicating negligible viscous effects.
For in-liquid applications, the sensor was parylene-c (5 μm) coated for insulating PZT. The effective mass of a cantilever in a fluid increases because the fluid adjacent to the cantilever also moves with the oscillating surface. The resonant frequency (f) in a fluid is given by f2=(1+πρ2w/4ρct)−1/2fvac, where fvac and f2 are in vacuum and in a medium of density ρ2, t=cantilever thickness and ρc=cantilever density. For a submerged cantilever in DIW (ρ=0.998 g/mL) the model predicts the first three bending modes at 3.9, 24.4, and 68.1 kHz, respectively. Experimentally, the modes in DIW were at 4.3±0.5, 26.2±2.1, and 73.0±3.5 kHz (n=3 devices) indicating agreement within 9%.
For measuring small density changes, the sensor was installed in a flow cell and a flow rate of 0.6±0.1 mL/min was used. In situ experiment in a flow format avoids measurement ambiguities and results in reliable and repeatable responses. Details of an example experimental apparatus are shown in
The resonant frequency of the first three modes was monitored continuously as the running fluid was changed between DIW and phosphate buffered saline (PBS) solutions (2.5 to 10 mM). Upon changing from DIW to higher density PBS, the resonant frequency decreased for all three modes. The shifts were successively higher with mode number and with higher density differences.
Typical density change response and a compilation of measured frequency changes as a function of liquid density are summarized in
The model predicts the first bending mode to decrease by 3, 5, and 9 Hz for changes between DIW and 2.5 mM (ρ=1.001 g/mL), 5 mM (ρ=1.004 g/mL), and 10 mM (ρ=1.008 g/mL) PBS, respectively. Experimentally, successive changes between DIW and 2.5 mM, 5.0 mM, and 10 mM PBS caused the first mode to decrease by 4±1, 7±2, and 13±2 Hz (n=3 sensors), respectively. For the second mode, the model predicts a decrease of 16, 32, and 54 Hz for the same changes, and experimental results were in agreement being 17±5, 32±8, and 65±9 Hz (n=3 sensors), respectively. The third mode, in comparison, gave the largest response. The model predicted values were in good agreement with experiments, 45 vs. 41±6, 89 vs. 76±10, and 149 vs. 120±11 Hz, respectively; n=3 sensors.
Although density-change experiments give a measure of sensitivity, detection sensitivity is best tested by binding experiments in liquid. Therefore, molecular chemisorption of 1-dodecanethiol (DDT, 202 Da) was conducted in flow. Gold (Au) sputtered on the sensor (0.75 mm2 per side, 100 nm) gave Au <111> sites. X-ray diffraction confirmed >95% Au<111>. The <111> sites chemisorb sulfur in the sulfhydral functional group (—SH) of DDT with binding energy comparable to covalent bonding. The sensor (L=2.2 mm) was first allowed to reach steady-state in ethanol (0.6±0.1 mL/min; 30.0±0.1° C.) in the custom flow cell apparatus (200 μL contact volume; 1.0 mL flow loop volume;
The resonant frequency decreased as binding occurred. Exposure of a virgin sensor separately to 1 pM, 10 pM, 100 pM, and 10 nM DDT caused decreases of 5±1, 7±1, 14±2 and 42±2 Hz, respectively (
The responses in
Modifying the electrode of a piezoelectric (PZT) cantilever enables expression of mass-change sensitive resonant modes that normally do not lend themselves to electrical measurement. Chemisorption experiments indicate that sensitivity varies with added mass. At the lowest added mass (500 fg) the sensitivity is ˜100 fg/Hz, and at the highest added mass (1 ng) the sensitivity is ˜24 pg/Hz. A response of 10 Hz at a good signal-to-noise ratio would enable detection of one picogram. If a higher bending mode can be expressed electrically, the model predicts the limit of detection can be further enhanced.
Although illustrated and described herein with reference to certain specific embodiments, an asymmetric sensor as described herein is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the spirit of the invention.
This application is the National Stage of International Application No. PCT/US2011/043244, filed Jul. 7, 2011, which claims the benefit of U.S. Provisional Application No. 61/362,233, filed Jul. 7, 2010, the disclosures of which are incorporated herein by reference in their entireties.
This invention was made with government support under grant number CBET-0828987 awarded by the National Science Foundation. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/043244 | 7/7/2011 | WO | 00 | 3/15/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/006460 | 1/12/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20050193823 | Amano | Sep 2005 | A1 |
20070169553 | Mutharasan et al. | Jul 2007 | A1 |
20080087083 | Nishizawa et al. | Apr 2008 | A1 |
20090007645 | Shih et al. | Jan 2009 | A1 |
20090053709 | Mutharasan et al. | Feb 2009 | A1 |
20090301196 | Wang | Dec 2009 | A1 |
20100297687 | Mutharasan | Nov 2010 | A1 |
Entry |
---|
International Patent Application No. PCT/US2011/043244: International Search Report and Written Opinion dated Nov. 8, 2011, 8 pages. |
Sharma, et al., Piezoelectric Cantilever Sensors With Asymmetric Anchor Exhibit Picogram Sensitivity in Liquids, Sensors and Actuators, 2011, pp. 64-70. |
Number | Date | Country | |
---|---|---|---|
20130205902 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61362233 | Jul 2010 | US |