The embodiments herein generally relate to near-field wireless power transmission systems (e.g., antennas, software, and devices used in such systems) and, more specifically, to asymmetric spiral antennas for wireless power transmission.
Conventional charging pads utilize inductive coils to generate a magnetic field that is used to charge a device. Users typically must place the device at a specific position on the charging pad and are unable to move the device to different positions on the pad, without interrupting or terminating the charging of the device. This results in a frustrating experience for many users as they may be unable to locate the device at the exact right position on the pad in which to start charging their device. Often, users may think that their device has been properly positioned, but may then dishearteningly find hours later that very little (or no) energy has been transferred.
Accordingly, there is a need for wireless charging systems (e.g., RF charging pads) and associated antennas that address the problems identified above, in particular to help ensure a high percentage of energy transfer efficiency (e.g., greater than 80%, such as 90%) when transmitting and receiving antennas are misaligned, which helps to ensure that users are able to place their devices at a variety of different positions and still have those devices be charged efficiently and wirelessly.
In one aspect, an RF charging pad is described herein that includes components that are efficiently arranged on a single integrated circuit, and that single integrated circuit manages antennas of the RF charging pad by selectively or sequentially activating antenna zones (e.g., one or more antennas or unit cell antennas of the RF charging pad that are grouped together, also referred to herein as an antenna group) to locate an efficient antenna zone to use for transmission of wireless power to a receiver device that is located on a surface of the RF charging pad. Such systems and methods of use thereof help to eliminate user dissatisfaction with conventional charging pads. For example, by monitoring transferred energy while selectively activating the antenna zones, such systems and methods of use thereof help to eliminate wasted RF power transmissions by ensuring that energy transfer is maximized at any point in time and at any position at which a device may be placed on an RF charging pad, thus eliminating wasteful transmissions that may not be efficiently received.
In the description that follows, references are made to an RF charging pad that includes various antenna zones. For the purposes of this description, antenna zones include one or more transmitting antennas of the RF charging pad, and each antenna zone may be individually addressable by a controlling integrated circuit (e.g., RF power transmitter integrated circuit 160,
The RF power transmitter integrated circuit 160 can also be used to control wireless transmission of power via the asymmetric spiral antennas described herein (e.g., in reference to
To help address the problems described above and to thereby provide charging pads that satisfy user needs, the antenna zones described above may include adaptive antenna elements (e.g., antenna zones 290 of the RF charging pad 100,
(A1) In some embodiments, a near-field charging system for wirelessly charging electronic devices using electromagnetic energy having a low frequency is provided. The near-field charging system includes: a transmitting antenna with a first substrate; and a first antenna, coupled to the first substrate, that follows a first meandering pattern having a first length, and the transmitting antenna has a first port impedance. The near-field charging system also includes a receiving antenna comprising: a second substrate; and a second antenna, coupled to the second substrate, that follows a second meandering pattern having a second length, and (i) the second length is less than the first length, and (ii) the receiving antenna has a second port impedance that is less than the first port impedance. Also, the transmitting antenna is configured to transmit electromagnetic energy having a frequency at or below 60 MHz to the receiving antenna at an efficiency above 90%, and the receiving antenna is coupled to power-conversion circuitry for converting the electromagnetic energy into usable power for charging or powering an electronic device that is coupled to the receiving antenna and the power-conversion circuitry.
(A2) In some embodiments of the system of A1, the first meandering pattern is a first spiral pattern with a first number of revolutions; and the second meandering pattern is a second spiral pattern with a second number of revolutions, the second number of revolutions being less than the first number of revolutions.
(A3) In some embodiments of the system of A2, the first spiral pattern is a planar rectangular spiral; and the second spiral pattern is a planar rectangular spiral.
(A4) In some embodiments of the system of any of A1-A3, the transmitting antenna further comprises a first via configured to feed radio frequency (RF) signals to the first antenna; and the receiving antenna further comprises a second via configured to transfer energy harvested by the second antenna to the power-conversion circuitry.
(A5) In some embodiments of the system of A4, the first via is positioned at a center of the first substrate; and the second via is offset in at least one direction from a center of the second substrate.
(A6) In some embodiments of the system of any of A1-A5, the first substrate has a first thickness; and the second substrate has a second thickness that is less than the first thickness.
(A7) In some embodiments of the system of any of A1-A6, the first antenna has a first width; and the second antenna has a second width that is greater than the first width.
(A8) In some embodiments of the system of A7, the first antenna comprises a first plurality of antenna elements; and at least one antenna element of the first plurality of antenna elements has a third width that is less than the first width.
(A9) In some embodiments of the system of A8, the second antenna comprises a second plurality of antenna elements; and at least one antenna element of the second plurality of antenna elements has a fourth width that is less than the second width and greater than the third width.
(A10) In some embodiments of the system of any of A1-A9, the transmitting antenna is configured to transmit electromagnetic energy having a frequency between 30 MHz and 50 MHz.
(A11) In some embodiments of the system of A10, the transmitting antenna is configured to transmit electromagnetic energy having a frequency at 40 MHz.
(A12) In some embodiments of the system of any of A1-A10, the transmitting antenna includes a first via; the receiving antenna includes a second via; and when the transmitting antenna is aligned with the receiving antenna, the first via and the second via are axially misaligned.
(A13) In some embodiments of the system of any of A1-A10, the transmitting antenna has a port impedance of approximately 50 ohms, and the receiving antenna has a port impedance of approximately 5 ohms.
(A14) In another aspect, a near-field charging system for wirelessly charging electronic devices using electromagnetic energy having a low frequency is provided. The near-field charging system includes: a transmitting antenna having a first antenna that follows a first meandering pattern; and a receiving antenna having a second antenna that follows a second meandering pattern, whereby the second meandering pattern is different from the first meandering pattern. Also, the transmitting antenna is configured to transmit electromagnetic energy having a frequency at or below 60 MHz to the receiving antenna at an efficiency above 90%, and the receiving antenna is coupled to power-conversion circuitry for converting the electromagnetic energy into usable power for charging or powering an electronic device that is coupled to the receiving antenna and the power-conversion circuitry.
(A15) In some embodiments of the system of A14, the system is further configured in accordance with any of A2-A13.
(A16) In a further aspect, a wireless power receiver for wirelessly charging electronic devices using electromagnetic energy having a low frequency is provided. The receiver includes a receiving antenna with an antenna, coupled to a substrate, that follows a meandering pattern having a length, and: (i) the length of the antenna is less than a length of an antenna of a transmitting antenna, and (ii) the receiving antenna has a port impedance that is less than a port impedance of the transmitting antenna. Also, the transmitting antenna is configured to transmit electromagnetic energy having a frequency at or below 60 MHz to the receiving antenna at an efficiency above 90%, and the receiving antenna is coupled to power-conversion circuitry for converting the electromagnetic energy into usable power for powering an electronic device that is coupled to the power-conversion circuitry.
(A17) In some embodiments of the receiver of A16, the receiver is further configured in accordance with the features of receivers described in any of A2-A13.
(A18) In an additional aspect, a wireless power transmitter for wirelessly charging electronic devices using electromagnetic energy having a low frequency is provided. The transmitter includes: a transmitting antenna with an antenna, coupled to a substrate, that follows a meandering pattern having a length, and: (i) the length of the antenna is greater than a length of an antenna of a receiving antenna, and (ii) the receiving antenna has a port impedance that is less than a port impedance of the transmitting antenna. Also, the transmitting antenna is configured to transmit electromagnetic energy having a frequency at or below 60 MHz to the receiving antenna at an efficiency above 90%, and the receiving antenna is coupled to power-conversion circuitry for converting the electromagnetic energy into usable power for powering an electronic device that is coupled to the power-conversion circuitry.
(A19) In some embodiments of the transmitter of A18, the receiver is further configured in accordance with the features of transmitters described in any of A2-A13.
Thus, wireless charging systems, including the antennas described above, configured in accordance with the principles described herein are able to charge an electronic device that is placed at any position on an RF charging pad.
In addition, wireless charging systems configured in accordance with the principles described herein are able to charge different electronic devices that are tuned at different frequencies or frequency bands on the same charging transmitter. In some embodiments, a transmitter with a single antenna element can operate at multiple frequencies or frequency bands at the same time or at different times. In some embodiments, a transmitter with multiple antenna elements can operate at multiple frequencies or frequency bands at the same time. That enables more flexibility in the types and sizes of antennas that are included in receiving devices.
As described above, there is also a need for an integrated circuit that includes components for managing transmission of wireless power that are all integrated on a single integrated circuit. Such a integrated circuit and methods of use thereof help to eliminate user dissatisfaction with conventional charging pads. By including all components on a single chip (as discussed in more detail below in reference to
(B1) In some embodiments, an integrated circuit includes: (i) a processing unit that is configured to control operation of the integrated circuit, (ii) a power converter, operatively coupled to the processing unit, that is configured to convert an input current into radio frequency energy, (iii) a waveform generator, operatively coupled to the processing unit, that is configured to generate a plurality of power transmission signals using the radio frequency energy, (iv) a first interface that couples the integrated circuit with a plurality of power amplifiers that are external to the integrated circuit, and (v) a second interface, distinct from the first interface, that couples the integrated circuit with a wireless communication component. The processing unit is also configured to: (i) receive, via the second interface, an indication that a wireless power receiver is within transmission range of a near-field charging pad controlled by the integrated circuit, and (ii) in response to receiving the indication provide, via the first interface, at least some of the plurality of power transmission signals to at least one of the plurality of power amplifiers.
(B2) In some embodiments of the integrated circuit of B1, the processing unit includes a CPU, ROM, RAM, and encryption (e.g., CPU subsystem 170,
(B3) In some embodiments of the integrated circuit of any of B1-B2, the input current is direct current. Alternatively, in some embodiments, the input current is alternating current. In these embodiments, the power converter is a radio frequency DC-DC converter or a radio frequency AC-AC converter, respectively.
(B4) In some embodiments of the integrated circuit of any of B1-B3, the wireless communication component is a Bluetooth or Wi-Fi radio that is configured to receive communication signals from a device that is placed on a surface of the near-field charging pad.
Note that the various embodiments described above can be combined with any other embodiments described herein. The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not intended to circumscribe or limit the inventive subject matter.
So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various embodiments, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
In some embodiments, the communication component(s) 204 enable communication between the RF charging pad 100 and one or more communication networks. In some embodiments, the communication component(s) 204 are capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth Smart, ISA100.11a, WirelessHART, MiWi, etc.) custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
In some embodiments, executable instructions running on the CPU (such as those shown in the memory 206 in
In some embodiments, the RF power transmitter integrated circuit 160 provides the viable RF power level (e.g., via the RF TX 178) to an optional beamforming integrated circuit (IC) 109, which then provides phase-shifted signals to one or more power amplifiers 108. In some embodiments, the beamforming IC 109 is used to ensure that power transmission signals sent using two or more antennas 210 (e.g., each antenna 210 may be associated with a different antenna zones 290 or may each belong to a single antenna zone 290) to a particular wireless power receiver are transmitted with appropriate characteristics (e.g., phases) to ensure that power transmitted to the particular wireless power receiver is maximized (e.g., the power transmission signals arrive in phase at the particular wireless power receiver). In some embodiments, the beamforming IC 109 forms part of the RF power transmitter IC 160.
The antennas 210 can be any of the transmitting antennas 300 described below with reference to
In some embodiments, the RF power transmitter integrated circuit 160 provides the viable RF power level (e.g., via the RF TX 178) directly to the one or more power amplifiers 108 and does not use the beamforming IC 109 (or bypasses the beamforming IC if phase-shifting is not required, such as when only a single antenna 210 is used to transmit power transmission signals to a wireless power receiver).
In some embodiments, the one or more power amplifiers 108 then provide RF signals to the antenna zones 290 for transmission to wireless power receivers that are authorized to receive wirelessly delivered power from the RF charging pad 100. In some embodiments, each antenna zone 290 is coupled with a respective PA 108 (e.g., antenna zone 290-1 is coupled with PA 108-1 and antenna zone 290-N is coupled with PA 108-N). In some embodiments, multiple antenna zones are each coupled with a same set of PAs 108 (e.g., all PAs 108 are coupled with each antenna zone 290). Various arrangements and couplings of PAs 108 to antenna zones 290 allow the RF charging pad 100 to sequentially or selectively activate different antenna zones in order to determine the most efficient antenna zone 290 to use for transmitting wireless power to a wireless power receiver. In some embodiments, the one or more power amplifiers 108 are also in communication with the CPU subsystem 170 to allow the CPU 202 to measure output power provided by the PAs 108 to the antenna zones of the RF charging pad 100.
In some embodiments, the RF charging pad 100 may also include a temperature monitoring circuit that is in communication with the CPU subsystem 170 to ensure that the RF charging pad 100 remains within an acceptable temperature range. For example, if a determination is made that the RF charging pad 100 has reached a threshold temperature, then operation of the RF charging pad 100 may be temporarily suspended until the RF charging pad 100 falls below the threshold temperature.
By including the components shown for RF power transmitter circuit 160 (
The charging pad 294 includes an RF power transmitter integrated circuit 160, one or more power amplifiers 108, and a transmitter antenna array 290 having multiple antenna zones. Each of these components is described in detail above with reference to
To accomplish the above, each switch 297 is coupled with (e.g., provides a signal pathway to) a different antenna zone of the antenna array 290. For example, switch 297-A may be coupled with a first antenna zone 290-1 (
In some embodiments, the RF power transmitter integrated circuit 160 is coupled to the switch 295 and is configured to control operation of the plurality of switches 297-A, 297-B, . . . 297-N (illustrated as a “control out” signal in
To further illustrate, the charging pad is configured to transmit test power transmission signals and/or regular power transmission signals using different antenna zones, e.g., depending on a location of a receiver on the charging pad. Accordingly, when a particular antenna zone is selected for transmitting test signals or regular power signals, a control signal is sent to the switch 295 from the RF power transmitter integrated circuit 160 to cause at least one switch 297 to close. In doing so, an RF signal from at least one power amplifier 108 can be provided to the particular antenna zone using a unique pathway created by the now-closed at least one switch 297.
In some embodiments, the switch 295 may be part of (e.g., internal to) the antenna array 290. Alternatively, in some embodiments, the switch 295 is separate from the antenna array 290 (e.g., the switch 295 may be a distinct component, or may be part of another component, such as the power amplifier(s) 108). It is noted that any switch design capable of accomplishing the above may be used, and the design of the switch 295 illustrated in
In some embodiments, the one or more sensor(s) 212 include one or more thermal radiation sensors, ambient temperature sensors, humidity sensors, IR sensors, occupancy sensors (e.g., RFID sensors), ambient light sensors, motion detectors, accelerometers, and/or gyroscopes.
The memory 206 includes high-speed random access memory, such as DRAM, SRAM, DDR SRAM, or other random access solid state memory devices; and, optionally, includes non-volatile memory, such as one or more magnetic disk storage devices, one or more optical disk storage devices, one or more flash memory devices, or one or more other non-volatile solid state storage devices. The memory 206, or alternatively the non-volatile memory within memory 206, includes a non-transitory computer-readable storage medium. In some embodiments, the memory 206, or the non-transitory computer-readable storage medium of the memory 206, stores the following programs, modules, and data structures, or a subset or superset thereof:
Each of the above-identified elements (e.g., modules stored in memory 206 of the RF charging pad 100) is optionally stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing the function(s) described above. The above identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are optionally combined or otherwise rearranged in various embodiments. In some embodiments, the memory 206, optionally, stores a subset of the modules and data structures identified above.
In some embodiments, the power harvesting circuitry 259 includes one or more rectifying circuits and/or one or more power converters. In some embodiments, the power harvesting circuitry 259 includes one or more components (e.g., a power converter) configured to convert energy from power waves and/or energy pockets to electrical energy (e.g., electricity). In some embodiments, the power harvesting circuitry 259 is further configured to supply power to a coupled electronic device, such as a laptop or phone. In some embodiments, supplying power to a coupled electronic device include translating electrical energy from an AC form to a DC form (e.g., usable by the electronic device).
In some embodiments, the antenna(s) 260 include one or more of the meandering line antennas that are described in further detail below, e.g., the receiving antennas 400 described below in reference to
In some embodiments, the receiver device 104 includes one or more output devices such as one or more indicator lights, a sound card, a speaker, a small display for displaying textual information and error codes, etc. In some embodiments, the receiver device 104 includes a location detection device, such as a GPS (global positioning satellite) or other geo-location receiver, for determining the location of the receiver device 103.
In various embodiments, the one or more sensor(s) 262 include one or more thermal radiation sensors, ambient temperature sensors, humidity sensors, IR sensors, occupancy sensors (e.g., RFID sensors), ambient light sensors, motion detectors, accelerometers, and/or gyroscopes.
The communication component(s) 254 enable communication between the receiver 104 and one or more communication networks. In some embodiments, the communication component(s) 254 are capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth Smart, ISA100.11a, WirelessHART, MiWi, etc.) custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
The communication component(s) 254 include, for example, hardware capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth Smart, ISA100.11a, WirelessHART, MiWi, etc.) and/or any of a variety of custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
The memory 256 includes high-speed random access memory, such as DRAM, SRAM, DDR SRAM, or other random access solid state memory devices; and, optionally, includes non-volatile memory, such as one or more magnetic disk storage devices, one or more optical disk storage devices, one or more flash memory devices, or one or more other non-volatile solid state storage devices. The memory 256, or alternatively the non-volatile memory within memory 256, includes a non-transitory computer-readable storage medium. In some embodiments, the memory 256, or the non-transitory computer-readable storage medium of the memory 256, stores the following programs, modules, and data structures, or a subset or superset thereof:
Each of the above-identified elements (e.g., modules stored in memory 256 of the receiver 104) is optionally stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing the function(s) described above. The above identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are optionally combined or otherwise rearranged in various embodiments. In some embodiments, the memory 256, optionally, stores a subset of the modules and data structures identified above. Furthermore, the memory 256, optionally, stores additional modules and data structures not described above, such as an identifying module for identifying a device type of a connected device (e.g., a device type for an electronic device that is coupled with the receiver 104).
The transmitting antenna 300 is configured to radiate RF energy (e.g., electromagnetic waves/signals), and thus transfer power when adjacent to a receiving antenna 400 (discussed below with reference to
A substrate 302 may be disposed within a space defined between the top surface, sidewalls, and the bottom surface of the housing. In some embodiments, the transmitting antenna 300 may not include the housing and instead the substrate 302 may include the top surface, sidewalls, and the bottom surface. The substrate 302 may comprise any material capable of insulating, reflecting, absorbing, or otherwise housing electrical lines conducting current, such as metamaterials. The metamaterials may be a broad class of synthetic materials that are engineered to yield desirable magnetic permeability and electrical permittivity. At least one of the magnetic permeability and electrical permittivity may be based upon power-transfer requirements, and/or compliance constraints for government regulations. The metamaterials disclosed herein may receive radiation or may generate radiation, and may act as reflectors.
The transmitting antenna 300 includes an antenna 304 (also referred to herein as a “radiator element,” or a “radiator”). The antenna 304 may be constructed on or below the top surface of the housing (or the substrate 302). The antenna 304 may be used for transmitting electromagnetic waves. The antenna 304 may be constructed from materials such as metals, alloys, metamaterials and composites. For example, the antenna 304 may be made of copper or copper alloys. The antenna 304 may be constructed to have different shapes based on power transfer requirements. For example, in
In some embodiments, a width of antenna elements 306 varies from one turn to the next. Put another way, a surface area of a respective antenna element 306 of the antenna 304 differs from a surface area of at least one other antenna element 306 of the antenna 304. For example, with reference to
Currents flowing through the antenna elements 306 may be in opposite directions. For example, if the current in antenna element 306-A is flowing from left to right in
In some embodiments, the transmitting antenna 300 includes a ground plane 307 (shown in
Due to the arrangement of the antenna 304 and the ground plane 307, electromagnetic waves transmitted by the transmitting antenna 300 accumulate in the near field of the transmitting antenna 300. Importantly (e.g., for compliance with safety regulations governing wireless charging), leakage of electromagnetic energy into the far field is minimized or eliminated.
The receiving antenna 400 is configured to receive RF energy (e.g., electromagnetic waves/signals), and thus receive power when adjacent to the transmitting antenna 300 (discussed above with reference to
The receiving antenna 400 may include a substrate 402, which can be disposed within a space defined between the top surface, sidewalls, and the bottom surface of the housing. In some embodiments, the receiving antenna 400 may not include the housing and instead the substrate 402 may include the top surface, sidewalls, and the bottom surface. The substrate 402 may comprise any material capable of insulating, reflecting, absorbing, or otherwise housing electrical lines conducting current, such as metamaterials. The metamaterials may be a broad class of synthetic materials that are engineered to yield desirable magnetic permeability and electrical permittivity. At least one of the magnetic permeability and electrical permittivity may be based upon power-transfer requirements, and/or compliance constraints for government regulations. The metamaterials disclosed herein may receive radiation or may generate radiation, and may act as thin reflectors.
The receiving antenna 400 includes an antenna 404 (also referred to herein as a “radiator element,” or a “radiator”). The antenna 404 may be constructed on or below the top surface of the housing (or the substrate 402). As mentioned above, the receiving antenna 400 is associated with power receiving, and thus, the antenna 404 is used for receiving electromagnetic waves. The antenna 404 may be constructed from materials such as metals, alloys, metamaterials and composites. For example, the antenna 404 may be made of copper or copper alloys. The antenna 404 may be constructed to have different shapes based on power transfer requirements. For example, in
In some embodiments, a width of antenna elements 406 varies from one turn to the next. Put another way, a surface area of a respective antenna element 406 may differ from a surface area of at least one other antenna element 406. For example, with reference to
Much like the transmitting antenna 300, in some embodiments, the receiving antenna 400 includes a ground plane 407 (shown in
The via 405 may be positioned in a center of the substrate 402 (as shown in
As mentioned above, a higher coupling efficiency is achieved by designing the antenna 304 on the transmitter side to have more turns (i.e., revolutions, loops) than the antenna 404 on the receiver side. Additionally, widths of the antenna 304 (e.g., D1 and D2) are different from widths of the antenna 404 (e.g., D3 and D4) (e.g., widths D3 and D4 are greater than widths D1 and D2, respectively). Differences in widths and number of turns can be used to lower a port impedance of the receiving antenna 400. To illustrate, in one example, the transmitting antenna 300 may have a port impedance of approximately 50 ohms, while the receiving antenna 400 may have a port impedance of approximately 5 ohms (e.g., the low port impedance may be required for a specific application). The receiving antenna 400 is able to achieve the low port impedance of 5 ohms by (i) reducing the number of turns made by the antenna 404 relative to the number of turns made by the antenna 304, and (ii) increasing a width (or widths) of the antenna 404 relative to a width (or widths) of the antenna 300. Also, the receiving antenna 400 is able to achieve the low port impedance by reducing a thickness of the receiving antenna 400, relative to a thickness of the transmitting antenna 300, and offsetting the via 405, at least in some embodiments, from a center of the receiving antenna 400.
Thus, in short, in order to achieve high coupling efficiency and TX-RX port transformation, non-identical antennas (e.g., transmitting antenna 300 and receiving antenna 400) are optimized as a pair. The optimization is achieved through: (i) increasing a thickness of the transmitting antenna 300 relative to a thickness of the receiving antenna 400, as shown in
Wireless power harvested by the receiving antenna 400 is provided to a receiver integrated circuit 702. The receiver integrated circuit 702 is configured to convert the harvested wireless power into useable power and provide the useable power to a load 706 (e.g., a battery, power supply, etc.) of an electronic device. Importantly, the receiver integrated circuit 702 is designed to convert high input power to useable power (i.e. over 20 Watt) on the receiver side for a certain output voltage, such as 20 V. To accomplish this, the receiver integrated circuit 702 has low input port impedances (e.g., about 10 times lower than an ideal impedance value of 50 Ohm). In some embodiments, the receiver integrated circuit 702 is an example of the power harvesting circuitry 259 of
In light of these principles, example embodiments are provided below.
In accordance with some embodiments, a near-field charging system for wirelessly charging electronic devices using electromagnetic energy having a low frequency (e.g., below 100 MHz, preferably below 60 MHz) is provided. The near-field charging system includes a transmitting antenna (e.g., transmitting antenna 300,
The near-field charging system also includes a receiving antenna (e.g., receiving antenna 400,
In some embodiments of the near-field charging system, the transmitting antenna is configured to transmit electromagnetic energy having a frequency at or below 60 MHz (e.g., between 30 MHz and 50 MHz, preferably 40 MHz) to the receiving antenna at an efficiency above 90%, and the receiving antenna is coupled to power-conversion circuitry (e.g., receiver integrated circuit 702,
In the near-field charging system, the transmitting antenna has a first port impedance and the receiving antenna has a second port impedance that is less than the first port impedance. For example, the first port impedance may be between 40 and 60 Ohms (preferably 50 Ohms), and the second port impedance may be between 1 and 20 Ohms (preferably 5 Ohms). A difference between the first port impedance and the second port impedance can be attributed to, at least in part, differences between the first meandering pattern and the second meandering pattern. For example, as mentioned above, the first meandering pattern may be longer than the second meandering pattern, and this difference in length can contribute to the port impedance difference. Other factors contributing to the port impedance difference include but are not limited to: number of revolutions made by the first and second antennas, widths of the first and second antennas, thicknesses of the first and second substrates, and locations of feed lines (e.g., via 305 and via 405).
All of these examples are non-limiting and any number of combinations and multi-layered structures are possible using the example structures described above.
Further embodiments also include various subsets of the above embodiments including embodiments in
The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
It will also be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first region could be termed a second region, and, similarly, a second region could be termed a first region, without changing the meaning of the description, so long as all occurrences of the “first region” are renamed consistently and all occurrences of the “second region” are renamed consistently. The first region and the second region are both regions, but they are not the same region.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
This Application is a United States National Stage Application filed under 35 U.S.C. § 371 of PCT Patent Application Serial No. PCT/US2020/027409, filed on Apr. 9, 2020, which claims the benefit of and priority to U.S. Patent Application No. 62/831,660, filed on Apr. 9, 2019. Each of these two applications is hereby incorporated by reference in its respective entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/027409 | 4/9/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/210449 | 10/15/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
787412 | Tesla | Apr 1905 | A |
2811624 | Haagensen | Oct 1957 | A |
2863148 | Gammon et al. | Dec 1958 | A |
3167775 | Guertler | Jan 1965 | A |
3434678 | Brown et al. | Mar 1969 | A |
3696384 | Lester | Oct 1972 | A |
3754269 | Clavin | Aug 1973 | A |
4101895 | Jones, Jr. | Jul 1978 | A |
4360741 | Fitzsimmons et al. | Nov 1982 | A |
4944036 | Hyatt | Jul 1990 | A |
4995010 | Knight | Feb 1991 | A |
5142292 | Chang | Aug 1992 | A |
5200759 | McGinnis | Apr 1993 | A |
5211471 | Rohrs | May 1993 | A |
5276455 | Fitzsimmons et al. | Jan 1994 | A |
5548292 | Hirshfield et al. | Aug 1996 | A |
5556749 | Mitsuhashi et al. | Sep 1996 | A |
5568088 | Dent et al. | Oct 1996 | A |
5631572 | Sheen et al. | May 1997 | A |
5646633 | Dahlberg | Jul 1997 | A |
5697063 | Kishigami et al. | Dec 1997 | A |
5712642 | Hulderman | Jan 1998 | A |
5936527 | Isaacman et al. | Aug 1999 | A |
5982139 | Parise | Nov 1999 | A |
6046708 | MacDonald, Jr. et al. | Apr 2000 | A |
6061025 | Jackson et al. | May 2000 | A |
6127799 | Krishnan | Oct 2000 | A |
6127942 | Welle | Oct 2000 | A |
6163296 | Lier et al. | Dec 2000 | A |
6176433 | Uesaka et al. | Jan 2001 | B1 |
6271799 | Rief | Aug 2001 | B1 |
6289237 | Mickle et al. | Sep 2001 | B1 |
6329908 | Frecska | Dec 2001 | B1 |
6400586 | Raddi et al. | Jun 2002 | B2 |
6421235 | Ditzik | Jul 2002 | B2 |
6437685 | Hanaki | Aug 2002 | B2 |
6456253 | Rummeli et al. | Sep 2002 | B1 |
6476795 | Derocher et al. | Nov 2002 | B1 |
6501414 | Amdt et al. | Dec 2002 | B2 |
6583723 | Watanabe et al. | Jun 2003 | B2 |
6597897 | Tang | Jul 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6650376 | Obitsu | Nov 2003 | B1 |
6664920 | Mott et al. | Dec 2003 | B1 |
6680700 | Hilgers | Jan 2004 | B2 |
6798716 | Charych | Sep 2004 | B1 |
6803744 | Sabo | Oct 2004 | B1 |
6853197 | McFarland | Feb 2005 | B1 |
6856291 | Mickle et al. | Feb 2005 | B2 |
6911945 | Korva | Jun 2005 | B2 |
6960968 | Odendaal et al. | Nov 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
6988026 | Breed et al. | Jan 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7012572 | Schaffner et al. | Mar 2006 | B1 |
7027311 | Vanderelli et al. | Apr 2006 | B2 |
7068234 | Sievenpiper | Jun 2006 | B2 |
7068991 | Parise | Jun 2006 | B2 |
7079079 | Jo et al. | Jul 2006 | B2 |
7183748 | Unno et al. | Feb 2007 | B1 |
7191013 | Miranda et al. | Mar 2007 | B1 |
7193644 | Carter | Mar 2007 | B2 |
7196663 | Bolzer et al. | Mar 2007 | B2 |
7205749 | Hagen et al. | Apr 2007 | B2 |
7215296 | Abramov et al. | May 2007 | B2 |
7222356 | Yonezawa et al. | May 2007 | B1 |
7274334 | O'Riordan et al. | Sep 2007 | B2 |
7274336 | Carson | Sep 2007 | B2 |
7351975 | Brady et al. | Apr 2008 | B2 |
7359730 | Dennis et al. | Apr 2008 | B2 |
7372408 | Gaucher | May 2008 | B2 |
7392068 | Dayan | Jun 2008 | B2 |
7403803 | Mickle et al. | Jul 2008 | B2 |
7443057 | Nunally | Oct 2008 | B2 |
7451839 | Perlman | Nov 2008 | B2 |
7463201 | Chiang et al. | Dec 2008 | B2 |
7471247 | Saily | Dec 2008 | B2 |
7535195 | Horovitz et al. | May 2009 | B1 |
7614556 | Overhultz et al. | Nov 2009 | B2 |
7639994 | Greene et al. | Dec 2009 | B2 |
7643312 | Vanderelli et al. | Jan 2010 | B2 |
7652577 | Madhow et al. | Jan 2010 | B1 |
7663555 | Caimi et al. | Feb 2010 | B2 |
7679576 | Riedel et al. | Mar 2010 | B2 |
7702771 | Ewing et al. | Apr 2010 | B2 |
7786419 | Hyde et al. | Aug 2010 | B2 |
7812771 | Greene et al. | Oct 2010 | B2 |
7830312 | Choudhury et al. | Nov 2010 | B2 |
7844306 | Shearer et al. | Nov 2010 | B2 |
7868482 | Greene et al. | Jan 2011 | B2 |
7898105 | Greene et al. | Mar 2011 | B2 |
7904117 | Doan et al. | Mar 2011 | B2 |
7911386 | Ito et al. | Mar 2011 | B1 |
7925308 | Greene et al. | Apr 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
8049676 | Yoon et al. | Nov 2011 | B2 |
8055003 | Mittleman et al. | Nov 2011 | B2 |
8070595 | Alderucci et al. | Dec 2011 | B2 |
8072380 | Crouch | Dec 2011 | B2 |
8092301 | Alderucci et al. | Jan 2012 | B2 |
8099140 | Arai | Jan 2012 | B2 |
8115448 | John | Feb 2012 | B2 |
8159090 | Greene et al. | Apr 2012 | B2 |
8159364 | Zeine | Apr 2012 | B2 |
8180286 | Yamasuge | May 2012 | B2 |
8184454 | Mao | May 2012 | B2 |
8228194 | Mickle | Jul 2012 | B2 |
8234509 | Gioscia et al. | Jul 2012 | B2 |
8264101 | Hyde et al. | Sep 2012 | B2 |
8264291 | Morita | Sep 2012 | B2 |
8276325 | Clifton et al. | Oct 2012 | B2 |
8278784 | Cook et al. | Oct 2012 | B2 |
8284101 | Fusco | Oct 2012 | B2 |
8310201 | Wright | Nov 2012 | B1 |
8338991 | Von Novak et al. | Dec 2012 | B2 |
8362745 | Tinaphong | Jan 2013 | B2 |
8380255 | Shearer et al. | Feb 2013 | B2 |
8384600 | Huang et al. | Feb 2013 | B2 |
8410953 | Zeine | Apr 2013 | B2 |
8411963 | Luff | Apr 2013 | B2 |
8432062 | Greene et al. | Apr 2013 | B2 |
8432071 | Huang et al. | Apr 2013 | B2 |
8446248 | Zeine | May 2013 | B2 |
8447234 | Cook et al. | May 2013 | B2 |
8451189 | Fluhler | May 2013 | B1 |
8452235 | Kirby et al. | May 2013 | B2 |
8457656 | Perkins et al. | Jun 2013 | B2 |
8461817 | Martin et al. | Jun 2013 | B2 |
8467733 | Leabman | Jun 2013 | B2 |
8497601 | Hall et al. | Jul 2013 | B2 |
8497658 | Von Novak et al. | Jul 2013 | B2 |
8552597 | Song et al. | Aug 2013 | B2 |
8558661 | Zeine | Oct 2013 | B2 |
8560026 | Chanterac | Oct 2013 | B2 |
8564485 | Milosavljevic et al. | Oct 2013 | B2 |
8604746 | Lee | Dec 2013 | B2 |
8614643 | Leabman | Dec 2013 | B2 |
8621245 | Shearer et al. | Dec 2013 | B2 |
8626249 | Kuusilinna et al. | Jan 2014 | B2 |
8629576 | Levine | Jan 2014 | B2 |
8653966 | Rao et al. | Feb 2014 | B2 |
8655272 | Saunamäki | Feb 2014 | B2 |
8674551 | Low et al. | Mar 2014 | B2 |
8686685 | Moshfeghi | Apr 2014 | B2 |
8686905 | Shtrom | Apr 2014 | B2 |
8712355 | Black et al. | Apr 2014 | B2 |
8712485 | Tam | Apr 2014 | B2 |
8718773 | Wills et al. | May 2014 | B2 |
8729737 | Schatz et al. | May 2014 | B2 |
8736228 | Freed et al. | May 2014 | B1 |
8760113 | Keating | Jun 2014 | B2 |
8770482 | Ackermann et al. | Jul 2014 | B2 |
8772960 | Yoshida | Jul 2014 | B2 |
8823319 | Von Novak, III et al. | Sep 2014 | B2 |
8832646 | Wendling | Sep 2014 | B1 |
8854176 | Zeine | Oct 2014 | B2 |
8860364 | Low et al. | Oct 2014 | B2 |
8897770 | Frolov et al. | Nov 2014 | B1 |
8903456 | Chu et al. | Dec 2014 | B2 |
8917057 | Hui | Dec 2014 | B2 |
8923189 | Leabman | Dec 2014 | B2 |
8928544 | Massie et al. | Jan 2015 | B2 |
8937408 | Ganem et al. | Jan 2015 | B2 |
8946940 | Kim et al. | Feb 2015 | B2 |
8963486 | Kirby et al. | Feb 2015 | B2 |
8970070 | Sada et al. | Mar 2015 | B2 |
8989053 | Skaaksrud et al. | Mar 2015 | B1 |
9000616 | Greene et al. | Apr 2015 | B2 |
9001622 | Perry | Apr 2015 | B2 |
9006934 | Kozakai et al. | Apr 2015 | B2 |
9021277 | Shearer et al. | Apr 2015 | B2 |
9030161 | Lu et al. | May 2015 | B2 |
9059598 | Kang et al. | Jun 2015 | B2 |
9059599 | Won et al. | Jun 2015 | B2 |
9077188 | Moshfeghi | Jul 2015 | B2 |
9083595 | Rakib et al. | Jul 2015 | B2 |
9088216 | Garrity et al. | Jul 2015 | B2 |
9124125 | Leabman et al. | Sep 2015 | B2 |
9130397 | Leabman et al. | Sep 2015 | B2 |
9130602 | Cook | Sep 2015 | B2 |
9142998 | Yu et al. | Sep 2015 | B2 |
9143000 | Leabman et al. | Sep 2015 | B2 |
9143010 | Urano | Sep 2015 | B2 |
9153074 | Zhou et al. | Oct 2015 | B2 |
9178389 | Hwang | Nov 2015 | B2 |
9225196 | Huang et al. | Dec 2015 | B2 |
9240469 | Sun et al. | Jan 2016 | B2 |
9242411 | Kritchman et al. | Jan 2016 | B2 |
9244500 | Cain et al. | Jan 2016 | B2 |
9252628 | Leabman et al. | Feb 2016 | B2 |
9270344 | Rosenberg | Feb 2016 | B2 |
9276329 | Jones et al. | Mar 2016 | B2 |
9282582 | Dunsbergen et al. | Mar 2016 | B1 |
9294840 | Anderson et al. | Mar 2016 | B1 |
9297896 | Andrews | Mar 2016 | B1 |
9318898 | John | Apr 2016 | B2 |
9368020 | Bell et al. | Jun 2016 | B1 |
9401977 | Gaw | Jul 2016 | B1 |
9409490 | Kawashima | Aug 2016 | B2 |
9419335 | Pintos | Aug 2016 | B2 |
9419443 | Leabman | Aug 2016 | B2 |
9438045 | Leabman | Sep 2016 | B1 |
9438046 | Leabman | Sep 2016 | B1 |
9444283 | Son et al. | Sep 2016 | B2 |
9450449 | Leabman et al. | Sep 2016 | B1 |
9461502 | Lee et al. | Oct 2016 | B2 |
9520725 | Masaoka et al. | Dec 2016 | B2 |
9520748 | Hyde et al. | Dec 2016 | B2 |
9522270 | Perryman et al. | Dec 2016 | B2 |
9532748 | Denison et al. | Jan 2017 | B2 |
9537354 | Bell et al. | Jan 2017 | B2 |
9537357 | Leabman | Jan 2017 | B2 |
9537358 | Leabman | Jan 2017 | B2 |
9538382 | Bell et al. | Jan 2017 | B2 |
9544640 | Lau | Jan 2017 | B2 |
9559553 | Bae | Jan 2017 | B2 |
9564773 | Pogorelik et al. | Feb 2017 | B2 |
9571974 | Choi et al. | Feb 2017 | B2 |
9590317 | Zimmerman et al. | Mar 2017 | B2 |
9590444 | Walley | Mar 2017 | B2 |
9620996 | Zeine | Apr 2017 | B2 |
9647328 | Dobric | May 2017 | B2 |
9706137 | Scanlon et al. | Jul 2017 | B2 |
9711999 | Hietala et al. | Jul 2017 | B2 |
9723635 | Nambord et al. | Aug 2017 | B2 |
9793758 | Leabman | Oct 2017 | B2 |
9793764 | Perry | Oct 2017 | B2 |
9800080 | Leabman et al. | Oct 2017 | B2 |
9800172 | Leabman | Oct 2017 | B1 |
9806564 | Leabman | Oct 2017 | B2 |
9819230 | Petras et al. | Nov 2017 | B2 |
9824815 | Leabman et al. | Nov 2017 | B2 |
9825674 | Leabman | Nov 2017 | B1 |
9831718 | Leabman et al. | Nov 2017 | B2 |
9838083 | Bell et al. | Dec 2017 | B2 |
9843213 | Leabman et al. | Dec 2017 | B2 |
9843229 | Leabman | Dec 2017 | B2 |
9843763 | Leabman et al. | Dec 2017 | B2 |
9847669 | Leabman | Dec 2017 | B2 |
9847677 | Leabman | Dec 2017 | B1 |
9847679 | Bell et al. | Dec 2017 | B2 |
9853361 | Chen et al. | Dec 2017 | B2 |
9853692 | Bell et al. | Dec 2017 | B1 |
9859756 | Leabman et al. | Jan 2018 | B2 |
9859758 | Leabman | Jan 2018 | B1 |
9866279 | Bell et al. | Jan 2018 | B2 |
9867032 | Verma et al. | Jan 2018 | B2 |
9871301 | Contopanagos | Jan 2018 | B2 |
9876380 | Leabman et al. | Jan 2018 | B1 |
9876394 | Leabman | Jan 2018 | B1 |
9876536 | Bell et al. | Jan 2018 | B1 |
9876648 | Bell | Jan 2018 | B2 |
9882394 | Bell et al. | Jan 2018 | B1 |
9882427 | Leabman et al. | Jan 2018 | B2 |
9887584 | Bell et al. | Feb 2018 | B1 |
9887739 | Leabman et al. | Feb 2018 | B2 |
9891669 | Bell | Feb 2018 | B2 |
9893554 | Bell et al. | Feb 2018 | B2 |
9893555 | Leabman et al. | Feb 2018 | B1 |
9893564 | de Rochemont | Feb 2018 | B2 |
9899744 | Contopanagos et al. | Feb 2018 | B1 |
9899844 | Bell et al. | Feb 2018 | B1 |
9899861 | Leabman et al. | Feb 2018 | B1 |
9899873 | Bell et al. | Feb 2018 | B2 |
9912199 | Leabman et al. | Mar 2018 | B2 |
9916485 | Lilly et al. | Mar 2018 | B1 |
9917477 | Bell et al. | Mar 2018 | B1 |
9923386 | Leabman et al. | Mar 2018 | B1 |
9939864 | Bell et al. | Apr 2018 | B1 |
9941747 | Bell et al. | Apr 2018 | B2 |
9965009 | Bell et al. | May 2018 | B1 |
9966765 | Leabman | May 2018 | B1 |
9966784 | Leabman | May 2018 | B2 |
9967743 | Bell et al. | May 2018 | B1 |
9973008 | Leabman | May 2018 | B1 |
10003211 | Leabman et al. | Jun 2018 | B1 |
10008777 | Broyde et al. | Jun 2018 | B1 |
10008889 | Bell et al. | Jun 2018 | B2 |
10014728 | Leabman | Jul 2018 | B1 |
10027159 | Hosseini | Jul 2018 | B2 |
10038337 | Leabman et al. | Jul 2018 | B1 |
10050462 | Leabman et al. | Aug 2018 | B1 |
10056782 | Leabman | Aug 2018 | B1 |
10063064 | Bell et al. | Aug 2018 | B1 |
10063105 | Leabman | Aug 2018 | B2 |
10063106 | Bell et al. | Aug 2018 | B2 |
10068703 | Contopanagos | Sep 2018 | B1 |
10075008 | Bell et al. | Sep 2018 | B1 |
10079515 | Hosseini et al. | Sep 2018 | B2 |
10090699 | Leabman | Oct 2018 | B1 |
10090714 | Bohn et al. | Oct 2018 | B2 |
10090886 | Bell et al. | Oct 2018 | B1 |
10103552 | Leabman et al. | Oct 2018 | B1 |
10103582 | Leabman et al. | Oct 2018 | B2 |
10110046 | Esquibel et al. | Oct 2018 | B1 |
10122219 | Hosseini et al. | Nov 2018 | B1 |
10122415 | Bell et al. | Nov 2018 | B2 |
10124754 | Leabman | Nov 2018 | B1 |
10128686 | Leabman et al. | Nov 2018 | B1 |
10128693 | Bell et al. | Nov 2018 | B2 |
10128695 | Leabman et al. | Nov 2018 | B2 |
10128699 | Leabman | Nov 2018 | B2 |
10134260 | Bell et al. | Nov 2018 | B1 |
10135112 | Hosseini | Nov 2018 | B1 |
10135286 | Hosseini et al. | Nov 2018 | B2 |
10135294 | Leabman | Nov 2018 | B1 |
10135295 | Leabman | Nov 2018 | B2 |
10141768 | Leabman et al. | Nov 2018 | B2 |
10141771 | Hosseini et al. | Nov 2018 | B1 |
10141791 | Bell et al. | Nov 2018 | B2 |
10148097 | Leabman et al. | Dec 2018 | B1 |
10153645 | Bell et al. | Dec 2018 | B1 |
10153653 | Bell et al. | Dec 2018 | B1 |
10153660 | Leabman et al. | Dec 2018 | B1 |
10158257 | Leabman | Dec 2018 | B2 |
10158259 | Leabman | Dec 2018 | B1 |
10164478 | Leabman | Dec 2018 | B2 |
10170917 | Bell et al. | Jan 2019 | B1 |
10177594 | Contopanagos | Jan 2019 | B2 |
10181756 | Bae et al. | Jan 2019 | B2 |
10186892 | Hosseini et al. | Jan 2019 | B2 |
10186893 | Bell et al. | Jan 2019 | B2 |
10186911 | Leabman | Jan 2019 | B2 |
10186913 | Leabman et al. | Jan 2019 | B2 |
10193396 | Bell et al. | Jan 2019 | B1 |
10199835 | Bell | Feb 2019 | B2 |
10199849 | Bell | Feb 2019 | B1 |
10199850 | Leabman | Feb 2019 | B2 |
10205239 | Contopanagos et al. | Feb 2019 | B1 |
10206185 | Leabman et al. | Feb 2019 | B2 |
10211674 | Leabman et al. | Feb 2019 | B1 |
10211680 | Leabman et al. | Feb 2019 | B2 |
10211682 | Bell et al. | Feb 2019 | B2 |
10211685 | Bell et al. | Feb 2019 | B2 |
10218207 | Hosseini et al. | Feb 2019 | B2 |
10218227 | Leabman et al. | Feb 2019 | B2 |
10223717 | Bell | Mar 2019 | B1 |
10224758 | Leabman et al. | Mar 2019 | B2 |
10224982 | Leabman | Mar 2019 | B1 |
10230266 | Leabman et al. | Mar 2019 | B1 |
10243414 | Leabman et al. | Mar 2019 | B1 |
10256657 | Hosseini et al. | Apr 2019 | B2 |
10256677 | Hosseini et al. | Apr 2019 | B2 |
10263432 | Leabman et al. | Apr 2019 | B1 |
10263476 | Leabman | Apr 2019 | B2 |
10270261 | Bell et al. | Apr 2019 | B2 |
10277054 | Hosseini | Apr 2019 | B2 |
10291055 | Bell et al. | May 2019 | B1 |
10291056 | Bell et al. | May 2019 | B2 |
10291066 | Leabman | May 2019 | B1 |
10291294 | Leabman | May 2019 | B2 |
10298024 | Leabman | May 2019 | B2 |
10298133 | Leabman | May 2019 | B2 |
10305192 | Rappaport | May 2019 | B1 |
10305315 | Leabman et al. | May 2019 | B2 |
10312715 | Leabman | Jun 2019 | B2 |
10320446 | Hosseini | Jun 2019 | B2 |
10333332 | Hosseini | Jun 2019 | B1 |
10355534 | Johnston et al. | Jul 2019 | B2 |
10381880 | Leabman et al. | Aug 2019 | B2 |
10389161 | Hosseini et al. | Aug 2019 | B2 |
10396588 | Leabman | Aug 2019 | B2 |
10396604 | Bell et al. | Aug 2019 | B2 |
10439442 | Hosseini et al. | Oct 2019 | B2 |
10439448 | Bell et al. | Oct 2019 | B2 |
10447093 | Hosseini | Oct 2019 | B2 |
10476312 | Johnston et al. | Nov 2019 | B2 |
10483768 | Bell et al. | Nov 2019 | B2 |
10490346 | Contopanagos | Nov 2019 | B2 |
10491029 | Hosseini | Nov 2019 | B2 |
10498144 | Leabman et al. | Dec 2019 | B2 |
10511097 | Kornaros et al. | Dec 2019 | B2 |
10511196 | Hosseini | Dec 2019 | B2 |
10516289 | Leabman et al. | Dec 2019 | B2 |
10516301 | Leabman | Dec 2019 | B2 |
10523033 | Leabman | Dec 2019 | B2 |
10523058 | Leabman | Dec 2019 | B2 |
10554052 | Bell et al. | Feb 2020 | B2 |
10594165 | Hosseini | Mar 2020 | B2 |
10615647 | Johnston et al. | Apr 2020 | B2 |
10680319 | Hosseini et al. | Jun 2020 | B2 |
10714984 | Hosseini et al. | Jul 2020 | B2 |
10734717 | Hosseini | Aug 2020 | B2 |
10778041 | Leabman | Sep 2020 | B2 |
10790674 | Bell et al. | Sep 2020 | B2 |
10840743 | Johnston et al. | Nov 2020 | B2 |
10879740 | Hosseini | Dec 2020 | B2 |
10923954 | Leabman | Feb 2021 | B2 |
10958095 | Leabman et al. | Mar 2021 | B2 |
10985617 | Johnston et al. | Apr 2021 | B1 |
11011942 | Liu | May 2021 | B2 |
11018779 | Sarajedini | May 2021 | B2 |
11451096 | Hoss | Sep 2022 | B2 |
11863001 | Hoss | Jan 2024 | B2 |
20020065052 | Pande et al. | May 2002 | A1 |
20020103447 | Terry | Aug 2002 | A1 |
20020171594 | Fang | Nov 2002 | A1 |
20030038750 | Chen | Feb 2003 | A1 |
20030058187 | Billiet et al. | Mar 2003 | A1 |
20040020100 | O'Brian et al. | Feb 2004 | A1 |
20040130425 | Dayan et al. | Jul 2004 | A1 |
20040130442 | Breed | Jul 2004 | A1 |
20040145342 | Lyon | Jul 2004 | A1 |
20040155832 | Yuanzhu | Aug 2004 | A1 |
20040207559 | Milosavljevic | Oct 2004 | A1 |
20040259604 | Mickle et al. | Dec 2004 | A1 |
20050007276 | Barrick et al. | Jan 2005 | A1 |
20050116683 | Cheng | Jun 2005 | A1 |
20050117660 | Vialle et al. | Jun 2005 | A1 |
20050134517 | Gottl | Jun 2005 | A1 |
20050227619 | Lee et al. | Oct 2005 | A1 |
20050237258 | Abramov et al. | Oct 2005 | A1 |
20060013335 | Leabman | Jan 2006 | A1 |
20060019712 | Choi | Jan 2006 | A1 |
20060030279 | Leabman et al. | Feb 2006 | A1 |
20060092079 | de Rochemont | May 2006 | A1 |
20060094425 | Mickle et al. | May 2006 | A1 |
20060113955 | Nunally | Jun 2006 | A1 |
20060119532 | Yun et al. | Jun 2006 | A1 |
20060132360 | Caimi et al. | Jun 2006 | A1 |
20060160517 | Yoon | Jul 2006 | A1 |
20060199620 | Greene et al. | Sep 2006 | A1 |
20060238365 | Vecchione et al. | Oct 2006 | A1 |
20060266564 | Perlman et al. | Nov 2006 | A1 |
20060266917 | Baldis et al. | Nov 2006 | A1 |
20060281423 | Caimi et al. | Dec 2006 | A1 |
20060284593 | Nagy et al. | Dec 2006 | A1 |
20070007821 | Rossetti | Jan 2007 | A1 |
20070019693 | Graham | Jan 2007 | A1 |
20070021140 | Keyes | Jan 2007 | A1 |
20070060185 | Simon et al. | Mar 2007 | A1 |
20070090997 | Brown et al. | Apr 2007 | A1 |
20070093269 | Leabman et al. | Apr 2007 | A1 |
20070097653 | Gilliland et al. | May 2007 | A1 |
20070103110 | Sagoo | May 2007 | A1 |
20070106894 | Zhang | May 2007 | A1 |
20070109121 | Cohen | May 2007 | A1 |
20070139000 | Kozuma | Jun 2007 | A1 |
20070149162 | Greene et al. | Jun 2007 | A1 |
20070164868 | Deavours et al. | Jul 2007 | A1 |
20070173214 | Mickle et al. | Jul 2007 | A1 |
20070178857 | Greene et al. | Aug 2007 | A1 |
20070178945 | Cook et al. | Aug 2007 | A1 |
20070182367 | Partovi | Aug 2007 | A1 |
20070191074 | Harrist et al. | Aug 2007 | A1 |
20070191075 | Greene et al. | Aug 2007 | A1 |
20070210960 | Rofougaran et al. | Sep 2007 | A1 |
20070222681 | Greene et al. | Sep 2007 | A1 |
20070228833 | Stevens et al. | Oct 2007 | A1 |
20070229261 | Zimmerman et al. | Oct 2007 | A1 |
20070240297 | Yang et al. | Oct 2007 | A1 |
20070273486 | Shiotsu | Nov 2007 | A1 |
20070296639 | Hook et al. | Dec 2007 | A1 |
20070298846 | Greene et al. | Dec 2007 | A1 |
20080014897 | Cook et al. | Jan 2008 | A1 |
20080024376 | Norris et al. | Jan 2008 | A1 |
20080048917 | Achour et al. | Feb 2008 | A1 |
20080067874 | Tseng | Mar 2008 | A1 |
20080074324 | Puzella et al. | Mar 2008 | A1 |
20080089277 | Alexander et al. | Apr 2008 | A1 |
20080110263 | Klessel et al. | May 2008 | A1 |
20080122297 | Arai | May 2008 | A1 |
20080123383 | Shionoiri | May 2008 | A1 |
20080169910 | Greene et al. | Jul 2008 | A1 |
20080197802 | Onishi | Aug 2008 | A1 |
20080204350 | Tam et al. | Aug 2008 | A1 |
20080210762 | Osada et al. | Sep 2008 | A1 |
20080211458 | Lawther et al. | Sep 2008 | A1 |
20080233890 | Baker | Sep 2008 | A1 |
20080258993 | Gummalla et al. | Oct 2008 | A1 |
20080266191 | Hilgers | Oct 2008 | A1 |
20080278378 | Chang et al. | Nov 2008 | A1 |
20080309452 | Zeine | Dec 2008 | A1 |
20090002493 | Kates | Jan 2009 | A1 |
20090010316 | Rofougaran et al. | Jan 2009 | A1 |
20090019183 | Wu et al. | Jan 2009 | A1 |
20090036065 | Siu | Feb 2009 | A1 |
20090039828 | Jakubowski | Feb 2009 | A1 |
20090047998 | Alberth, Jr. | Feb 2009 | A1 |
20090058361 | John | Mar 2009 | A1 |
20090058731 | Geary et al. | Mar 2009 | A1 |
20090060012 | Gresset et al. | Mar 2009 | A1 |
20090067198 | Graham et al. | Mar 2009 | A1 |
20090067208 | Martin et al. | Mar 2009 | A1 |
20090073066 | Jordon et al. | Mar 2009 | A1 |
20090096412 | Huang | Apr 2009 | A1 |
20090096413 | Partovi | Apr 2009 | A1 |
20090102292 | Cook et al. | Apr 2009 | A1 |
20090102296 | Greene et al. | Apr 2009 | A1 |
20090108679 | Porwal | Apr 2009 | A1 |
20090122847 | Nysen et al. | May 2009 | A1 |
20090128262 | Lee et al. | May 2009 | A1 |
20090174604 | Keskitalo | Jul 2009 | A1 |
20090200985 | Zane et al. | Aug 2009 | A1 |
20090206791 | Jung | Aug 2009 | A1 |
20090207092 | Nysen et al. | Aug 2009 | A1 |
20090218884 | Soar | Sep 2009 | A1 |
20090218891 | McCollough | Sep 2009 | A1 |
20090243397 | Cook et al. | Oct 2009 | A1 |
20090256752 | Akkermans et al. | Oct 2009 | A1 |
20090264069 | Yamasuge | Oct 2009 | A1 |
20090271048 | Wakamatsu | Oct 2009 | A1 |
20090281678 | Wakamatsu | Nov 2009 | A1 |
20090284082 | Mohammadian | Nov 2009 | A1 |
20090284220 | Toncich et al. | Nov 2009 | A1 |
20090284227 | Mohammadian et al. | Nov 2009 | A1 |
20090286475 | Toncich et al. | Nov 2009 | A1 |
20090286476 | Toncich et al. | Nov 2009 | A1 |
20090291634 | Saarisalo | Nov 2009 | A1 |
20090312046 | Clevenger et al. | Dec 2009 | A1 |
20090322281 | Kamijo et al. | Dec 2009 | A1 |
20100001683 | Huang et al. | Jan 2010 | A1 |
20100007307 | Baarman et al. | Jan 2010 | A1 |
20100007569 | Sim et al. | Jan 2010 | A1 |
20100019908 | Cho et al. | Jan 2010 | A1 |
20100033021 | Bennett | Feb 2010 | A1 |
20100034238 | Bennett | Feb 2010 | A1 |
20100044123 | Perlman et al. | Feb 2010 | A1 |
20100060534 | Oodachi | Mar 2010 | A1 |
20100066631 | Puzella et al. | Mar 2010 | A1 |
20100075607 | Hosoya | Mar 2010 | A1 |
20100079005 | Hyde et al. | Apr 2010 | A1 |
20100079011 | Hyde et al. | Apr 2010 | A1 |
20100087227 | Francos et al. | Apr 2010 | A1 |
20100090656 | Shearer et al. | Apr 2010 | A1 |
20100109443 | Cook et al. | May 2010 | A1 |
20100117926 | DeJean, II | May 2010 | A1 |
20100123618 | Martin et al. | May 2010 | A1 |
20100123624 | Minear et al. | May 2010 | A1 |
20100127660 | Cook et al. | May 2010 | A1 |
20100142418 | Nishioka et al. | Jun 2010 | A1 |
20100142509 | Zhu et al. | Jun 2010 | A1 |
20100148723 | Cook et al. | Jun 2010 | A1 |
20100151808 | Toncich et al. | Jun 2010 | A1 |
20100156741 | Vazquez et al. | Jun 2010 | A1 |
20100164296 | Kurs et al. | Jul 2010 | A1 |
20100164433 | Janefalker et al. | Jul 2010 | A1 |
20100167664 | Szini | Jul 2010 | A1 |
20100171461 | Baarman et al. | Jul 2010 | A1 |
20100171676 | Tani et al. | Jul 2010 | A1 |
20100174629 | Taylor et al. | Jul 2010 | A1 |
20100176934 | Chou et al. | Jul 2010 | A1 |
20100181961 | Novak et al. | Jul 2010 | A1 |
20100181964 | Huggins et al. | Jul 2010 | A1 |
20100194206 | Burdo et al. | Aug 2010 | A1 |
20100201189 | Kirby et al. | Aug 2010 | A1 |
20100201201 | Mobarhan et al. | Aug 2010 | A1 |
20100201314 | Toncich et al. | Aug 2010 | A1 |
20100207572 | Kirby et al. | Aug 2010 | A1 |
20100210233 | Cook et al. | Aug 2010 | A1 |
20100213770 | Kikuchi | Aug 2010 | A1 |
20100213895 | Keating et al. | Aug 2010 | A1 |
20100214177 | Parsche | Aug 2010 | A1 |
20100222010 | Ozaki et al. | Sep 2010 | A1 |
20100225270 | Jacobs et al. | Sep 2010 | A1 |
20100227570 | Hendin | Sep 2010 | A1 |
20100244576 | Hillan et al. | Sep 2010 | A1 |
20100253281 | Li | Oct 2010 | A1 |
20100256831 | Abramo et al. | Oct 2010 | A1 |
20100259447 | Crouch | Oct 2010 | A1 |
20100264747 | Hall et al. | Oct 2010 | A1 |
20100277003 | Von Novak et al. | Nov 2010 | A1 |
20100279606 | Hillan et al. | Nov 2010 | A1 |
20100289341 | Ozaki et al. | Nov 2010 | A1 |
20100295372 | Hyde et al. | Nov 2010 | A1 |
20100309088 | Hyvonen et al. | Dec 2010 | A1 |
20100315045 | Zeine | Dec 2010 | A1 |
20100328044 | Waffenschmidt et al. | Dec 2010 | A1 |
20110009057 | Saunamäki | Jan 2011 | A1 |
20110013198 | Shirley | Jan 2011 | A1 |
20110018360 | Baarman et al. | Jan 2011 | A1 |
20110028114 | Kerselaers | Feb 2011 | A1 |
20110032149 | Leabman | Feb 2011 | A1 |
20110032866 | Leabman | Feb 2011 | A1 |
20110034190 | Leabman | Feb 2011 | A1 |
20110034191 | Leabman | Feb 2011 | A1 |
20110043047 | Karalis et al. | Feb 2011 | A1 |
20110043163 | Baarman et al. | Feb 2011 | A1 |
20110043327 | Baarman et al. | Feb 2011 | A1 |
20110050166 | Cook et al. | Mar 2011 | A1 |
20110057607 | Carobolante | Mar 2011 | A1 |
20110057853 | Kim et al. | Mar 2011 | A1 |
20110062788 | Chen et al. | Mar 2011 | A1 |
20110074342 | MacLaughlin | Mar 2011 | A1 |
20110074349 | Ghovanloo | Mar 2011 | A1 |
20110109167 | Park et al. | May 2011 | A1 |
20110115303 | Baarman et al. | May 2011 | A1 |
20110115432 | El-Maleh | May 2011 | A1 |
20110115605 | Dimig et al. | May 2011 | A1 |
20110121660 | Azancot et al. | May 2011 | A1 |
20110122018 | Tarng et al. | May 2011 | A1 |
20110122026 | DeLaquil et al. | May 2011 | A1 |
20110127845 | Walley et al. | Jun 2011 | A1 |
20110127952 | Walley et al. | Jun 2011 | A1 |
20110133691 | Hautanen | Jun 2011 | A1 |
20110151789 | Viglione et al. | Jun 2011 | A1 |
20110154429 | Stantchev | Jun 2011 | A1 |
20110156493 | Bennett | Jun 2011 | A1 |
20110156494 | Mashinsky | Jun 2011 | A1 |
20110156640 | Moshfeghi | Jun 2011 | A1 |
20110175455 | Hashiguchi | Jul 2011 | A1 |
20110175461 | Tinaphong | Jul 2011 | A1 |
20110181120 | Liu et al. | Jul 2011 | A1 |
20110182245 | Malkamaki et al. | Jul 2011 | A1 |
20110184842 | Melen | Jul 2011 | A1 |
20110194543 | Zhao et al. | Aug 2011 | A1 |
20110195722 | Walter et al. | Aug 2011 | A1 |
20110199046 | Tsai et al. | Aug 2011 | A1 |
20110215086 | Yeh | Sep 2011 | A1 |
20110217923 | Ma | Sep 2011 | A1 |
20110220634 | Yeh | Sep 2011 | A1 |
20110221389 | Won et al. | Sep 2011 | A1 |
20110222272 | Yeh | Sep 2011 | A1 |
20110227725 | Muirhead | Sep 2011 | A1 |
20110243040 | Khan et al. | Oct 2011 | A1 |
20110243050 | Yanover | Oct 2011 | A1 |
20110244913 | Kim et al. | Oct 2011 | A1 |
20110248573 | Kanno et al. | Oct 2011 | A1 |
20110248575 | Kim et al. | Oct 2011 | A1 |
20110249678 | Bonicatto | Oct 2011 | A1 |
20110254377 | Widmer et al. | Oct 2011 | A1 |
20110254503 | Widmer et al. | Oct 2011 | A1 |
20110259953 | Baarman et al. | Oct 2011 | A1 |
20110273977 | Shapira et al. | Nov 2011 | A1 |
20110278941 | Krishna et al. | Nov 2011 | A1 |
20110279226 | Chen et al. | Nov 2011 | A1 |
20110281535 | Low et al. | Nov 2011 | A1 |
20110282415 | Eckhoff et al. | Nov 2011 | A1 |
20110285213 | Kowalewski | Nov 2011 | A1 |
20110286374 | Shin et al. | Nov 2011 | A1 |
20110291489 | Tsai et al. | Dec 2011 | A1 |
20110302078 | Failing | Dec 2011 | A1 |
20110304216 | Baarman | Dec 2011 | A1 |
20110304437 | Beeler | Dec 2011 | A1 |
20110304521 | Ando et al. | Dec 2011 | A1 |
20120007441 | John | Jan 2012 | A1 |
20120013196 | Kim et al. | Jan 2012 | A1 |
20120013198 | Uramoto et al. | Jan 2012 | A1 |
20120013296 | Heydari et al. | Jan 2012 | A1 |
20120019419 | Prat et al. | Jan 2012 | A1 |
20120025622 | Kim et al. | Feb 2012 | A1 |
20120043887 | Mesibov | Feb 2012 | A1 |
20120051109 | Kim et al. | Mar 2012 | A1 |
20120051294 | Guillouard | Mar 2012 | A1 |
20120056486 | Endo et al. | Mar 2012 | A1 |
20120056741 | Zhu et al. | Mar 2012 | A1 |
20120068906 | Asher et al. | Mar 2012 | A1 |
20120074891 | Anderson et al. | Mar 2012 | A1 |
20120075072 | Pappu | Mar 2012 | A1 |
20120080944 | Recker et al. | Apr 2012 | A1 |
20120080957 | Cooper et al. | Apr 2012 | A1 |
20120086281 | Kanno | Apr 2012 | A1 |
20120086284 | Capanella et al. | Apr 2012 | A1 |
20120086615 | Norair | Apr 2012 | A1 |
20120095617 | Martin et al. | Apr 2012 | A1 |
20120098350 | Campanella et al. | Apr 2012 | A1 |
20120098485 | Kang et al. | Apr 2012 | A1 |
20120099675 | Kitamura et al. | Apr 2012 | A1 |
20120103562 | Clayton | May 2012 | A1 |
20120104849 | Jackson | May 2012 | A1 |
20120105252 | Wang | May 2012 | A1 |
20120112532 | Kesler et al. | May 2012 | A1 |
20120119914 | Uchida | May 2012 | A1 |
20120126743 | Rivers, Jr. | May 2012 | A1 |
20120132647 | Beverly et al. | May 2012 | A1 |
20120133214 | Yun et al. | May 2012 | A1 |
20120142291 | Rath et al. | Jun 2012 | A1 |
20120146426 | Sabo | Jun 2012 | A1 |
20120146576 | Partovi | Jun 2012 | A1 |
20120146577 | Tanabe | Jun 2012 | A1 |
20120147802 | Ukita et al. | Jun 2012 | A1 |
20120149307 | Terada et al. | Jun 2012 | A1 |
20120150670 | Taylor et al. | Jun 2012 | A1 |
20120153894 | Widmer et al. | Jun 2012 | A1 |
20120157019 | Li | Jun 2012 | A1 |
20120161531 | Kim et al. | Jun 2012 | A1 |
20120161544 | Kashiwagi et al. | Jun 2012 | A1 |
20120169276 | Wang | Jul 2012 | A1 |
20120169278 | Choi | Jul 2012 | A1 |
20120173418 | Beardsmore et al. | Jul 2012 | A1 |
20120179004 | Roesicke et al. | Jul 2012 | A1 |
20120181973 | Lyden | Jul 2012 | A1 |
20120182427 | Marshall | Jul 2012 | A1 |
20120188142 | Shashi et al. | Jul 2012 | A1 |
20120187851 | Huggins et al. | Aug 2012 | A1 |
20120193999 | Zeine | Aug 2012 | A1 |
20120200399 | Chae | Aug 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jian et al. | Aug 2012 | A1 |
20120206299 | Valdes-Garcia | Aug 2012 | A1 |
20120211214 | Phan | Aug 2012 | A1 |
20120212071 | Miyabayashi et al. | Aug 2012 | A1 |
20120212072 | Miyabayashi et al. | Aug 2012 | A1 |
20120214462 | Chu et al. | Aug 2012 | A1 |
20120214536 | Kim et al. | Aug 2012 | A1 |
20120228392 | Cameron et al. | Sep 2012 | A1 |
20120228956 | Kamata | Sep 2012 | A1 |
20120231856 | Lee et al. | Sep 2012 | A1 |
20120235636 | Partovi | Sep 2012 | A1 |
20120242283 | Kim et al. | Sep 2012 | A1 |
20120248886 | Kesler et al. | Oct 2012 | A1 |
20120248888 | Kesler et al. | Oct 2012 | A1 |
20120248891 | Drennen | Oct 2012 | A1 |
20120249051 | Son et al. | Oct 2012 | A1 |
20120262002 | Widmer et al. | Oct 2012 | A1 |
20120265272 | Judkins | Oct 2012 | A1 |
20120267900 | Huffman et al. | Oct 2012 | A1 |
20120268238 | Park et al. | Oct 2012 | A1 |
20120270592 | Ngai | Oct 2012 | A1 |
20120274154 | DeLuca | Nov 2012 | A1 |
20120280650 | Kim et al. | Nov 2012 | A1 |
20120286582 | Kim et al. | Nov 2012 | A1 |
20120292993 | Mettler et al. | Nov 2012 | A1 |
20120293021 | Teggatz et al. | Nov 2012 | A1 |
20120293119 | Park et al. | Nov 2012 | A1 |
20120299389 | Lee et al. | Nov 2012 | A1 |
20120299540 | Perry | Nov 2012 | A1 |
20120299541 | Perry | Nov 2012 | A1 |
20120299542 | Perry | Nov 2012 | A1 |
20120300588 | Perry | Nov 2012 | A1 |
20120300592 | Perry | Nov 2012 | A1 |
20120300593 | Perry | Nov 2012 | A1 |
20120306284 | Lee et al. | Dec 2012 | A1 |
20120306433 | Kim et al. | Dec 2012 | A1 |
20120306572 | Hietala et al. | Dec 2012 | A1 |
20120306705 | Sakurai et al. | Dec 2012 | A1 |
20120306707 | Yang et al. | Dec 2012 | A1 |
20120306720 | Tanmi et al. | Dec 2012 | A1 |
20120307873 | Kim et al. | Dec 2012 | A1 |
20120309295 | Maguire | Dec 2012 | A1 |
20120309308 | Kim et al. | Dec 2012 | A1 |
20120309332 | Liao | Dec 2012 | A1 |
20120313446 | Park et al. | Dec 2012 | A1 |
20120313449 | Kurs | Dec 2012 | A1 |
20120313835 | Gebretnsae | Dec 2012 | A1 |
20120326660 | Lu et al. | Dec 2012 | A1 |
20130002550 | Zalewski | Jan 2013 | A1 |
20130005252 | Lee et al. | Jan 2013 | A1 |
20130018439 | Chow et al. | Jan 2013 | A1 |
20130024059 | Miller et al. | Jan 2013 | A1 |
20130026981 | Van Der Lee | Jan 2013 | A1 |
20130026982 | Rothenbaum | Jan 2013 | A1 |
20130032589 | Chung | Feb 2013 | A1 |
20130033571 | Steen | Feb 2013 | A1 |
20130038124 | Newdoll et al. | Feb 2013 | A1 |
20130038402 | Karalis et al. | Feb 2013 | A1 |
20130043738 | Park et al. | Feb 2013 | A1 |
20130044035 | Zhuang | Feb 2013 | A1 |
20130049471 | Oleynik | Feb 2013 | A1 |
20130049475 | Kim et al. | Feb 2013 | A1 |
20130049484 | Weissentern et al. | Feb 2013 | A1 |
20130057078 | Lee | Mar 2013 | A1 |
20130057205 | Lee et al. | Mar 2013 | A1 |
20130057210 | Negaard et al. | Mar 2013 | A1 |
20130057364 | Kesler et al. | Mar 2013 | A1 |
20130058379 | Kim et al. | Mar 2013 | A1 |
20130062959 | Lee et al. | Mar 2013 | A1 |
20130063082 | Lee et al. | Mar 2013 | A1 |
20130063143 | Adalsteinsson et al. | Mar 2013 | A1 |
20130063266 | Yunker et al. | Mar 2013 | A1 |
20130069444 | Waffenschmidt et al. | Mar 2013 | A1 |
20130076308 | Niskala et al. | Mar 2013 | A1 |
20130077650 | Traxler et al. | Mar 2013 | A1 |
20130078918 | Crowley et al. | Mar 2013 | A1 |
20130082651 | Park et al. | Apr 2013 | A1 |
20130082653 | Lee et al. | Apr 2013 | A1 |
20130083774 | Son et al. | Apr 2013 | A1 |
20130088082 | Kang et al. | Apr 2013 | A1 |
20130088090 | Wu | Apr 2013 | A1 |
20130088192 | Eaton | Apr 2013 | A1 |
20130088331 | Cho | Apr 2013 | A1 |
20130093388 | Partovi | Apr 2013 | A1 |
20130099389 | Hong et al. | Apr 2013 | A1 |
20130099586 | Kato | Apr 2013 | A1 |
20130106197 | Bae et al. | May 2013 | A1 |
20130107023 | Tanaka et al. | May 2013 | A1 |
20130119777 | Rees | May 2013 | A1 |
20130119778 | Jung | May 2013 | A1 |
20130119929 | Partovi | May 2013 | A1 |
20130120052 | Siska | May 2013 | A1 |
20130120205 | Thomson et al. | May 2013 | A1 |
20130120206 | Biancotto et al. | May 2013 | A1 |
20130120217 | Ueda et al. | May 2013 | A1 |
20130130621 | Kim et al. | May 2013 | A1 |
20130132010 | Winger et al. | May 2013 | A1 |
20130134923 | Smith | May 2013 | A1 |
20130137455 | Xia | May 2013 | A1 |
20130141037 | Jenwatanavet et al. | Jun 2013 | A1 |
20130148341 | Williams | Jun 2013 | A1 |
20130149975 | Yu et al. | Jun 2013 | A1 |
20130154387 | Lee et al. | Jun 2013 | A1 |
20130155748 | Sundstrom | Jun 2013 | A1 |
20130157729 | Tabe | Jun 2013 | A1 |
20130162335 | Kim et al. | Jun 2013 | A1 |
20130169061 | Microshnichenko et al. | Jul 2013 | A1 |
20130169219 | Gray | Jul 2013 | A1 |
20130169348 | Shi | Jul 2013 | A1 |
20130171939 | Tian et al. | Jul 2013 | A1 |
20130175877 | Abe et al. | Jul 2013 | A1 |
20130178253 | Karaoguz | Jul 2013 | A1 |
20130181881 | Christie et al. | Jul 2013 | A1 |
20130187475 | Vendik | Jul 2013 | A1 |
20130190031 | Persson et al. | Jul 2013 | A1 |
20130193769 | Mehta et al. | Aug 2013 | A1 |
20130197320 | Albert et al. | Aug 2013 | A1 |
20130200064 | Alexander | Aug 2013 | A1 |
20130207477 | Nam et al. | Aug 2013 | A1 |
20130207604 | Zeine | Aug 2013 | A1 |
20130207879 | Rada et al. | Aug 2013 | A1 |
20130210357 | Qin et al. | Aug 2013 | A1 |
20130221757 | Cho et al. | Aug 2013 | A1 |
20130222201 | Ma et al. | Aug 2013 | A1 |
20130234530 | Miyauchi | Sep 2013 | A1 |
20130234536 | Chemishkian et al. | Sep 2013 | A1 |
20130234658 | Endo et al. | Sep 2013 | A1 |
20130241306 | Aber et al. | Sep 2013 | A1 |
20130241468 | Moshfeghi | Sep 2013 | A1 |
20130241474 | Moshfeghi | Sep 2013 | A1 |
20130249478 | Hirano | Sep 2013 | A1 |
20130249479 | Partovi | Sep 2013 | A1 |
20130249682 | Van Wiemeersch et al. | Sep 2013 | A1 |
20130250102 | Scanlon et al. | Sep 2013 | A1 |
20130254578 | Huang et al. | Sep 2013 | A1 |
20130264997 | Lee et al. | Oct 2013 | A1 |
20130268782 | Tam et al. | Oct 2013 | A1 |
20130270923 | Cook et al. | Oct 2013 | A1 |
20130278076 | Proud | Oct 2013 | A1 |
20130278209 | Von Novak | Oct 2013 | A1 |
20130285464 | Miwa | Oct 2013 | A1 |
20130285477 | Lo et al. | Oct 2013 | A1 |
20130285606 | Ben-Shalom et al. | Oct 2013 | A1 |
20130288600 | Kuusilinna et al. | Oct 2013 | A1 |
20130288617 | Kim et al. | Oct 2013 | A1 |
20130293423 | Moshfeghi | Nov 2013 | A1 |
20130300356 | Yang | Nov 2013 | A1 |
20130307751 | Yu-Juin et al. | Nov 2013 | A1 |
20130310020 | Kazuhiro | Nov 2013 | A1 |
20130311798 | Sultenfuss | Nov 2013 | A1 |
20130328417 | Takeuchi | Dec 2013 | A1 |
20130334883 | Kim et al. | Dec 2013 | A1 |
20130339108 | Ryder et al. | Dec 2013 | A1 |
20130343208 | Sexton et al. | Dec 2013 | A1 |
20130343251 | Zhang | Dec 2013 | A1 |
20130343585 | Bennett et al. | Dec 2013 | A1 |
20140001608 | McPartlin | Jan 2014 | A1 |
20140001846 | Mosebrook | Jan 2014 | A1 |
20140001875 | Nahidipour | Jan 2014 | A1 |
20140001876 | Fujiwara et al. | Jan 2014 | A1 |
20140006017 | Sen | Jan 2014 | A1 |
20140008993 | Leabman | Jan 2014 | A1 |
20140009110 | Lee | Jan 2014 | A1 |
20140011531 | Burstrom et al. | Jan 2014 | A1 |
20140015336 | Weber et al. | Jan 2014 | A1 |
20140015344 | Mohamadi | Jan 2014 | A1 |
20140021907 | Yu et al. | Jan 2014 | A1 |
20140021908 | McCool | Jan 2014 | A1 |
20140024325 | Iun et al. | Jan 2014 | A1 |
20140035524 | Zeine | Feb 2014 | A1 |
20140035526 | Tripathi et al. | Feb 2014 | A1 |
20140035786 | Ley | Feb 2014 | A1 |
20140043248 | Yeh | Feb 2014 | A1 |
20140049422 | Von Novak et al. | Feb 2014 | A1 |
20140054971 | Kissin | Feb 2014 | A1 |
20140055098 | Lee et al. | Feb 2014 | A1 |
20140057618 | Zirwas et al. | Feb 2014 | A1 |
20140062395 | Kwon et al. | Mar 2014 | A1 |
20140082435 | Kitgawa | Mar 2014 | A1 |
20140086125 | Polo et al. | Mar 2014 | A1 |
20140086592 | Nakahara et al. | Mar 2014 | A1 |
20140091756 | Ofstein et al. | Apr 2014 | A1 |
20140091968 | Harel et al. | Apr 2014 | A1 |
20140091974 | Desclos et al. | Apr 2014 | A1 |
20140103869 | Radovic | Apr 2014 | A1 |
20140104157 | Burns | Apr 2014 | A1 |
20140111147 | Soar | Apr 2014 | A1 |
20140111153 | Kwon et al. | Apr 2014 | A1 |
20140113689 | Lee | Apr 2014 | A1 |
20140117946 | Muller et al. | May 2014 | A1 |
20140118140 | Amis | May 2014 | A1 |
20140128107 | An | May 2014 | A1 |
20140132210 | Partovi | May 2014 | A1 |
20140133279 | Khuri-Yakub | May 2014 | A1 |
20140139034 | Sankar et al. | May 2014 | A1 |
20140139039 | Cook et al. | May 2014 | A1 |
20140139180 | Kim et al. | May 2014 | A1 |
20140141838 | Cai et al. | May 2014 | A1 |
20140142876 | John et al. | May 2014 | A1 |
20140143933 | Low et al. | May 2014 | A1 |
20140145879 | Pan | May 2014 | A1 |
20140145884 | Dang et al. | May 2014 | A1 |
20140152117 | Sanker | Jun 2014 | A1 |
20140159646 | Sankar et al. | Jun 2014 | A1 |
20140159651 | Von Novak et al. | Jun 2014 | A1 |
20140159652 | Hall et al. | Jun 2014 | A1 |
20140159662 | Furui | Jun 2014 | A1 |
20140159667 | Kim et al. | Jun 2014 | A1 |
20140169385 | Hadani et al. | Jun 2014 | A1 |
20140175893 | Sengupta et al. | Jun 2014 | A1 |
20140176054 | Porat et al. | Jun 2014 | A1 |
20140176061 | Cheatham, III et al. | Jun 2014 | A1 |
20140176082 | Visser | Jun 2014 | A1 |
20140177399 | Teng et al. | Jun 2014 | A1 |
20140183964 | Walley | Jul 2014 | A1 |
20140184148 | Van Der Lee et al. | Jul 2014 | A1 |
20140184155 | Cha | Jul 2014 | A1 |
20140184163 | Das et al. | Jul 2014 | A1 |
20140184170 | Jeong | Jul 2014 | A1 |
20140191568 | Partovi | Jul 2014 | A1 |
20140191818 | Waffenschmidt et al. | Jul 2014 | A1 |
20140194092 | Wanstedt et al. | Jul 2014 | A1 |
20140194095 | Wanstedt et al. | Jul 2014 | A1 |
20140197691 | Wang | Jul 2014 | A1 |
20140203629 | Hoffman et al. | Jul 2014 | A1 |
20140206384 | Kim et al. | Jul 2014 | A1 |
20140210281 | Ito et al. | Jul 2014 | A1 |
20140217955 | Lin | Aug 2014 | A1 |
20140217967 | Zeine et al. | Aug 2014 | A1 |
20140225805 | Pan et al. | Aug 2014 | A1 |
20140232320 | Ento July et al. | Aug 2014 | A1 |
20140232610 | Shigemoto et al. | Aug 2014 | A1 |
20140239733 | Mach et al. | Aug 2014 | A1 |
20140241231 | Zeine | Aug 2014 | A1 |
20140245036 | Oishi | Aug 2014 | A1 |
20140246416 | White | Sep 2014 | A1 |
20140247152 | Proud | Sep 2014 | A1 |
20140252813 | Lee et al. | Sep 2014 | A1 |
20140252866 | Walsh et al. | Sep 2014 | A1 |
20140265725 | Angle et al. | Sep 2014 | A1 |
20140265727 | Berte | Sep 2014 | A1 |
20140265943 | Angle et al. | Sep 2014 | A1 |
20140266025 | Jakubowski | Sep 2014 | A1 |
20140266946 | Bily et al. | Sep 2014 | A1 |
20140273819 | Nadakuduti et al. | Sep 2014 | A1 |
20140273892 | Nourbakhsh | Sep 2014 | A1 |
20140281655 | Angle et al. | Sep 2014 | A1 |
20140292090 | Cordeiro et al. | Oct 2014 | A1 |
20140292451 | Zimmerman | Oct 2014 | A1 |
20140300452 | Rofe et al. | Oct 2014 | A1 |
20140312706 | Fiorello et al. | Oct 2014 | A1 |
20140325218 | Shimizu et al. | Oct 2014 | A1 |
20140327320 | Muhs et al. | Nov 2014 | A1 |
20140327390 | Park et al. | Nov 2014 | A1 |
20140333142 | Desrosiers | Nov 2014 | A1 |
20140346860 | Aubry et al. | Nov 2014 | A1 |
20140354063 | Leabman et al. | Dec 2014 | A1 |
20140354221 | Leabman et al. | Dec 2014 | A1 |
20140355718 | Guan et al. | Dec 2014 | A1 |
20140368048 | Leabman et al. | Dec 2014 | A1 |
20140368161 | Leabman et al. | Dec 2014 | A1 |
20140368405 | Ek et al. | Dec 2014 | A1 |
20140375139 | Tsukamoto | Dec 2014 | A1 |
20140375253 | Leabman et al. | Dec 2014 | A1 |
20140375258 | Arkhipenkov | Dec 2014 | A1 |
20140375261 | Manova-Elssibony et al. | Dec 2014 | A1 |
20150001949 | Leabman et al. | Jan 2015 | A1 |
20150002086 | Matos et al. | Jan 2015 | A1 |
20150003207 | Lee et al. | Jan 2015 | A1 |
20150008980 | Kim et al. | Jan 2015 | A1 |
20150011160 | Uurgovan et al. | Jan 2015 | A1 |
20150015180 | Miller et al. | Jan 2015 | A1 |
20150015182 | Brandtman et al. | Jan 2015 | A1 |
20150015192 | Leabman et al. | Jan 2015 | A1 |
20150021990 | Myer et al. | Jan 2015 | A1 |
20150022008 | Leabman et al. | Jan 2015 | A1 |
20150022010 | Leabman et al. | Jan 2015 | A1 |
20150022194 | Almalki et al. | Jan 2015 | A1 |
20150023204 | Wil et al. | Jan 2015 | A1 |
20150028688 | Masaoka | Jan 2015 | A1 |
20150028694 | Leabman et al. | Jan 2015 | A1 |
20150028697 | Leabman et al. | Jan 2015 | A1 |
20150028875 | Irie et al. | Jan 2015 | A1 |
20150035378 | Calhoun et al. | Feb 2015 | A1 |
20150035709 | Lim | Feb 2015 | A1 |
20150035715 | Kim et al. | Feb 2015 | A1 |
20150039482 | Fuinaga | Feb 2015 | A1 |
20150041459 | Leabman et al. | Feb 2015 | A1 |
20150042265 | Leabman et al. | Feb 2015 | A1 |
20150044977 | Ramasamy et al. | Feb 2015 | A1 |
20150046526 | Bush et al. | Feb 2015 | A1 |
20150061404 | Lamenza et al. | Mar 2015 | A1 |
20150076917 | Leabman et al. | Mar 2015 | A1 |
20150076927 | Leabman et al. | Mar 2015 | A1 |
20150077036 | Leabman et al. | Mar 2015 | A1 |
20150077037 | Leabman et al. | Mar 2015 | A1 |
20150091520 | Blum et al. | Apr 2015 | A1 |
20150091706 | Chemishkian et al. | Apr 2015 | A1 |
20150097442 | Muurinen | Apr 2015 | A1 |
20150097663 | Sloo et al. | Apr 2015 | A1 |
20150102764 | Leabman et al. | Apr 2015 | A1 |
20150102769 | Leabman et al. | Apr 2015 | A1 |
20150102942 | Houser et al. | Apr 2015 | A1 |
20150102973 | Hand et al. | Apr 2015 | A1 |
20150108848 | Joehren | Apr 2015 | A1 |
20150109181 | Hyde et al. | Apr 2015 | A1 |
20150115877 | Aria et al. | Apr 2015 | A1 |
20150115878 | Park | Apr 2015 | A1 |
20150116153 | Chen et al. | Apr 2015 | A1 |
20150128733 | Taylor et al. | May 2015 | A1 |
20150130285 | Leabman et al. | May 2015 | A1 |
20150130293 | Hajimiri et al. | May 2015 | A1 |
20150137612 | Yamakawa et al. | May 2015 | A1 |
20150148664 | Stolka et al. | May 2015 | A1 |
20150155737 | Mayo | Jun 2015 | A1 |
20150155738 | Leabman et al. | Jun 2015 | A1 |
20150162662 | Chen et al. | Jun 2015 | A1 |
20150162751 | Leabman et al. | Jun 2015 | A1 |
20150162779 | Lee et al. | Jun 2015 | A1 |
20150171512 | Chen et al. | Jun 2015 | A1 |
20150171513 | Chen et al. | Jun 2015 | A1 |
20150171656 | Leabman et al. | Jun 2015 | A1 |
20150171658 | Manova-Elssibony et al. | Jun 2015 | A1 |
20150171931 | Won et al. | Jun 2015 | A1 |
20150177326 | Chakraborty et al. | Jun 2015 | A1 |
20150180133 | Hunt | Jun 2015 | A1 |
20150180249 | Jeon et al. | Jun 2015 | A1 |
20150180284 | Kang et al. | Jun 2015 | A1 |
20150181117 | Park et al. | Jun 2015 | A1 |
20150187491 | Yanagawa | Jul 2015 | A1 |
20150188352 | Peek et al. | Jul 2015 | A1 |
20150199665 | Chu | Jul 2015 | A1 |
20150201385 | Mercer et al. | Jul 2015 | A1 |
20150207333 | Baarman et al. | Jul 2015 | A1 |
20150207542 | Zeine | Jul 2015 | A1 |
20150222126 | Leabman et al. | Aug 2015 | A1 |
20150233987 | Von Novak, III et al. | Aug 2015 | A1 |
20150234144 | Cameron et al. | Aug 2015 | A1 |
20150236520 | Baarman | Aug 2015 | A1 |
20150236877 | Peng et al. | Aug 2015 | A1 |
20150244070 | Cheng et al. | Aug 2015 | A1 |
20150244080 | Gregoire | Aug 2015 | A1 |
20150244187 | Horie | Aug 2015 | A1 |
20150244201 | Chu | Aug 2015 | A1 |
20150244341 | Ritter et al. | Aug 2015 | A1 |
20150249484 | Mach et al. | Sep 2015 | A1 |
20150255989 | Walley et al. | Sep 2015 | A1 |
20150256097 | Gudan et al. | Sep 2015 | A1 |
20150260835 | Widmer et al. | Sep 2015 | A1 |
20150262465 | Pritchett | Sep 2015 | A1 |
20150263534 | Lee et al. | Sep 2015 | A1 |
20150263548 | Cooper | Sep 2015 | A1 |
20150270618 | Zhu et al. | Sep 2015 | A1 |
20150270622 | Takasaki et al. | Sep 2015 | A1 |
20150270741 | Leabman et al. | Sep 2015 | A1 |
20150278558 | Priev et al. | Oct 2015 | A1 |
20150280429 | Makita et al. | Oct 2015 | A1 |
20150280484 | Radziemski et al. | Oct 2015 | A1 |
20150288074 | Harper et al. | Oct 2015 | A1 |
20150288438 | Maltsev et al. | Oct 2015 | A1 |
20150311585 | Church et al. | Oct 2015 | A1 |
20150312721 | Singh | Oct 2015 | A1 |
20150318729 | Leabman | Nov 2015 | A1 |
20150326024 | Bell et al. | Nov 2015 | A1 |
20150326070 | Petras et al. | Nov 2015 | A1 |
20150326072 | Petras et al. | Nov 2015 | A1 |
20150326143 | Petras et al. | Nov 2015 | A1 |
20150327085 | Hadani | Nov 2015 | A1 |
20150333528 | Leabman | Nov 2015 | A1 |
20150333573 | Leabman | Nov 2015 | A1 |
20150333800 | Perry et al. | Nov 2015 | A1 |
20150339497 | Kurian | Nov 2015 | A1 |
20150340759 | Bridgelall et al. | Nov 2015 | A1 |
20150340903 | Bell et al. | Nov 2015 | A1 |
20150341087 | Moore et al. | Nov 2015 | A1 |
20150358222 | Berger et al. | Dec 2015 | A1 |
20150365137 | Miller et al. | Dec 2015 | A1 |
20150365138 | Miller et al. | Dec 2015 | A1 |
20160005068 | Im et al. | Jan 2016 | A1 |
20160012695 | Bell et al. | Jan 2016 | A1 |
20160013560 | Daniels | Jan 2016 | A1 |
20160013661 | Kurs et al. | Jan 2016 | A1 |
20160013677 | Bell et al. | Jan 2016 | A1 |
20160013855 | Campos | Jan 2016 | A1 |
20160020636 | Khlat | Jan 2016 | A1 |
20160028403 | McCaughan et al. | Jan 2016 | A1 |
20160033254 | Zeine et al. | Feb 2016 | A1 |
20160042206 | Pesavento et al. | Feb 2016 | A1 |
20160043571 | Kesler et al. | Feb 2016 | A1 |
20160043572 | Cooper et al. | Feb 2016 | A1 |
20160054440 | Younis | Feb 2016 | A1 |
20160056635 | Bell | Feb 2016 | A1 |
20160056640 | Mao | Feb 2016 | A1 |
20160065005 | Won et al. | Mar 2016 | A1 |
20160079799 | Khlat | Mar 2016 | A1 |
20160087483 | Hietala et al. | Mar 2016 | A1 |
20160087486 | Pogorelik et al. | Mar 2016 | A1 |
20160094074 | Alves et al. | Mar 2016 | A1 |
20160094091 | Shin et al. | Mar 2016 | A1 |
20160094092 | Davlantes et al. | Mar 2016 | A1 |
20160099601 | Leabman et al. | Apr 2016 | A1 |
20160099611 | Leabman et al. | Apr 2016 | A1 |
20160099612 | Leabman et al. | Apr 2016 | A1 |
20160099614 | Leabman et al. | Apr 2016 | A1 |
20160099755 | Leabman et al. | Apr 2016 | A1 |
20160099757 | Leabman et al. | Apr 2016 | A1 |
20160112787 | Rich | Apr 2016 | A1 |
20160126749 | Shichino et al. | May 2016 | A1 |
20160126752 | Vuori et al. | May 2016 | A1 |
20160126776 | Kim et al. | May 2016 | A1 |
20160141908 | Jakl et al. | May 2016 | A1 |
20160164563 | Khawand et al. | Jun 2016 | A1 |
20160174162 | Nadakuduti et al. | Jun 2016 | A1 |
20160174293 | Mow et al. | Jun 2016 | A1 |
20160181849 | Govindaraj | Jun 2016 | A1 |
20160181867 | Daniel et al. | Jun 2016 | A1 |
20160181873 | Mitcheson et al. | Jun 2016 | A1 |
20160197522 | Zeine et al. | Jul 2016 | A1 |
20160202343 | Okutsu | Jul 2016 | A1 |
20160204642 | Oh | Jul 2016 | A1 |
20160204643 | Manova-Elssibony | Jul 2016 | A1 |
20160218545 | Schroeder et al. | Jul 2016 | A1 |
20160233582 | Piskun | Aug 2016 | A1 |
20160238365 | Wixey et al. | Aug 2016 | A1 |
20160240908 | Strong | Aug 2016 | A1 |
20160248276 | Hong et al. | Aug 2016 | A1 |
20160294225 | Blum et al. | Oct 2016 | A1 |
20160299210 | Zeine | Oct 2016 | A1 |
20160301240 | Zeine | Oct 2016 | A1 |
20160322868 | Akuzawa et al. | Nov 2016 | A1 |
20160323000 | Liu et al. | Nov 2016 | A1 |
20160336804 | Son et al. | Nov 2016 | A1 |
20160339258 | Perryman et al. | Nov 2016 | A1 |
20160344098 | Ming | Nov 2016 | A1 |
20160359367 | Rothschild | Dec 2016 | A1 |
20160380464 | Chin et al. | Dec 2016 | A1 |
20160380466 | Yang et al. | Dec 2016 | A1 |
20170005481 | Novak, III | Jan 2017 | A1 |
20170005516 | Leabman et al. | Jan 2017 | A9 |
20170005524 | Akuzawa et al. | Jan 2017 | A1 |
20170005530 | Zeine et al. | Jan 2017 | A1 |
20170012448 | Miller et al. | Jan 2017 | A1 |
20170025887 | Hyun et al. | Jan 2017 | A1 |
20170025903 | Song et al. | Jan 2017 | A1 |
20170026087 | Tanabe | Jan 2017 | A1 |
20170040700 | Leung | Feb 2017 | A1 |
20170043675 | Jones et al. | Feb 2017 | A1 |
20170047784 | Jung et al. | Feb 2017 | A1 |
20170063168 | Uchida | Mar 2017 | A1 |
20170077733 | Jeong et al. | Mar 2017 | A1 |
20170077764 | Bell et al. | Mar 2017 | A1 |
20170077765 | Bell et al. | Mar 2017 | A1 |
20170077979 | Papa et al. | Mar 2017 | A1 |
20170077995 | Leabman | Mar 2017 | A1 |
20170085120 | Leabman et al. | Mar 2017 | A1 |
20170085437 | Condeixa et al. | Mar 2017 | A1 |
20170092115 | Sloo et al. | Mar 2017 | A1 |
20170110886 | Reynolds et al. | Apr 2017 | A1 |
20170110910 | Zeine et al. | Apr 2017 | A1 |
20170127196 | Blum et al. | May 2017 | A1 |
20170134686 | Leabman | May 2017 | A9 |
20170141582 | Adolf et al. | May 2017 | A1 |
20170141583 | Adolf et al. | May 2017 | A1 |
20170163076 | Park et al. | Jun 2017 | A1 |
20170168595 | Sakaguchi et al. | Jun 2017 | A1 |
20170179763 | Leabman | Jun 2017 | A9 |
20170187244 | Su | Jun 2017 | A1 |
20170187422 | Hosseini | Jun 2017 | A1 |
20170212210 | Chen et al. | Jul 2017 | A1 |
20170214422 | Na et al. | Jul 2017 | A1 |
20170274787 | Salter et al. | Sep 2017 | A1 |
20170338695 | Port | Nov 2017 | A1 |
20180006611 | de Jong et al. | Jan 2018 | A1 |
20180040929 | Chappelle | Feb 2018 | A1 |
20180048178 | Leabman | Feb 2018 | A1 |
20180090992 | Shrivastava et al. | Mar 2018 | A1 |
20180166924 | Hosseini | Jun 2018 | A1 |
20180166925 | Hosseini | Jun 2018 | A1 |
20180226840 | Leabman | Aug 2018 | A1 |
20180227018 | Moshfeghi | Aug 2018 | A1 |
20180241255 | Leabman | Aug 2018 | A1 |
20180262050 | Yankowitz | Sep 2018 | A1 |
20180262060 | Johnston | Sep 2018 | A1 |
20180301934 | Prabhala et al. | Oct 2018 | A1 |
20180309314 | White et al. | Oct 2018 | A1 |
20180331429 | Kornaros | Nov 2018 | A1 |
20180331581 | Hosseini | Nov 2018 | A1 |
20180343040 | Luzinski et al. | Nov 2018 | A1 |
20180368065 | Sarkas et al. | Dec 2018 | A1 |
20180375368 | Leabman et al. | Dec 2018 | A1 |
20180376235 | Leabman | Dec 2018 | A1 |
20190052979 | Chen et al. | Feb 2019 | A1 |
20190074728 | Leabman | Mar 2019 | A1 |
20190074862 | Wang et al. | Mar 2019 | A1 |
20190089396 | Kim et al. | Mar 2019 | A1 |
20190131827 | Johnston | May 2019 | A1 |
20190288567 | Leabman et al. | Sep 2019 | A1 |
20190296586 | Moshfeghi | Sep 2019 | A1 |
20190326782 | Graham et al. | Oct 2019 | A1 |
20190372384 | Hosseini et al. | Dec 2019 | A1 |
20190386522 | Park et al. | Dec 2019 | A1 |
20190393729 | Contopanagos et al. | Dec 2019 | A1 |
20190393928 | Leabman | Dec 2019 | A1 |
20200006988 | Leabman | Jan 2020 | A1 |
20200021128 | Bell et al. | Jan 2020 | A1 |
20200052408 | Rappaport | Feb 2020 | A1 |
20200091608 | Alpman et al. | Mar 2020 | A1 |
20200112204 | Hosseini et al. | Apr 2020 | A1 |
20200119592 | Hosseini | Apr 2020 | A1 |
20200153117 | Papio-Toda et al. | May 2020 | A1 |
20200176890 | Rappaport et al. | Jun 2020 | A1 |
20200203837 | Kornaros et al. | Jun 2020 | A1 |
20200235614 | Swan et al. | Jul 2020 | A1 |
20200244104 | Katajamaki et al. | Jul 2020 | A1 |
20200244111 | Johnston et al. | Jul 2020 | A1 |
20200274397 | Hwang et al. | Aug 2020 | A1 |
20210098882 | Paulotto et al. | Apr 2021 | A1 |
20210296936 | Hosseini | Sep 2021 | A1 |
20230057092 | Hoss | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
101496222 | Jul 2009 | CN |
201278367 | Jul 2009 | CN |
102089952 | Jun 2011 | CN |
102227884 | Oct 2011 | CN |
102292896 | Dec 2011 | CN |
102860037 | Jan 2013 | CN |
103094993 | May 2013 | CN |
103151848 | Jun 2013 | CN |
103348563 | Oct 2013 | CN |
203826555 | Sep 2014 | CN |
104090265 | Oct 2014 | CN |
104167773 | Nov 2014 | CN |
104347915 | Feb 2015 | CN |
104617680 | May 2015 | CN |
105207373 | Dec 2015 | CN |
105637727 | Jun 2016 | CN |
105765821 | Jul 2016 | CN |
105993105 | Oct 2016 | CN |
106329116 | Jan 2017 | CN |
103380561 | Sep 2017 | CN |
20016655 | Feb 2002 | DE |
102013216953 | Feb 2015 | DE |
1028482 | Aug 2000 | EP |
1081506 | Mar 2001 | EP |
2346136 | Jul 2011 | EP |
2397973 | Feb 2012 | EP |
2545635 | Jan 2013 | EP |
2747195 | Jun 2014 | EP |
3067983 | Sep 2016 | EP |
3118970 | Jan 2017 | EP |
3145052 | Mar 2017 | EP |
2404497 | Feb 2005 | GB |
2556620 | Jun 2018 | GB |
2000323916 | Nov 2000 | JP |
2002319816 | Oct 2002 | JP |
2006157586 | Jun 2006 | JP |
2006178910 | Jul 2006 | JP |
2007043432 | Feb 2007 | JP |
2008167017 | Jul 2008 | JP |
2009525715 | Jul 2009 | JP |
2009201328 | Sep 2009 | JP |
2010104098 | May 2010 | JP |
2012016171 | Jan 2012 | JP |
2012095226 | May 2012 | JP |
2012157167 | Aug 2012 | JP |
2013500693 | Jan 2013 | JP |
2013511908 | Apr 2013 | JP |
2013099249 | May 2013 | JP |
2013162624 | Aug 2013 | JP |
2014075927 | Apr 2014 | JP |
2014112063 | Jun 2014 | JP |
2014176131 | Sep 2014 | JP |
2015027345 | Feb 2015 | JP |
2015128349 | Jul 2015 | JP |
2015128370 | Jul 2015 | JP |
WO2015177859 | Apr 2017 | JP |
20060061776 | Jun 2006 | KR |
20070044302 | Apr 2007 | KR |
100755144 | Sep 2007 | KR |
20110132059 | Dec 2011 | KR |
20110135540 | Dec 2011 | KR |
20120009843 | Feb 2012 | KR |
20120108759 | Oct 2012 | KR |
20130026977 | Mar 2013 | KR |
20140023409 | Feb 2014 | KR |
20140023410 | Mar 2014 | KR |
20140025410 | Mar 2014 | KR |
20140085200 | Jul 2014 | KR |
20140148270 | Dec 2014 | KR |
20150077678 | Jul 2015 | KR |
20160018826 | Feb 2016 | KR |
2658332 | Jun 2018 | RU |
WO 199508125 | Mar 1995 | WO |
WO 199831070 | Jul 1998 | WO |
WO 199952173 | Oct 1999 | WO |
WO 2000111716 | Feb 2001 | WO |
WO 2003091943 | Nov 2003 | WO |
WO 2004077550 | Sep 2004 | WO |
WO 2006122783 | Nov 2006 | WO |
WO 2007070571 | Jun 2007 | WO |
WO 2008024993 | Feb 2008 | WO |
WO 2008156571 | Dec 2008 | WO |
WO 2010022181 | Feb 2010 | WO |
WO 2010039246 | Apr 2010 | WO |
WO 2010138994 | Dec 2010 | WO |
WO 2011112022 | Sep 2011 | WO |
WO 2012177283 | Dec 2012 | WO |
WO 2013031988 | Mar 2013 | WO |
WO 2013035190 | Mar 2013 | WO |
WO 2013038074 | Mar 2013 | WO |
WO 2013042399 | Mar 2013 | WO |
WO 2013052950 | Apr 2013 | WO |
WO 2013105920 | Jul 2013 | WO |
WO 2013175596 | Nov 2013 | WO |
WO 2014068992 | May 2014 | WO |
WO 2014075103 | May 2014 | WO |
WO 2014113093 | Jul 2014 | WO |
WO 2014132258 | Sep 2014 | WO |
WO 2014134996 | Sep 2014 | WO |
WO 2014182788 | Nov 2014 | WO |
WO 2014182788 | Nov 2014 | WO |
WO 2014197472 | Dec 2014 | WO |
WO 2014209587 | Dec 2014 | WO |
WO 2015038773 | Mar 2015 | WO |
WO 2015097809 | Jul 2015 | WO |
WO 2015130902 | Sep 2015 | WO |
WO 2015161323 | Oct 2015 | WO |
WO 2016024869 | Feb 2016 | WO |
WO 2016048512 | Mar 2016 | WO |
WO 2016088261 | Jun 2016 | WO |
WO 2016187357 | Nov 2016 | WO |
WO 2017112942 | Jun 2017 | WO |
Entry |
---|
Energous Corp., IPRP, PCT/US2014/040697, Dec. 8, 2015, 9 pgs. |
Energous Corp., IPRP, PCT/US2014/040705, Dec. 8, 2015, 6 pgs. |
Energous Corp., IPRP, PCT/US2014/045119, Jan. 12, 2016, 9 pgs. |
Energous Corp., IPRP, PCT/US2014/048002, Feb. 12, 2015 8 pgs. |
Energous Corp., IPRP, PCT/US2014/049669, Feb. 9, 2016, 8 pgs. |
Energous Corp., IPRP, PCT/US2014/059317, Apr. 12, 2016, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/059340, Apr. 12, 2016, 11 pgs. |
Energous Corp., IPRP, PCT/US2014/059871, Apr. 12, 2016, 9 pgs. |
Energous Corp., IPRP, PCT/US2014/062661, May 3, 2016, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/068282, Jun. 7, 2016, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/068586, Jun. 14, 2016, 8 pgs. |
Energous Corp., IPRP, PCT/US2015/067242, Jun. 27, 2017, 7 pgs. |
Energous Corp., IPRP, PCT/US2015/067243, Jun. 27, 2017, 7 pgs. |
Energous Corp., IPRP, PCT/US2015/067245, Jun. 27, 2017, 7 pgs. |
Energous Corp., IPRP, PCT/US2015/067246, Jun. 27, 2017, 9 pgs. |
Energous Corp., IPRP, PCT/US2015/067249, Jun. 27, 2017, 7 pgs. |
Energous Corp., IPRP, PCT/US2015/067250, Mar. 30, 2016, 10 pgs. |
Energous Corp., IPRP, PCT/US2015/067271, Jul. 4, 2017, 5 pgs. |
Energous Corp., IPRP, PCT/US2015/067275, Jul. 4, 2017, 7 pgs. |
Energous Corp., IPRP, PCT/US2015/067279, Jul. 4, 2017, 7 pgs. |
Energous Corp., IPRP, PCT/US2015/067282, Jul. 4, 2017, 6 pgs. |
Energous Corp., IPRP, PCT/US2015/067287, Jul. 4, 2017, 6 pgs. |
Energous Corp., IPRP, PCT/US2015/067291, Jul. 4, 2017, 4 pgs. |
Energous Corp., IPRP, PCT/US2015/067294, Jul. 4, 2017, 6 pgs. |
Energous Corp., IPRP, PCT/US2015/067325, Jul. 4, 2017, 8 pgs. |
Energous Corp., IPRP, PCT/US2015/067334, Jul. 4, 2017, 5 pgs. |
Energous Corp., IPRP, PCT/US2016/068495, Jun. 26, 2018, 7 pgs. |
Energous Corp., IPRP, PCT/US2016/068551, Jun. 26, 2018, 6 pgs. |
Energous Corp., IPRP, PCT/US2016/068987, Jul. 3, 2018, 7 pgs. |
Energous Corp., IPRP, PCT/US2016/068993, Jul. 3, 2018, 10 pgs. |
Energous Corp., IPRP, PCT/US2017/046800, Feb. 12, 2019, 10 pgs. |
Energous Corp., IPRP, PCT/US2017/065886, Jun. 18, 2019, 10 pgs. |
Energous Corp., IPRP, PCT/US2018/012806, Jul. 9, 2019, 6 pgs. |
Energous Corp., IPRP, PCT/US2018/025465, Oct. 1, 2019, 8 pgs. |
Energous Corp., IPRP, PCT/US2018/031768, Nov. 12, 2019, 8 pgs. |
Energous Corp., IPRP, PCT/US2018/031786, Apr. 14, 2020, 7 pgs. |
Energous Corp., IPRP, PCT/US2018/039334, Dec. 24, 2019, 8 pgs. |
Energous Corp., IPRP, PCT/US2018/051082, Mar. 17, 2020, 9 pgs. |
Energous Corp., IPRP, PCT/US2018/058178, May 5, 2020, 7 pgs. |
Energous Corp., IPRP, PCT/US2018/064289, Dec. 29, 2020, 8 pgs. |
Energous Corp., IPRP, PCT/US2019/015820, Aug. 4, 2020, 7 pgs. |
Energous Corp., IPRP, PCT/US2019/021817, Sep. 15, 2020, 7 pgs. |
Energous Corp., IPRP, PCT/US2020/027409, Sep. 28, 2021, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/037072, Sep. 12, 2014, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/037109, Apr. 8, 2016, 12 pgs. |
Energous Corp., ISRWO, PCT/US2014/037170, Sep. 15, 2014, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/040648, Oct. 10, 2014, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/040697, Oct. 1, 2014, 12 pgs. |
Energous Corp., ISRWO, PCT/US2014/040705, Sep. 23, 2014, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/041323, Oct. 1, 2014, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/041342, Jan. 27, 2015, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/041534, Oct. 13, 2014, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/041546, Oct. 16, 2014, 12 pgs. |
Energous Corp., ISRWO, PCT/US2014/041558, Oct. 10, 2014, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/044810 Oct. 21, 2014, 12 pgs. |
Energous Corp., ISRWO, PCT/US2014/045102, Oct. 28, 2014, 14 pgs. |
Energous Corp., ISRWO, PCT/US2014/045119, Oct. 13, 2014, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/045237, Oct. 13, 2014, 16 pgs. |
Energous Corp., ISRWO, PCT/US2014/046941, Nov. 6, 2014, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/046956, Nov. 12, 2014, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/046961, Nov. 24, 2014, 16 pgs. |
Energous Corp., ISRWO, PCT/US2014/047963, Nov. 7, 2014, 13 pgs. |
Energous Corp., ISRWO, PCT/US2014/048002, Nov. 13, 2014, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/049666, Nov. 10, 2014, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/049669, Nov. 13, 2014, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/049673, Nov. 18, 2014, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/054891, Dec. 18, 2014, 12 pgs. |
Energous Corp., ISRWO, PCT/US2014/054897, Feb. 17, 2015, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/054953, Dec. 4, 2014, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/055195, Dec. 22, 2014, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/059317, Feb. 24, 2015, 13 pgs. |
Energous Corp., ISRWO, PCT/US2014/059340, Jan. 15, 2015, 13 pgs. |
Energous Corp., ISRWO, PCT/US2014/059871, Jan. 23, 2015, 12 pgs. |
Energous Corp., ISRWO, PCT/US2014/062661, Jan. 27, 2015, 12 pgs. |
Energous Corp., ISRWO, PCT/US2014/062672, Jan. 26, 26, 2015, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/062682, Feb. 12, 2015, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/068282, Mar. 19, 2015, 13 pgs. |
Energous Corp., ISRWO, PCT/US2014/068568, Mar. 20, 2015, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/068586, Mar. 20, 2015, 11 pgs. |
Energous Corp., ISRWO, PCT/US2015/067242, Mar. 16, 2016, 9 pgs. |
Energous Corp., ISRWO, PCT/US2015/067243, Mar. 10, 2016, 11 pgs. |
Energous Corp., ISRWO, PCT/US2015/067245, Mar. 17, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2015/067246, May 11, 2016, 18 pgs. |
Energous Corp., ISRWO, PCT/US2015/067249, Mar. 29, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2015/067250, Mar. 30, 2016, 11 pgs. |
Energous Corp., ISRWO, PCT/US2015/067271, Mar. 11, 2016, 6 pgs. |
Energous Corp., ISRWO, PCT/US2015/067275, Mar. 3, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2015/067279, Mar. 11, 2015, 13 pgs. |
Energous Corp., ISRWO, PCT/US2015/067282, Jul. 5, 2016, 7 pgs. |
Energous Corp., ISRWO, PCT/US2015/067287, Feb. 2, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2015/067291, Mar. 4, 2016, 10 pgs. |
Energous Corp., ISRWO, PCT/US2015/067294, Mar. 29, 2016, 7 pgs. |
Energous Corp., ISRWO, PCT/US2015/067325, Mar. 10, 2016, 9 pgs. |
Energous Corp., ISRWO, PCT/US2015/067334, Mar. 3, 2016, 6 pgs. |
Energous Corp., ISRWO, PCT/US2016/068495, Mar. 30, 2017, 9 pgs. |
Energous Corp., ISRWO, PCT/US2016/068498, May 17, 2017, 8 pgs. |
Energous Corp., ISRWO, PCT/US2016/068504, Mar. 30, 2017, 8 pgs. |
Energous Corp., ISRWO, PCT/US2016/068551, Mar. 17, 2017, 8 pgs. |
Energous Corp., ISRWO, PCT/US2016/068565, Mar. 8, 2017, 11 pgs. |
Energous Corp., ISRWO, PCT/US2016/068987, May 8, 2017, 10 pgs. |
Energous Corp., ISRWO, PCT/US2016/068993, Mar. 13, 2017, 12 pgs. |
Energous Corp., ISRWO, PCT/US2016/069313, Nov. 13, 2017, 10 pgs. |
Energous Corp., ISRWO, PCT/US2016/069316, Mar. 16, 2017, 15 pgs. |
Energous Corp., ISRWO, PCT/US2017/046800, Sep. 11, 2017, 13 pgs. |
Energous Corp., ISRWO, PCT/US2017/065886, Apr. 6, 2018, 13 pgs. |
Energous Corp., ISRWO, PCT/US2018/012806, Mar. 23, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/025465, Jun. 22, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/031768, Jul. 3, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/031786, Aug. 8, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/039334, Sep. 11, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/051082, Dec. 12, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/058178, Mar. 13, 2019, 10 pgs. |
Energous Corp., ISRWO, PCT/US2018/064289, Apr. 25, 2019, 12 pgs. |
Energous Corp., ISRWO, PCT/US2019/015820, May 14, 2019, 9 pgs. |
Energous Corp., ISRWO, PCT/US2019/021817, Apr. 6, 2019, 11 pgs. |
Energous Corp., ISRWO, PCT/US2019/039014, Oct. 4, 2019, 15 pgs. |
Energous Corp., ISRWO, PCT/US2019/061445, Jan. 7, 2020, 19 pgs. |
Energous Corp., ISRWO, PCT/US2020/027409, Jul. 24, 2020, 11 pgs. |
Energous Corp., ISRWO, PCT/US2020/067566, Apr. 27, 2021, 12 pgs. |
Extended European Search Report, EP17882087.4, Sep. 17, 2019, 10 pgs. |
Notice of Intent to Issue Reexam Certificate: 90/013793 Feb. 2, 2017, 8 pgs. |
Order Granting Reexamination Request, App No. 90/013793 Aug. 31, 2016, 23 pgs. |
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00023, May 31, 2016, 144 pgs. |
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00024, May 31, 2016, 122 pgs. |
Ossia Inc. vs Energous Corp., Patent Owner Preliminary Response, Sep. 8, 2016, 95 pgs. |
Ossia Inc. vs Energous Corp., Petition for Post Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 86 pgs. |
Ossia Inc. vs Energous Corp., Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 92 pgs. |
Ossia Inc. vs Energous Corp., PGR2016-00023—Institution Decision, Nov. 29, 2016, 29 pgs. |
Ossia Inc. vs Energous Corp., PGR2016-00024—Institution Decision, Nov. 29, 2016, 50 pgs. |
Ossia Inc. vs Energous Corp., PGR2016-00024—Judgement-Adverse, Jan. 20, 2017, 3 pgs. |
Adamiuk et al., “Compact, Dual-Polarized UWB-Antanna, Embedded in a Dielectric,” IEEE Transactions on Antenna and Propagation, IEEE Service Center, Piscataway, NJ, US vol. 56, No. 2, Feb. 1, 2010, 8 pgs. |
Gill et al., “A System for Change Detection and Human Recognition in Voxel Space using the Microsoft Kinect Sensor,” 2011 IEEE Applied Imagery Pattern Recognition Workshop. 8 pgs. |
Han et al., Enhanced Computer Vision with Microsoft Kinect Sensor: A Review, IEEE Transactions on Cybernetics vol. 43, No. 5., pp. 1318-1334, Oct. 3, 2013. |
Hsieh et al., “Development of a Retrodirective Wireless Microwave Power Transmission System”, IEEE, 2003, pp. 393-396. |
Leabman, “Adaptive Band-partitioning for Interference Cancellation in Communication System,” Thesis Massachusetts Institute of Technology, Feb. 1997, pp. 1-70. |
Li et al., “High-Efficiency Switching-Mode Charger System Design Considerations with Dynamic Power Path Management,” Mar./Apr. 2012 Issue, 8 pgs. |
Mao et al., “BeamStar: An Edge-Based Approach to Routing in Wireless Sensors Networks”, IEEE Transactions on Mobile Computing, IEEE Service Center, Los Alamitos, CA, vol. 6, No. 11, Nov. 1, 2007, 13 pgs. |
Mascarenas et al., “Experimental Studies of Using Wireless Energy Transmission for Powering Embedded Sensor Nodes,” Nov. 28, 2009, Journal of Sound and Vibration, 13 pgs. |
Mishra et al., “SIW-based Slot Array Antenna and Power Management Circuit for Wireless Energy Harvesting Applications”, IEEE APSURSI, Jul. 2012, 2 pgs. |
Nenzi et al., “U-Helix: On-Chip Short Conical Antenna”, 7th European Conference on Antennas and Propagation (EUCAP), ISBN: 978-1-4673-2187-7, IEEE, Apr. 8, 2013, 5 pgs. |
Qing et al., “UHF Near-Field Segmented Loop Antennas with Enlarged Interrogation Zone,” 2012 IEEE International Workshop on Antenna Technology (iWAT), Mar. 1, 2012, pp. 132-135, XP055572059, ISBN: 978-1-4673-0035-3. |
Singh, “Wireless Power Transfer Using Metamaterial Bonded Microstrip Antenna for Smart Grid WSN”, 4th International Conference on Advances in Computing and Communications (ICACC), Aug. 27-29, 2014, 1 pg. |
Smolders, “Broadband Microstrip Array Antennas”, Institute of Electrical and Electronics Engineers, Digest of the Antennas and Propagation Society International Symposium, Seattle, WA, Jun. 19-24, 1994, 3 pgs. |
Van Veen et al., “Beamforming: A Versatile Approach to Spatial Filtering”, IEEE, ASSP Magazine, Apr. 1988, pp. 4-24. |
Wei et al., “Design of a Wideband Horizontally Polarized Omnidirectional Printed Loop Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 11, Jan. 3, 2012, 4 pgs. |
Zeng et al., “A Compact Fractal Loop Rectenna for RF Energy Harvesting,” IEEE Antennas and Wireless Propagation Letters, vol. 16, Jun. 26, 2017, 4 pgs. |
Zhai et al., “A Practical Wireless Charging System Based on Ultra-Wideband Retro-Reflective Beamforming” 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, 2010, 4 pgs. |
Energous Corp., IPRP, PCT/US2020/067566, Jul. 5, 2022, 8 pgs. |
Extended European Search Report, EP20909157.8, Sep. 15, 2023, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20220158495 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62831660 | Apr 2019 | US |