This disclosure relates to socio-technical networks. More specifically, this disclosure relates to data communications between radio frequency devices in a utility network.
A utility provider, such as a gas, electricity, or water provider, may have a large number of control, measuring, and sensing devices installed in the field in order to control transmission and distribution of the product, measure, and record product usage, and detect problems. Such devices may include water, gas, or electrical meters, remotely controlled valves, flow sensors, leak detection devices, and the like. Utility meters may include wireless communication capability to send and receive wireless communications with a remote communication device, enabling remote reading of meters.
Advanced Metering Infrastructure (AMI), Automatic Meter Reading (AMR), and Advanced Metering Management (AMM) are systems that measure, collect, and analyze utility data using advanced metering devices such as water meters, gas meters, and electricity meters. The advanced metering devices combine internal data measurements with continuously available remote communications, enabling the metering devices to transmit and receive data through the AMI, AMR, and/or AMM network.
A typical AMI network may include thousands of devices called “nodes.” A “node” as used herein may refer to either a composite device in a network capable of performing a specific function or a communication module connected to such a device and configured to provide communications for the device. The AMI network also includes a device known as a repeater, which receives a signal from a central network device, such as a hub, and that regenerates the signal for distribution to other network devices. Nodes and some repeaters are powered by batteries (DC power), while other repeaters are AC powered. Because of the remote placement nature of the nodes and associated devices, it is desirable to maximize a battery life of the nodes and associated devices in order to reduce down time and to reduce the amount of maintenance that must be performed on the nodes. While the battery powering a repeater is frequently more powerful than that of a node, maximizing battery life in a DC repeater is likewise desirable.
One way to maximize battery life of a node and of a repeater powered by direct current (DC) is to only intermittently “listen” for a hailing communication from another network device, whereby the receiving device may only be powered on (i.e., “awake”) for around three milliseconds (ms) to detect whether any hail messages are being sent over alternating hailing channels, and if not, to power off (i.e., “sleep”) for a predesignated time, such as three seconds. This waking-sleeping sequence alternately repeats, with the waking moments called “sniffs” and the interval between sniffs (in this example, the three seconds) known as a “sniffing window.” The receiving device has a channel activity detector (CAD) which, during a sniff, can quickly (in 2-3 ms) assess whether any RF energy exists in the alternating channels that matches a preamble transmission profile. A preamble represents a sequence of symbols that may be repeated at the start of a data message, including a hailing message. The preamble portion of a hail message may have a duration of 160 ms, and the data portion of the message may have a duration of 20 ms. Each hail message is followed by a period of about 22 ms where the hailing device waits to receive the start of an acknowledgement (ACK) signal from the receiving device. If the start of the ACK signal is detected during the 22 ms period, then the hailing device waits to receive the entire ACK signal (which may be longer than 22 ms). Otherwise, without such detection, the hailing device either sends another hail or goes to sleep, depending on whether any predetermined limit on hailing attempts has been reached. During the sniffing window, the hail message is repeated over two or more alternating hail channels. Advantageously, if a sniff does not result in preamble detection of a hail message being transmitted due to the sniff not occurring during transmission of a valid segment of the preamble portion, the next sniff will align with a valid segment of the preamble portion of a later-occurring repeated hail message.
When attempting to hail a node given the above time parameters, if a preamble is not detected by the very first sniff occurring during transmission of a pattern of repeated hail messages, then the hail message will repeat almost 14 times during the three-second sniffing window before the next sniff achieves preamble detection. Additionally, during each hail message, the transmitting device is in a transmission mode approximately 89% of the time (i.e., 1−(22/202)=1−0.1089≈0.89). Thus, although listening only once every 3 seconds is an effective way to save power of the listening device, more burden is placed on the hailing device, which has to use more energy to try to successfully hail the receiving device.
A battery by itself cannot supply sufficient current to power communications between a hailing device and a receiving device; it can output only a small amount of energy for long periods of time. However, when a battery is coupled to a companion device, such as a particular type of capacitor charged by the battery, an AMI device can output sufficient energy for communicating, though for a comparatively shorter period of time. The companion device used for powering communications according to the parameters described above was a Hybrid Layered Capacitor (HLC), which can supply energy for a long time, at a minimum, for the 3-second sniffing window described above. However, HLCs employ proprietary technology and are expensive. Additionally, finding an adequate supply of HLCs has proven difficult.
To overcome these problems, an Electrolytic Double Layer Capacitor (EDLC), also known in the trade as a “super capacitor,” can be used instead of an HLC. Like an HLC, an EDLC can output a sufficient amount of energy to support communications. However, the period of time during which the EDLC can sustain that energy output is much shorter than that for the HLC, specifically, only about 1.5 seconds, as compared with the minimum 3 seconds for the HLC (i.e., entire sniffing window duration). Furthermore, although large EDLCs can supply greater energy than smaller ones, large EDLCs are more susceptible to leakage current, which reduces overall battery life. Hailing a listening device in the manner described above with an EDLC is therefore not feasible. Thus it has become necessary to derive a means of successfully hailing a listening device in an AMI network, such as a DC repeater, that overcomes the foregoing drawbacks.
Disclosed is a method of communicating hail messages, comprising repeatedly transmitting first hail messages from a first device at a first hailing rate, wherein a first time between beginnings of each consecutive first hail message is a first period, each first hail message transmitted for a first length of time, and a first gap extends between an end of each first hail message and a start of a next first hail message; listening at the first device for a second hail message being repeatedly transmitted to the first device at a second hailing rate, wherein a second time between beginnings of each consecutive second hail message is a second period, each second hail message transmitted for a second length of time, and a second gap extends between an end of each second hail message and a start of a next second hail message; and performing, at the first device, a channel activity detection of a preamble in the second hail message. The first period is greater than the second period, the first length of time is greater than the second length of time, and the first gap is greater than the second gap. Also, the first device listens for the second hail message at a first listening rate that is less than a second listening rate of a second device.
In another aspect of the current disclosure, a node comprises a processor and logic processed by the processor to repeatedly transmit first hail messages from the node at a first hailing rate, wherein a first time between beginnings of each consecutive first hail message is a first period, and a first gap extends between an end of each first hail message and a start of a next first hail message, transmit each first hail message for a first length of time, listen for a second hail message being repeatedly transmitted to the node at a second hailing rate, wherein a second time between beginnings of each consecutive second hail message is a second period, each second hail message transmitted for a second length of time, and a second gap extends between an end of each second hail message and a start of a next second hail message, and perform a channel activity detection of a preamble in the second hail message, wherein the first period is greater than the second period, the first length of time is greater than the second length of time, and the first gap is greater than the second gap, and wherein the logic is processed by the processor to listen for the second hail message at a first listening rate that is less than a second listening rate of a network device.
In yet another aspect of the current disclosure, the first device can hail the second device at the second hailing rate, and the second device can hail the first device at the first hailing rate. For certain locations in a network, both the first device and the second device may hail one another using the first hailing rate, or they may both hail one another using the second hailing rate.
Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.
The present disclosure can be understood more readily by reference to the following detailed description, examples, drawing, and claims, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description is provided as an enabling teaching in its best, currently known embodiments. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various disclosed aspects described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits can be obtained by selecting some of the features without utilizing or including other features. Accordingly, those who work in the art will recognize that many modifications and adaptations are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a panel” can include two or more such panels unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect comprises from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
For purposes of the current disclosure, a material property or dimension measuring about X on a particular measurement scale measures within a range between X plus and industry-standard upper tolerance for the specified measurement and X minus an industry-standard lower tolerance for the specified measurement. Because tolerances can vary between different materials, processes and between different models, the tolerance for a particular measurement of a particular component can fall within a range of tolerances.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description comprises instances where said event or circumstance occurs and instances where it does not.
In one aspect, disclosed is a method of communicating hail messages, comprising the steps of repeatedly transmitting first hail messages from a first device at a first hailing rate in which time between beginnings of each consecutive first hail message is a first period, a length of time each first hail message is transmitted is a first length, and a first quantity of time extending between an end of each first hail message and a start of a next first hail message is a first gap; and listening at the first device for a second hail message being repeatedly transmitted to the first device at a second hailing rate in which time between beginnings of each consecutive second hail message is a second period, a length of time each second hail message is transmitted is a second length, and a second quantity of time extending between an end of each second hail message and a start of a next second hail message is a second gap. The first period is greater than the second period, the first length is greater than the second length, and the first gap is greater than the second gap. Also, the first device listens for the second hail message at a first listening rate that is less than a second listening rate of a second device. It would be understood by one of skill in the art that the disclosed method and node are described in but a few exemplary embodiments among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.
In another aspect of the current disclosure, a node comprises a processor and logic processed by the processor to repeatedly transmit first hail messages from the node at a first hailing rate in which time between beginnings of each consecutive first hail message is a first period, a length of time each first hail message is transmitted is a first length, and a first quantity of time extending between an end of each first hail message and a start of a next first hail message is a first gap; and to listen for a second hail message being repeatedly transmitted to the node at a second hailing rate in which time between beginnings of each consecutive second hail message is a second period, a length of time each second hail message is transmitted is a second length, and a second quantity of time extending between an end of each second hail message and a start of a next second hail message is a second gap. The first period is greater than the second period, the first length is greater than the second length, and the first gap is greater than the second gap. Also, the logic is processed by the processor to listen for the second hail message at a first listening rate that is less than a second listening rate of a network device.
According to various embodiments, the host 102 may communicate with the nodes 200 through one or more stationary collection hubs 108. The stationary, or fixed, collection hubs 108 may comprise specialized network nodes installed in the field that act as a “parent node” for a set of assigned child nodes 200A-200D that communicate with the hub through various communication links 110A-110E (referred to herein generally as communication links 110). The communication links 110 may include wireless communication links, such as RF communication links. Owing to a stationary transceiver 109 housed in each hub 108, the communication across the communication links 110 is two-way. The collection hubs 108 may periodically collect usage data, sensor data, and other data from the child nodes 200 and forward data to the host 102 over a network 112. The collection hubs 108 may also forward messages received from the host 102 over the network 112 to the target child node(s) 200. The network 112 may comprise various networking technologies that connect the collection hubs 108 in the field to the host 102, including cellular data networks, W-Fi or WMAX networks, satellite communication networks, metropolitan-area networks (“MANs”), wide-area networks (“WANs”), the Internet, and the like.
The collection hub 108 may communicate with its child nodes 200A-200D either directly or through one or more intermediary devices. For example, the AMI system 100 may include repeaters 114 that facilitate communication between the collection hub 108 and remote nodes, such as node 200D. According to further embodiments, some nodes may be configured to act as repeaters, referred to herein as “buddy nodes,” such as node 200B shown in
According to embodiments, the collection hubs 108 may include or be connected to an accurate time source 118. For example, a collection hub 108 may be GPS-enabled and able to receive a highly accurate time value from a GPS receiver. Other accurate time sources 118 may include a cellular network connection, an integrated accurate real-time clock component, and the like. Because collection hubs 108 may be connected to fixed power sources, these devices may be able to maintain accurate current time without the need for reduced power consumption required by other, remote nodes 104. It will be appreciated that the configuration of the network comprising the AMI system shown in
The communication links shown in
The node 200 may include a battery 205 that powers a transceiver integrated circuit (“IC”) 210, a processor 220, an RF power amplifier 230, an RF low-noise amplifier 240, a memory 250, and other components. Crystal oscillators 215 and 225 are connected to the transceiver IC 210 and the processor 220, respectively. The node 200 further includes a transmit/receive switch 260 and antenna 270. The processor 220 may be a microprocessor, a microcontroller, a field-programmable gate array (“FPGA”), or the like. The processor 220 and the transceiver IC 210 may include both a two-way data and a two-way control line. In some embodiments, the processor 220 includes a control line to each of the RF low-noise amplifier 240 and the transmit/receive switch 260. The processor 220 may also be connected to the memory 250 by a two-way data line.
The memory 250 may comprise a processor-readable storage medium for storing processor-executable instructions, data structures and other information. The memory 250 may include a non-volatile memory, such as read-only memory (“ROM”) and/or FLASH memory, and a random-access memory (“RAM”), such as dynamic random access memory (“DRAM”) or synchronous dynamic random access memory (“SDRAM”). The memory 250 may store firmware that comprises commands and data necessary for the nodes 200, collection hubs 108, and repeaters 114 to communicate with other devices in the AMI system 100 as well as perform other operations of the nodes. According to some embodiments, the memory 250 may store a hailing module 252 comprising processor-executable instructions that, when executed by the processor 220, perform at least portions of the methods 800, 900, 1000, and 1100 (
In addition to the memory 250, the node 200 may have access to other processor-readable media storing program modules, data structures, and other data described herein for accomplishing the described functions. It will be appreciated by those skilled in the art that processor-readable media can be any available media that may be accessed by the processor 220 or other computing system, including processor-readable storage media and communications media. Communications media includes transitory signals. Processor-readable storage media includes volatile and non-volatile, removable and non-removable storage media implemented in any method or technology for the non-transitory storage of information. For example, processor-readable storage media includes, but is not limited to, RAM, ROM, erasable programmable ROM (“EPROM”), electrically-erasable programmable ROM (“EEPROM”), FLASH memory or other solid-state memory technology, compact disc ROM (“CD-ROM”), digital versatile disk (“DVD”), high definition DVD (“HD-DVD”), BLU-RAY or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices and the like.
According to embodiments, the processor 220 may be further connected to other components of the node 200 through a device interface 280. In some embodiments, the device interface 280 may connect to a metering component, such as a water, gas, or electricity meter, that allows the meter to provide usage data to the host 102 through the AMI system 100. In further embodiments, the device interface 280 may connect to sensors or detection components, such as the water meters 22A-22C described above. In still further embodiments, the device interface 280 may connect to a control component, such as an electronically actuated water valve, that allows the host 102 and/or other devices in the AMI system 100 to control aspects of the utility provider's infrastructure. These examples are not meant to be limiting, and those of skill in the art will recognize that alternative device components that may be interfaced with the node 200 through the device interface 280. For example, the device interface 280 may connect to a control component (valve actuator) and a data reading port (water meter readings) at the same time.
It will be appreciated that the structure and/or functionality of the node 200 may be different than that illustrated in
For purposes of the present disclosure, repeater 114 will be henceforth referred to as “DC repeater 114,” since a DC repeater is the repeater type relevant to one implementation of the present disclosure. However, it will be understood that repeaters can be either AC-powered or DC-powered, and that the same principles disclosed herein for conserving DC power in a repeater could also be applied to conserve AC power in a repeater.
Referring again to
Given the timing relationships discussed with regard to
Embodiments of the methods and systems are described below with reference to block diagrams and flowchart illustrations of methods, systems, and apparatuses. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by program instructions. These program instructions may be programmed into programmable processing elements to produce logic that executes on the processing elements to create means for implementing the functions specified in the flowchart block or blocks, which describe and reference specific algorithms and inherent structure for accomplishing the functions as described and further explained herein.
These program instructions may also be stored in a processor-readable memory that can direct a processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory produce an article of manufacture including processor-readable instructions for implementing the function specified in the flowchart block or blocks. The program instructions may also be loaded onto a processing apparatus to cause a series of operational steps to be performed on the programmable apparatus to produce a processor-implemented process such that the instructions that execute on the programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of means for performing the specified functions, combinations of steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based systems that perform the specified functions or steps, or combinations of special purpose hardware and instructions.
It is contemplated that the processor of the present application can operate in a networked environment using logical connections to one or more remote devices. By way of example, a remote device can be a personal computer, portable computer, a server, a router, a network computer, a peer device or other common network node, and so on. Logical connections between the processor and a remote computing device can be made via a local area network and a general wide area network. Such network connections can be through a network adapter. It is further contemplated that such a network adapter can be implemented in both wired and wireless environments, which are conventional and commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
It is recognized that programs and components reside at various times in different storage components of a device. Any of the disclosed methods can be performed by processor readable instructions embodied on processor-readable media. Such media can be any available media that can be accessed by a processor. By way of example and not meant to be limiting, processor readable media can comprise volatile and non-volatile, removable and non-removable media implemented in any methods or technology for storage of information.
Although the asymmetrical hailing described herein presents the advantage of being able to use an EDLC in a device to hail a listening device having a 3-second sniffing window, it is to be understood that differing hailing implementations may be used for nodes situated at different locations within a network. For example, if a hailing node is in a network location from which a DC repeater only needs to be hailed infrequently, then preservation of battery power can be best achieved by configuring the DC repeater to sniff for hail messages only once every 3 seconds (or some other comparable period) instead of once every 0.75 seconds, as disclosed with regard to
Although several embodiments have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments will come to mind to which this disclosure pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the disclosure is not limited to the specific embodiments disclosed hereinabove, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described disclosure, nor the claims which follow.
This application is a continuation of U.S. application Ser. No. 15/206,851, filed Jul. 11, 2016, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5252967 | Brennan, Jr. et al. | Oct 1993 | A |
5371734 | Fischer | Dec 1994 | A |
5594776 | Dent | Jan 1997 | A |
5666655 | Ishikawa et al. | Sep 1997 | A |
5774733 | Nolan et al. | Jun 1998 | A |
5787358 | Takahashi | Jul 1998 | A |
5892441 | Woolley et al. | Apr 1999 | A |
5963557 | Eng | Oct 1999 | A |
6028855 | Hirsch | Feb 2000 | A |
6031466 | Leshets et al. | Feb 2000 | A |
6405047 | Moon | Jun 2002 | B1 |
6512463 | Campbell et al. | Jan 2003 | B1 |
6717926 | Deboille et al. | Apr 2004 | B1 |
6900737 | Ardalan | May 2005 | B1 |
7123628 | Hwang | Oct 2006 | B1 |
7202800 | Choi | Apr 2007 | B2 |
7272635 | Longtin et al. | Sep 2007 | B1 |
7313164 | Wilson et al. | Dec 2007 | B1 |
7346030 | Cornwall | Mar 2008 | B2 |
7420942 | Wang | Sep 2008 | B2 |
7564826 | Sherman et al. | Jul 2009 | B2 |
7729329 | Fujita | Jun 2010 | B2 |
7760703 | Kubler et al. | Jul 2010 | B2 |
7830874 | Cornwall et al. | Nov 2010 | B2 |
7843379 | Menzer et al. | Nov 2010 | B2 |
7962101 | Vaswani et al. | Jun 2011 | B2 |
8014791 | Guigne et al. | Sep 2011 | B2 |
8194636 | Doherty et al. | Jun 2012 | B1 |
8300626 | Thubert et al. | Oct 2012 | B2 |
8375134 | Herzog et al. | Feb 2013 | B2 |
8391177 | Picard | Mar 2013 | B2 |
8577044 | Raikar | Nov 2013 | B2 |
8660134 | Splitz | Feb 2014 | B2 |
8797871 | Morandin | Aug 2014 | B2 |
8855569 | Splitz | Oct 2014 | B2 |
8918091 | Hoelzle et al. | Dec 2014 | B1 |
8933789 | Fink et al. | Jan 2015 | B1 |
9179502 | Fischer | Nov 2015 | B2 |
9204341 | Su | Dec 2015 | B2 |
9204405 | Hildebrandt et al. | Dec 2015 | B2 |
9271231 | Nucci | Feb 2016 | B2 |
9408112 | Su | Aug 2016 | B2 |
9565620 | Dukes | Feb 2017 | B2 |
9743458 | Jain et al. | Aug 2017 | B2 |
9756089 | Brook | Sep 2017 | B2 |
9807793 | Fischer | Oct 2017 | B2 |
9854607 | Chu et al. | Dec 2017 | B1 |
9883548 | Backholm et al. | Jan 2018 | B2 |
9961694 | Gao et al. | May 2018 | B2 |
10025960 | Fink et al. | Jul 2018 | B1 |
10039018 | Splitz et al. | Jul 2018 | B2 |
10070403 | Grady et al. | Sep 2018 | B2 |
10097411 | Splitz et al. | Oct 2018 | B2 |
10178617 | Splitz et al. | Jan 2019 | B2 |
10200947 | Splitz | Feb 2019 | B2 |
10267652 | Magley et al. | Apr 2019 | B1 |
20020051546 | Bizjak | May 2002 | A1 |
20020159434 | Gosior | Oct 2002 | A1 |
20050078631 | Cornwall | Apr 2005 | A1 |
20050190784 | Stine | Sep 2005 | A1 |
20050249170 | Salokannel et al. | Nov 2005 | A1 |
20060025136 | Fujita | Feb 2006 | A1 |
20060165031 | Wang et al. | Jul 2006 | A1 |
20060187866 | Werb | Aug 2006 | A1 |
20060245440 | Mizukoshi | Nov 2006 | A1 |
20060268746 | Wijting et al. | Nov 2006 | A1 |
20060274673 | Fleury | Dec 2006 | A1 |
20070014269 | Sherman et al. | Jan 2007 | A1 |
20070057812 | Cornwall | Mar 2007 | A1 |
20070091825 | Budampati et al. | Apr 2007 | A1 |
20070250212 | Halloran et al. | Oct 2007 | A1 |
20070286136 | Rittle et al. | Dec 2007 | A1 |
20070293221 | Hwang et al. | Dec 2007 | A1 |
20080043637 | Rahman | Feb 2008 | A1 |
20080086560 | Monier et al. | Apr 2008 | A1 |
20080240078 | Thubert | Oct 2008 | A1 |
20090201169 | D'Hont et al. | Aug 2009 | A1 |
20090268652 | Kneckt et al. | Oct 2009 | A1 |
20100007521 | Cornwall | Jan 2010 | A1 |
20100026517 | Cumeralto et al. | Feb 2010 | A1 |
20100085954 | Keshavarzian | Apr 2010 | A1 |
20100097988 | Chung | Apr 2010 | A1 |
20100195552 | Ho | Aug 2010 | A1 |
20100329232 | Tubb et al. | Dec 2010 | A1 |
20110004764 | Stuber | Jan 2011 | A1 |
20110018762 | Walley et al. | Jan 2011 | A1 |
20110066297 | Saberi | Mar 2011 | A1 |
20110140909 | Olson et al. | Jun 2011 | A1 |
20110152970 | Jollota | Jun 2011 | A1 |
20110317019 | Bahl et al. | Dec 2011 | A1 |
20120008536 | Tervahauta et al. | Jan 2012 | A1 |
20120026007 | Beattie | Feb 2012 | A1 |
20120115518 | Zeira | May 2012 | A1 |
20120140622 | Kruglick | Jun 2012 | A1 |
20120201231 | Omeni | Aug 2012 | A1 |
20130007231 | Forssell | Jan 2013 | A1 |
20130064159 | Edwards | Mar 2013 | A1 |
20130083722 | Bhargava et al. | Apr 2013 | A1 |
20130094537 | Hui et al. | Apr 2013 | A1 |
20130107772 | Splitz et al. | May 2013 | A1 |
20130107999 | Mainaud et al. | May 2013 | A1 |
20130109319 | Splitz et al. | May 2013 | A1 |
20130155925 | Priyantha et al. | Jun 2013 | A1 |
20130181848 | Picard | Jul 2013 | A1 |
20130285855 | Dupray | Oct 2013 | A1 |
20130336245 | Fischer | Dec 2013 | A1 |
20140028469 | Ali | Jan 2014 | A1 |
20140028470 | Ali | Jan 2014 | A1 |
20140044005 | Keys et al. | Feb 2014 | A1 |
20140086124 | Knowles | Mar 2014 | A1 |
20140120962 | Merlin | May 2014 | A1 |
20140314003 | Zhou | Oct 2014 | A1 |
20140329498 | Cherian et al. | Nov 2014 | A1 |
20150003227 | Splitz | Jan 2015 | A1 |
20150006633 | Vandwalle et al. | Jan 2015 | A1 |
20150081814 | Turakhia | Mar 2015 | A1 |
20150103818 | Kuhn | Apr 2015 | A1 |
20150124698 | Jain et al. | May 2015 | A1 |
20150223168 | Bhanage et al. | Aug 2015 | A1 |
20150257041 | Su | Sep 2015 | A1 |
20150382283 | Wang et al. | Dec 2015 | A1 |
20160050689 | Fischer | Feb 2016 | A1 |
20160066249 | Dukes | Mar 2016 | A1 |
20160080980 | Su | Mar 2016 | A1 |
20160192381 | Gao et al. | Jun 2016 | A1 |
20160218833 | Sapio et al. | Jul 2016 | A1 |
20160249378 | Zhou | Aug 2016 | A1 |
20160269971 | Kim et al. | Sep 2016 | A1 |
20160292469 | Ianni et al. | Oct 2016 | A1 |
20160373940 | Splitz | Dec 2016 | A1 |
20170048659 | Silvestri | Feb 2017 | A1 |
20170164307 | Zuniga et al. | Jun 2017 | A1 |
20170265153 | Grady et al. | Sep 2017 | A1 |
20170280450 | Jeong et al. | Sep 2017 | A1 |
20170303103 | Cullinan | Oct 2017 | A1 |
20170339016 | Splitz | Nov 2017 | A1 |
20180014248 | Splitz | Jan 2018 | A1 |
20180220354 | Heil | Aug 2018 | A1 |
20180310265 | Grady et al. | Oct 2018 | A1 |
20180317169 | Splitz et al. | Nov 2018 | A1 |
20190014393 | Splitz et al. | Jan 2019 | A1 |
20190059116 | Crohas | Feb 2019 | A1 |
20190226873 | Magley et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2772074 | Aug 2018 | EP |
2009133237 | Nov 2009 | WO |
2013062571 | May 2013 | WO |
2013062613 | May 2013 | WO |
2016036475 | Mar 2016 | WO |
2018203922 | Nov 2018 | WO |
Entry |
---|
Cullinan, Thomas; Non-Final Office Action for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Feb. 26, 2019, 15 pgs. |
Splitz, David Edwin; Office Action for Canadian application No. 2,861,675, filed Mar. 25, 2014, dated Mar. 5, 2019, 4 pgs. |
Magley, Dale McLeod; Issue Notification for U.S. Appl. No. 15/877,548, filed Jan. 23, 2018, dated Apr. 3, 2019, 1 pg. |
Magley, Dale McLeod; Supplemental Notice of Allowance for U.S. Appl. No. 15/877,548, filed Jan. 23, 2018, dated Mar. 14, 2019, 6 pgs. |
Splitz, David Edwin; Corrected Notice of Allowability for U.S. Appl. No. 14/490,081, filed Sep. 18, 2014, dated Jun. 26, 2018, 8 pgs. |
ITRON; Brochure for ChoiceConnect, Copyright 2013, 4 pgs. |
ITRON; Brochure for Radio Frequency Strategy in an AMI Deployment, Copyright 2012, 5 pgs. |
Godwin, Angela; Article entitled: “Advanced Metering Infrastructure: Drivers and Benefits in the Water Industry”, Waterworld, accessed on Mar. 30, 2016, 7 pgs. |
Splitz, David Edwin; Issue Notification for U.S. Appl. No. 15/161,448, filed May 23, 2016, dated Sep. 19, 2018, 1 pg. |
Splitz, David Edwin; Response to Amendment under Rule 312 for U.S. Appl. No. 15/161,448, filed May 23, 2016, dated Sep. 11, 2018, 6 pgs. |
Splitz, David Edwin; Notice of Allowance for U.S. Appl. No. 15/161,448, filed May 23, 2016, dated May 23, 2018, 16 pgs. |
Splitz, David Edwin; Issue Notification for U.S. Appl. No. 15/583,263, filed May 1, 2017, dated Dec. 19, 2018, 1 pg. |
Splitz, David Edwin; Notice of Allowance for U.S. Appl. No. 15/583,263, filed May 1, 2017, dated Aug. 30, 2018, 13 pgs. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 15/583,263, filed May 1, 2017, dated Mar. 8, 2018, 51 pgs. |
Magley, Dale McLeod; Supplemental Notice of Allowability for U.S. Appl. No. 15/877,548, filed Jan. 23, 2018, dated Jan. 10, 2019, 7 pgs. |
Magley, Dale McLeod; Notice of Allowance for U.S. Appl. No. 15/877,548, filed Jan. 23, 2018, dated Dec. 10, 2018, 10 pgs. |
Magley, Dale McLeod; Non-Final Office Action for U.S. Appl. No. 15/877,548, filed Jan. 23, 2018, dated Jan. 23, 2018, 35 pgs. |
Splitz, David Edwin; International Search Report for PCT Application No. PCT/US2017/050393, filed Sep. 7, 2017, dated Jan. 8, 2018, 14 pgs. |
Splitz, David Edwin; Issue Notification for U.S. Appl. No. 13/283,526, filed Oct. 27, 2011, dated Feb. 5, 2014, 1 pg. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 13/283,526, filed Oct. 27, 2011, dated Jun. 18, 2013, 67 pgs. |
Splitz, David Edwin; Notice of Allowance for U.S. Appl. No. 13/283,526, filed Oct. 27, 2011, dated Oct. 9, 2013, 16 pgs. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 15/161,448, filed May 23, 2016, dated Sep. 22, 2017, 16 pgs. |
Splitz, David Edwin; Issue Notification for U.S. Appl. No. 13/339,655, filed Dec. 29, 2011, dated Sep. 17, 2014, 1 pg. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 13/339,655, filed Dec. 29, 2011, dated Mar. 5, 2014, 18 pgs. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 13/339,655, filed Dec. 29, 2011, dated Sep. 16, 2014, 18 pgs. |
Splitz, David Edwin; Notice of Allowance for U.S. Appl. No. 13/339,655, filed Dec. 29, 2011, dated May 23, 2014, 41 pgs. |
Splitz, David Edwin; Final Office Action for U.S. Appl. No. 14/490,081, filed Sep. 18, 2014, dated Jan. 11, 2017; 23 pgs. |
Splitz, David Edwin; Issue Notification for U.S. Appl. No. 14/490,081, filed Sep. 19, 2014, dated Jul. 11, 2018, 1 pg. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 14/490,081, filed Sep. 18, 2014; dated Sep. 29, 2016; 34 pgs. |
Splitz, David Edwin; Notice of Allowance for U.S. Appl. No. 14/490,081, filed Sep. 18, 2014, dated Mar. 2, 2018, 26 pgs. |
Dukes, Brent; Issue Notification for U.S. Appl. No. 14/475,050, filed Sep. 2, 2014, dated Jan. 18, 2017, 1 pg. |
Dukes, Brent; Non-Final Office Action for U.S. Appl. No. 14/475,050, filed Sep. 2, 2014, dated May 19, 2016, 119 pgs. |
Dukes, Brent; Notice of Allowability for U.S. Appl. No. 14/475,050, filed Sep. 2, 2014, dated Nov. 21, 2016, 33 pgs. |
Dukes, Brent; Notice of Allowability for U.S. Appl. No. 14/475,050, filed Sep. 2, 2014, dated Dec. 15, 2016, 6 pgs. |
Dukes, Brent; Notice of Allowance for U.S. Appl. No. 14/475,050, filed Sep. 2, 2014, dated Oct. 21, 2016, 15 pgs. |
McCraven, Jeremy; Applicant Interview Summary for U.S. Appl. No. 14/273,823, filed May 9, 2014, dated Jan. 12, 2016, 3 pgs. |
McCraven, Jeremy; Non-Final Office Action for U.S. Appl. No. 14/273,823, filed May 9, 2014, dated Dec. 8, 2015, 18 pgs. |
McCraven, Jeremy; Non-Final Office Action for U.S. Appl. No. 14/273,823, filed May 9, 2014, dated Apr. 12, 2016, 86 pgs. |
McCraven, Jeremy; Notice of Allowance for U.S. Appl. No. 14/273,823, filed May 9, 2014, dated Jul. 7, 2016, 10 pgs. |
Cullinan, Thomas; Final Office Action for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Jan. 25, 2018, 22 pgs. |
Cullinan, Thomas; Final Office Action for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Oct. 4, 2018, 27 pgs. |
Cullinan, Thomas; Non-Final Office Action for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Apr. 5, 2018, 11 pgs. |
Cullinan,Thomas; Non-Final Office Action for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016; dated Jul. 12, 2017; 23 pgs. |
Grady, Robert Henry; Corrected Notice of Allowance for U.S. Appl. No. 15/065,423, filed Mar. 9, 2016, dated Aug. 9, 2018, 6 pgs. |
Grady, Robert Henry; Issue Notification for U.S. Appl. No. 15/065,423, filed Mar. 9, 2016, dated Aug. 21, 2018, 1 pg. |
Grady, Robert Henry; Non-Final Office Action for U.S. Appl. No. 15/065,423, filed Mar. 9, 2016, dated Nov. 28, 2017, 45 pgs. |
Grady, Robert Henry; Notice of Allowance for U.S. Appl. No. 15/065,423, filed Mar. 9, 2016, dated Apr. 12, 2018, 15 pgs. |
Splitz, David; International Preliminary Report on Patentability for serial No. PCT/US11/58260, filed Oct. 28, 2011, dated May 8, 2014, 7 pgs. |
Splitz, David; International Search Report and Written Opinion for serial No. PCT/US11/58260, filed Oct. 28, 2011, dated Feb. 7, 2012, 8 pgs. |
Splitz, David Edwin; Office Action for Canadian application No. 2,861,675, filed Mar. 25, 2014, dated Apr. 12, 2018, 4 pgs. |
Splitz, David Edwin; Office Action for Canadian Patent Application No. 2,861,675, filed Oct. 28, 2011, dated Aug. 22, 2017, 4 pgs. |
Splitz, David; International Preliminary Report on Patentability for serial No. PCT/US12/22060, filed Jan. 20, 2012, dated May 8, 2014, 6 pgs. |
Splitz, David; International Search Report and Written Opinion for serial No. PCT/US12/22060, filed Jan. 20, 2012, dated Mar. 29, 2012, 8 pgs. |
Splitz, David Edwin; Office Action for Canadian patent application No. 2,850,059, filed Mar. 25, 2014, dated Oct. 31, 2017, 3 pgs. |
Splitz, David Edwin; Office Action for Canadian patent application No. 2,850,059, filed Mar. 25, 2014, dated Dec. 13, 2018, 4 pgs. |
Splitz, David Edwin; Office Action for Canadian patent application No. 2,850,059, filed Mar. 25, 2014, dated Apr. 23, 2018, 3 pgs. |
Splitz, David Edwin; Extended European Search Report for serial No. 12844451.0, filed Jan. 20, 2012, dated Apr. 21, 2015, 8 pgs. |
Dukes, Brent; International Preliminary Report on Patentability for PCT application No. PCT/US15/44140, filed Aug. 7, 2015, dated Mar. 16, 2017, 12 pgs. |
Dukes, Brent; International Search Report and Written Opinion for application No. PCT/US15/44140, filed Aug. 7, 2015, dated Dec. 30, 2015, 15 pgs. |
Splitz, David Edwin; U.S. Provisional Patent Application entitled: Automatic Discovery of Nodes in a Mesh Network, U.S. Appl. No. 61/779,896, filed Mar. 13, 2013; 110 pgs. |
Berg et al., Spread Spectrum in Mobile Communication, 1998, The Institution of Electrical Engineers, ISBN 085296935X, pp. 42-132 (Year 1998). |
Splitz, David Edwin; Corrected Notice of Allowance for U.S. Appl. No. 15/206,851, filed Jul. 11, 2016, dated Jan. 4, 2019, 9 pgs. |
Splitz, David Edwin; Corrected Notice of Allowance for U.S. Appl. No. 15/206,851, filed Jul. 11, 2016, dated Oct. 17, 2018, 13 pgs. |
Splitz, David Edwin; Final Office Action for U.S. Appl. No. 15/206,851, filed Jul. 11, 2016, dated Jul. 20, 2018, 25 pgs. |
Splitz, David Edwin; Issue Notification for U.S. Appl. No. 15/206,851, filed Jul. 11, 2016, dated Jan. 16, 2019, 1 pg. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 15/206,851, filed Jul. 11, 2016, dated Feb. 7, 2018, 53 pgs. |
Splitz, David Edwin; Notice of Allowance for U.S. Appl. No. 15/206,851, filed Jul. 11, 2016, dated Sep. 20, 2018, 9 pgs. |
Splitz, David Edwin; Final Office Action for U.S. Appl. No. 15/161,448, filed May 23, 2016, dated Mar. 15, 2018 ,16 pgs. |
Dec. 13, 2018, Splitz, David Edwin; Office Action for Canadian patent application No. 2,850,059, filed Mar. 25, 2014, dated Dec. 13, 2018, 4 pgs. |
Dec. 19, 2018, Splitz, David Edwin; Issue Notification for U.S. Appl. No. 15/583,263, filed May 1, 2017, dated Dec. 19, 2018, 1 pg. |
Jan. 10, 2019, Magley, Dale McLeod; Supplemental Notice of Allowability for U.S. Appl. No. 15/877,548, filed Jan. 23, 2018, dated Jan. 10, 2019, 7 pgs. |
Cullinan; Thomas; Notice of Allowance for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Sep. 18, 2019, 16 pgs. |
Grady, Robert Henry; Non-Final Office Action for U.S. Appl. No. 16/021,581, filed Jun. 28, 2018, dated Jul. 12, 2019, 50 pgs. |
Grady, Robert Henry; Notice of Allowance for U.S. Appl. No. 16/021,581, filed Jun. 28, 2018, dated Oct. 3, 2019, 8 pgs. |
Splitz, David Edwin; Non-Final Office Action for U.S. Appl. No. 16/111,325, filed Aug. 24, 2018, dated Aug. 15, 2019, 45 pgs. |
Magley, Dale McLeod; Non-Final Office Action for U.S. Appl. No. 16/149,242, filed Oct. 2, 2018, dated Aug. 7, 2019, 46 pgs. |
Cullinan, Thomas; Corrected Notice of Allowance for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Nov. 22, 2019, 10 pgs. |
Cullinan, Thomas; Supplemental Notice of Allowance for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Oct. 25, 2019, 7 pgs. |
Grady, Robert Henry; Corrected Notice of Allowance for U.S. Appl. No. 16/021,581, filed Jun. 28, 2018, dated Nov. 12, 2019, 7 pgs. |
Grady, Robert Henry; Corrected Notice of Allowance for U.S. Appl. No. 16/021,581, filed Jun. 28, 2018, dated Dec. 26, 2019, 6 pgs. |
Splitz, David Edwin; Office Action for Canadian application No. 2,850,059, filed Jan. 20, 2012, dated Nov. 5, 2019, 3 pgs. |
Splitz, David Edwin; Notice of Allowance for U.S. Appl. No. 16/11,235, filed Aug. 24, 2018, dated Dec. 26, 2019, 12 pgs. |
Magley, Dale McLeod; Final Office Action for U.S. Appl. No. 16/149,242, filed Oct. 2, 2018, dated Dec. 16, 2019, 38 pgs. |
Splitz, David Edwin; International Preliminary Report on Patentability for PCT Application No. PCT/US2017/050393, filed Sep. 7, 2017, dated Nov. 14, 2019, 11 pgs. |
Cullinan, Thomas; Corrected Notice of Allowance for U.S. Appl. No. 15/098,986, filed Apr. 14, 2016, dated Jan. 28, 2020, 9 pgs. |
Grady, Robert Henry; Corrected Notice of Allowance for U.S. Appl. No. 16/021,581, filed Jun. 28, 2018, dated Jan. 29, 2020, 10 pgs. |
Magley, Dale McLeod; Non-Final Office Action for U.S. Appl. No. 16/149,242, filed Oct. 2, 2018, dated Feb. 10, 2020, 37 pgs. |
Number | Date | Country | |
---|---|---|---|
20190110249 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15206851 | Jul 2016 | US |
Child | 16214489 | US |