The present invention relates to an asymmetrical tire or, more particularly, to a tire that includes (i) a first shoulder (or a portion thereof) that is different in design (e.g., lug height, width, length, groove height, width, etc.) from a second shoulder (or portion thereof) and (ii) a crown having a design (i.e., tread) that is consistent with the second shoulder. By way of example, such a tire could combine the visual aesthetics of an aggressive off-road tire with the smooth and quiet ride and fuel efficiency of an original equipment (e.g., high-performance) tire.
A tire is a ring-shaped component that surrounds a wheel's rim and functions to transfer a vehicle's load from the axle through the wheel to the ground and to provide traction on a road surface. Tires are traditionally uniform, allowing them to be rotated, and symmetrical, allowing them to be flipped. One exception is that a tire may have a first sidewall that is black and a second, opposite sidewall that is white (or has a “white wall”), allowing the tire to be flipped, depending on the color that is desired by the user.
Tires also come in various shapes and sizes. A tire is traditionally designed for a particular application. For example, a tire may be high-performance (i.e., suitable for everyday driving) (e.g., on a freeway, etc.), off-road (e.g., for mudding, etc.), winter (e.g., snow, ice, etc.), all-terrain (e.g., suitable for everyday driving but capable of certain off-road activities), etc. This is typically accomplished by varying the tire's tread. A tire's tread, which typically includes a crown and a pair of shoulders, may include a plurality of ribs, blocks, lugs, grooves, sipes, etc. By varying the height, width, and length of these features, tires can be configured for different applications (e.g., off-road, winter, etc.). For example,
Tires are also designed for particular vehicles, having different widths, aspect ratios, and diameters. For example, an original manufacturer (“OM”) tire for a 2020 Toyota™ RAV4™ is a 225/65R17, meaning a tire having a 17″ diameter, a 225 mm width, and an aspect ratio of 65 (the sidewall distance, from the wheel rim to the outside of tread, is 65% of the section width). Such a tire can be seen in
To acquire this look, one would have to install off-road tires (see, e.g.,
Thus, it would be advantageous to design a tire that has the visual aesthetics of an aggressive off-road tire with the smooth and quiet ride and fuel efficiency of an original equipment (e.g., high-performance) tire. This can be accomplished by designing a tire that includes a first (outer) shoulder having an off-road tread and a crown and second (inner) shoulder having a high-performance tread. In alternate embodiments, an upper portion of the first (outer) shoulder (i.e., the portion that comes into contact with the road surface) includes a high-performance tread, whereas a side portion (i.e., the portion that does not come into contact with the road surface and is visible once the tire is installed on the vehicle) includes an off-road tread. This can be seen in
The present invention provides an asymmetrical tire that has the visual aesthetics of an aggressive off-road tire with the smooth and quiet ride and fuel efficiency of an original equipment (e.g., high-performance) tire. Preferred embodiments of the present invention operate in accordance with a tire configured to surround (e.g., be attached to) a wheel's rim to transfer a vehicle's load from the axle, through the wheel, to the road surface, thereby providing traction for the vehicle on the road surface.
The tire preferable includes at least one tire bead, sidewall, crown, and shoulder, where the shoulder is a transition from the crown to the sidewall. The tire bead is the part of the tire that contacts the rim on the wheel; the sidewall is that part of the tire that bridges the tread and the bead; the crown is the part of the tire that comes into contact with the road surface; and the shoulder is the part of the tire at the edge of the tread as it makes its transition to the sidewall.
The tread is characterized by a plurality of ribs, blocks, lugs, grooves, and sipes. Different tread designs address a variety of driving conditions. As the ratio of tire tread area to groove area increases, so does tire friction on dry pavement. For example, high-performance tires often have smaller voids to provide more rubber in contact with the road for higher traction, whereas off-road tires employ larger and deeper slots to engage mud, snow, etc.
It should be appreciated that a “shoulder” is a transition from the crown to the sidewall. As such, it may include a first (upper) portion that comes into contact with the road surface and may include a second (side) portion that does not, but is visible when looking at a profile (side-view) of the tire. Thus, a first shoulder having tread that is entirely different from the tread on the second shoulder, as well as partially different, is within the spirit and scope of the invention.
In one embodiment of the present invention, the crown and inner shoulder include high-performance tread and the outer shoulder includes off-road tread. By mounting the tire so that the outer shoulder points outward, the tire will have the visual aesthetics of an off-road tire. And by mounting the tire so that the inner shoulder points inward, the inner shoulder, which preferably has high-performance (e.g., OM) tread, should not rub on, or interfere with the vehicle's wheel well or splash guard. Finally, by using a high-performance tread on the crown, the vehicle should exhibit a smooth and quiet ride that is fuel efficient.
In another embodiment of the present invention, the crown and inner shoulder have a first tread design and the outer shoulder has at least a second tread design, where the first and second tread designs are different (i.e., asymmetrical). In one embodiment, the outer shoulder includes upper and side portions, where the inner shoulder has a first (e.g., high-performance) design that is consistent with (or identical to) tread on the upper surface of the outer shoulder, and the side portion of the outer shoulder has a second (e.g., off-road) design. By using two different types of tread on the outer shoulder, the tire can provide a smoother, quieter ride, while exhibiting an aggressive, off-road appearance.
In preferred embodiments of the present invention, the crown includes a plurality of ribs and grooves, and the outer and inner shoulders have a plurality of lugs, grooves, and sipes, wherein the crown and the inner shoulder comprises a first tread (e.g., high-performance) and the outer shoulder comprises a second tread (e.g., off-road). In one embodiment, the upper portion of the outer shoulder may further (or alternatively) includes a plurality of transitional comfort blocks that are consistent with the first tread type (e.g., high-performance) (e.g., have similar height, width, and/or length). As discussed above, off-road lugs are generally taller, wider, and/or longer than high-performance lugs, and the off-road grooves are deeper and/or wider as well. By using smaller ribs, lugs and grooves on the inner shoulder, the crown, and (in certain embodiments) the upper portion of the outer shoulder, and larger lugs and grooves on the side portion of the outer shoulder, an aggressive, off-road look can be provided while maintaining a smooth, quiet, comfortable ride.
A more complete understanding of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by a consideration of the following detailed description of the preferred embodiment. Reference will be made to the appended sheets of drawings, which will first be described briefly.
The present invention provides an asymmetrical tire that has the visual aesthetics of an aggressive off-road tire with the smooth and quiet ride and fuel efficiency of an original equipment (e.g., high-performance) tire. In the detailed description that follows, like element numerals are used to describe like elements illustrated in one or more figures.
It should be appreciated that while the invention is described herein in terms of an asymmetrical tire for a vehicle, such as an automobile, the present invention is not so limited. For example, the tire could be symmetrical (see, e.g.,
Preferred embodiments of the present invention operate in accordance with a tire configured to surround (e.g., be attached to) a wheel's rim to transfer a vehicle's load from the axle, through the wheel, to the road surface, thereby providing traction for the vehicle on the road surface. As shown in
The tire bead is the part of the tire that contacts the rim on the wheel. The bead seats tightly against the two rims on the wheel to ensure that a tubeless tire holds air without leakage. The bead fit is tight to ensure that the tire does not shift circumferentially as the wheel rotates. The sidewall is that part of the tire that bridges the tread and the bead. The sidewall is traditionally rubber but may be reinforced with fabric or steel cords to provide for tensile strength and flexibility.
The crown is the part of the tire that comes into contact with the road surface, whereas the shoulder is the part of the tire at the edge of the tread as it makes its transition to the sidewall. The tread (crown and shoulder) is typically a thick rubber, or rubber/composite compound formulated to provide an appropriate level of traction that does not wear away too quickly. The tread pattern is characterized by a plurality of ribs, blocks, lugs, grooves, and sipes, where a rib is a continuous strip of tread around a tire's circumference (see, e.g.,
Different tread designs address a variety of driving conditions. As the ratio of tire tread area to groove area increases, so does tire friction on dry pavement. High-performance tires often have smaller voids to provide more rubber in contact with the road for higher traction. They are typically constructed using softer rubber that provides better traction but wears quickly. Mud and snow (M&S) tires (e.g., off-road tires) employ larger and deeper slots to engage mud and snow. Snow tires have still larger and deeper slots that compact snow and create shear strength within the compacted snow to improve braking and cornering performance.
It should be appreciated that a “shoulder” is a transition from the crown to the sidewall. As such, it may include a portion (i.e., an upper portion) that comes into contact with the road surface (see
Thus, a first shoulder having tread that is entirely different from the tread on the second shoulder is within the spirit and scope of the invention, as is a first shoulder having a first (upper) portion of tread (e.g., tread that comes into contact with a road surface) that is similar (or identical) to tread that is on the second shoulder and a second (side) portion of tread (e.g., tread that does not come into contact with a road surface) that is different from tread that is on the second shoulder. In other words, as long as the profile portions of each shoulder are asymmetrical, the tire would be considered within the spirit and scope of present invention, or at least the preferred embodiment thereof (see, e.g.,
Examples can be seen in
Another example is shown in
A more detailed discussion of potential differences between each shoulder will now be provided. As shown in
Differences between a high-performance tread and an off-road tread are illustrated in
As illustrated, the lugs in the off-road tread may be taller, wider, and longer than the lugs in the high-performance tread. Similarly, the grooves in the off-road tread may be deeper and wider than the grooves in the high-performance train. In other words, for the lugs, H may be greater than H′, W may be greater than W′, and L may be greater than L′, and for the grooves, H may be greater than H′ and G may be greater than G′. By using smaller ribs, lugs and grooves on the inner shoulder, the crown, and (in certain embodiments) the upper portion of the outer shoulder, and larger lugs and grooves on the side portion of the outer shoulder, an aggressive, off-road look can be provided while maintaining a smooth, quiet, comfortable ride. It should be appreciated that while the lugs are shown in
In the foregoing embodiments, the circumferences of the first and second shoulders are substantially the same (or in some cases, identical). However, in an alternate embodiment, the second shoulder may have a circumference that is less than that of the first shoulder and/or the crown. This can be seen, for example, in
As previously discussed, the outer shoulder OS preferably includes an upper portion that may come into contact with a road surface and a side portion that most likely does not, but is visible once the tire is installed. As shown in
To solve this, the embodiment illustrated in
It should be appreciated that because the off-road lugs (e.g., on a side portion of the outer shoulder) may be taller than the high-performance lugs (e.g., on a side portion of the inner shoulder), the width of the outer shoulder OS may be greater than a width of the inner shoulder IS. In other words, a distance from a first outer edge of the crown C to an outermost portion of the inner shoulder IS may be shorter than a second outer edge of the crown C to an outermost portion of the outer shoulder OS. Similarly, because the off-road lugs (e.g., on a side portion of the outer shoulder) may be longer than the high-performance lugs (e.g., on a side portion of the inner shoulder), the sidewall S adjacent the outer shoulder OS may be shorter (in length) than the sidewall S adjacent the inner shoulder IS. Thus, a tire having an outer shoulder whose width is greater than a width of the inner shoulder is within the spirit and scope of the present invention.
Having thus described several embodiments of the present invention, it should be apparent to those skilled in the art that certain advantages have been achieved. It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention. For example, all tread types are within the spirit and scope of the present invention (e.g., all-terrain, all-season, high-performance, off-road, winter, etc.), as long as the tire includes at least two different tread types. The present invention is also not limited to the more aggressive tread type being on the outer shoulder of the tire. The purpose of the invention is to provide a visual appearance that is desired by the owner, which may be rugged, streamline, low profile, etc. Thus, any combination of the foregoing embodiments is within the spirit and scope of the present invention, which is defined solely by the following claims.
Number | Date | Country | |
---|---|---|---|
62856370 | Jun 2019 | US |