Atherectomy catheter with laterally-displaceable tip

Abstract
Described herein are atherectomy catheters, systems and methods that include a distal tip region that may be moved laterally so that its long axis is parallel with the long axis of the main catheter body axis. Displacing the distal tip region laterally out of the main catheter body axis exposes an annular blade and opens a passageway for cut tissue to enter a storage region within the catheter. The annular blade may be internally coupled to a drive shaft that rotates the blade, and thus the exposed blade edge may have the same crossing profile (OD) as the rest of the distal end region of the catheter. Also described herein are gear-driven atherectomy devices that may use a cable drive shaft to actuate the annular blade. Both push-to-cut and pull-to-cut variations are described, as are methods for cutting tissue and systems including these atherectomy catheters.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD OF THE INVENTION

Described herein are atherectomy catheters with laterally displaceable tips, systems including such catheters and methods of using them.


BACKGROUND OF THE INVENTION

A significant body of scientific and clinical evidence supports atherectomy as a viable primary or adjunctive therapy prior to stenting for the treatment of occlusive coronary artery disease. Atherectomy offers a simple mechanical advantage over alternative therapies. By removing the majority of plaque mass (debulking) it creates a larger initial lumen and dramatically increases the compliance of the arterial wall. As a result, stent deployment is greatly enhanced.


Additionally, there are advantages related to the arterial healing response. When circumferential radial forces are applied to the vasculature, as in the case of angioplasty or stenting, the plaque mass is displaced, forcing the vessel wall to stretch dramatically. This stretch injury is a known stimulus for the cellular in-growth that leads to restenosis. By removing the disease with minimal force applied to the vessel and reducing the plaque burden prior to stent placement, large gains in lumen size can be created with decreased vessel wall injury and limited elastic recoil which have shown to translate into better acute results and lower restenosis rates.


Traditional atherectomy devices have been plagued by a number of problems, which have severely limited market adoption. These challenges include the need for large access devices, rigid distal assemblies that make control and introduction challenging, fixed cut length, unpredictable depth of cut, insufficient tissue collection and removal, and complex operation. The systems and devices described herein may overcome these hurdles and offer physicians a safe, reliable, and simple cutting system that offers the precision required in eccentric lesions, various disease states, and tortuous anatomy.


Despite the potential to improve restenosis rates associated with angioplasty and stenting in the coronary and peripheral vasculature, atherectomy is not commonly performed. The primary reason for this limited use is the cost, complexity and limited applicability of currently available devices. Many designs are unable to treat the wide range of disease states present in long complex lesions; luminal gain is often limited by the requirement of the physician to introduce multiple devices with increased crossing profiles; tissue collection is either unpredictable or considered unnecessary based on assumptions regarding small particle size and volumes; and optimal debulking is either not possible due to lack of intravascular visualization or requires very long procedure times. Based on these limitations current devices are likely to perform poorly in the coronary vasculature where safety and efficacy in de novo lesions, ostials, and bifurcations continue to pose great challenges.


Previously, atherectomy devices focused on macerating or emulsifying the atherosclerotic plaque such that it may be considered clinically insignificant and remain in the blood stream or aspirated proximally through small spaces in the catheter main body. The reliability of these devices to produce clinically insignificant embolization has been questioned when not aspirated through the catheter to an external reservoir. Aspiration requires a vacuum be applied to a lumen or annular space within the catheter to remove emulsified tissue. In early clinical evaluations of aspiration the presence of negative pressure at the distal working assembly cause the artery to collapse around the cutting element causing more aggressive treatment, dissections and/or perforations. In addition, the option for post procedural analysis of any removed disease is extremely limited or impossible. Atheromed, Pathway Medical and Cardio Vascular Systems, Inc. are examples of companies working on such product designs.


Other atherectomy devices include the directional atherectomy devices such as those developed by DVI and FoxHollow. These catheters use cupped cutters that cut and “turn” the tissue distal into a storage reservoir in the distal tip of the device. This approach preserves the “as cut” nature of the plaque but requires large distal collection elements. These large distal tip assemblies can limit the capabilities of the system to access small lesions and create additional trauma to the vessel.


Currently available atherectomy devices also do not include, and are poorly adapted for use with, real time image guidance. Physician practice is often to treat target lesion as if they contain concentric disease even though intravascular diagnostic devices have consistently shown significantly eccentric lesions. This circumferential treatment approach virtually ensures that native arterial wall and potentially healthy vessel will be cut from the vasculature.


Atherectomy catheter devices, systems and methods that may address some of these concerns are described and illustrated below.


SUMMARY OF THE INVENTION

Described herein are atherectomy catheters, systems including them and methods of using them. Some of the distinguishing features that may be included as part of these devices, systems and methods are summarized below.


In general the atherectomy devices described herein include laterally displaceable distal tip regions. Lateral displacement of the distal tip region typically means that the longitudinal axis of the distal tip region is radially displaced relative to the longitudinal axis of the distal end of the rest of the catheter body. Longitudinal displacement of the distal tip region effectively drops the distal tip region away from the rest of the catheter body, and may expose one or more cutting regions on or in the catheter, and provide an opening into which cut tissue may enter for storage and/or removal.


In some variations, the catheters described herein include an annular cutting ring or element having at least one cutting edge. An annular cutting ring may be a cylindrical element (or a partial cylinder) that has at least one sharpened or cutting edge. The sharp/cutting edge may be sharp, tapered, serrated, or otherwise configured to cut into tissues such as those within a diseased lumen of a vessel. The annular cutting edge may be rotatable, typically rotating about a long axis that is parallel to the direction of cutting (i.e., the longitudinal axis of the catheter). The cutting edge of the annular cutting ring may be located along one edge, such as the circular lip of a cylindrical-shaped annular cutting ring.


In some variations, the annular cutting ring includes one or more outwardly-facing non-cutting sides. The outwardly-facing side(s) of the annular cutting ring may form an external surface of the catheter. In some variations the annular cutting ring is approximately the width of the catheter, which may maximize the size of the cutting edge of the annular cutting ring.


Any of the devices described herein may be gear-driven, and may include a gear driven distal assembly that may provide additional flexibility for locating a cutter driving element at or near the distal end of the catheter. Annular cutting rings that are driven by a geared driveshaft may offer mechanical advantages compared to annular cutters driven by a rotating driveshaft that is concentric to, and housed within, the main body of the catheter shaft. Driveshafts that are directly coupled to the cutter blade may be driven with standard DC motors, hydraulics or pneumatics. However, the concentric configuration may limit the space proximal to the cutting element available for proximal tissue storage and/or removal. The catheter described herein may include both gear-driven and directly-coupled driveshaft embodiments.


The mechanical advantage provided by the geared cutting assemblies described herein also provides additional design options for the cutting mechanisms. This approach would require lower input torque and driveshaft performance requirements necessary to power a cutter through very hard calcified lesions. Different gear ratios may be used in designs intended to cut soft tissue or hard disease. It is also possible for multiple gear ratios to be provided in one device to be modified by the physician as deemed necessary.


Any of the atherectomy catheters described herein may also be used to cut and store tissue for later analysis and/or for removal from the body. For example, the devices described herein may include a primary hollow cutter and internal gear driven configuration that may allow tissue to travel directly through the cutter, from distal to proximal, once planed from the arterial wall and be stored proximal to the cutter in its “as cut” state, allowing for future histological evaluations. In some variations, the gearing means and direction of distal tip motion when activating the cutter may ensure appropriate position of apposition force for the cutter to engage tissue.


The laterally displaceable distal tip regions may help ensure close longitudinal proximity of the cutting edge (e.g., a proximal tip edge) or tissue shearing edge, to the wall of the vessel and reliably link the amount of cutter exposure to the depth of cut independent of the amount of cutter apposition force.


The laterally displaceable distal tip assembly may be displaceable directly downward, preserving parallel alignment of the tip and catheter shaft axis, and providing efficient use of energy sources for simplified device actuation and manipulation. The lateral displacement may also allow intravascular imaging elements located on the distal assembly of the device to provide real time diagnostic information to physician.


Guided atherectomy systems are described herein. These devices are intended to access the vasculature using conventional catheterization techniques employing sheath and/or guiding catheter access and tracking over a positioned pre-positioned guidewire. The atherectomy devices described herein may be adapted for use with a guidewire or sheath. For example, the atherectomy catheter may include a central guidewire lumen. The catheters described herein may generally track through the vasculature to the target lesion.


In some variations, the devices include visualization, and particularly Optical Coherence Tomography (OCT) image visualization. For example, in some variations, a fiber affixed or positioned at or near the distal assembly of the device and extending proximally will enable OCT imaging to be used for lesion assessment and treatment planning. In use, the device may be rotationally oriented toward the diseased sector of the artery, and the device may be activated using proximal physician controls so that the distal tip assembly will laterally displace (e.g., moving away from the cutter) to expose the cutting edge to the diseased tissue. The annular cutter may be rotated, e.g., at approximately 100 to 10000 rpm. The device may then be translated through the lesion to plane and cut the diseased tissue while the OCT image provides real time feedback regarding wall and disease characteristics, cutter apposition and cut depth. During a cutting pass, the tissue may feed into the catheter and travel through the hollow cutter and into a proximal tissue reservoir. Upon completing the cutting pass, the proximal controls may be used to deactivate the device, closing the tip against the spinning cutter and terminating the planed tissue with a scissoring action and stopping cutter rotation. Multiple runs through this procedure may occur to fully treat the disease.


Atherectomy catheters and systems using them may have a cutter (e.g., the cutting edge of an annular cutting ring) diameter at or near the maximum crossing profile of the main catheter body, which may maximize cut tissue cross-sectional area, and minimize the depth of cut. The large cross-sectional area may reduce the procedure time, providing more efficient cutting passes and add a degree of safety by reducing the depth of cut required to achieve these efficiencies. The depth of the cut may be controlled by the lateral displacement of the distal end of the device, which both determines the opening size and how much of the cutter is exposed, and may also drive the cutter against the wall of the vessel by effectively widening the device within the vessel lumen.


The hollow cutters (annular cutting rings) described may allow tissue to be cut from the wall of the artery, pass directly through the catheter, and be stored in a reservoir. Both forward-cutting (push-cutting devices) and reverse (pull) cutting devices are described. In pull-cutting devices, the tissue may preferentially be stored distally, which in push cutting devices, the tissue may be preferentially be stored proximally. In some variations a deflector or guide may be used to direct the cut tissue into a proximal and/or distal storage area within the device. Proximal tissue storage may allow the distal tip region diameters and lengths to be reduced. Reduced tip dimensions may help the device cross tight lesions, cut in quickly tapering vessels, and generally be less traumatic to downstream vascular structures.


In variations including an internal gear driven cutter, the annular cutting ring may include female gears on the cutter body internal diameter. This may provide a large, mainly centralized, region for tissue to pass through the cutter and into a proximal storage area, as mentioned. The gear mechanism may also provide a mechanical advantage to the cutting assembly. In the embodiments described below, the input torque applied to the input pinion drive shaft may be 0.5× of that required by a direct drive system to cut hard/calcified disease. The driveshaft may balance flexibility to navigate tortuous anatomy and torsional/tensile/compressive rigidity to drive distal mechanisms through hard calcium or tight lesions. The mechanical advantage of the internal gear drive may provide more options for driveshaft design. In addition, an internal gear may help achieve better engagement of micro scale tooth profiles. Fabrication of gears of this scale can be challenging, and the increased tooth engagement of the internal gear configuration may limit wear of the materials and increase tooth engagement leading to longer life and more consistent torque output and shock absorption.


The tissue entry window is mainly defined by the vertical distance from outer tip diameter to cutter edge, which may minimize longitudinal motion and reduce angular deflection of the tip mechanism. As mentioned, the depth of the cut may remain relatively constant at varied force of engagement between cutter and tissue because of the lateral displacement of the distal tip region.


As mentioned, any of the variations described herein may include on-board imaging with one or more imaging elements providing a cross-sectional view of vessel wall morphology in the cutting plane. For example, ultrasound and/or optical imaging technologies may be used. In particular, OCT imaging may be used. In some variations, the OCT imaging system may achieve around 10 micron lateral resolution and use optical fibers having diameters below 0.010″.


In some variations of the cutter assemblies described herein, the annular cutting ring and the laterally displaceable distal tip allow consistent cut depths even with high apposition forces. Angiography and intravascular imaging technologies may be used and a known depth of cut may be overlaid on known depth of disease. Typically, the apposition force applied may directly correlate to the vessel diameter and to the level of stenosis, reducing the potential for barotrauma and over treatment.


In some variations, the catheter device also includes a handle having one or more controls for controlling the catheter. For example, the system or device may include a handle having a control for laterally displacing the distal tip region and exposing the cutting edge of the annular cutting ring. Any appropriate control may be used, including a button, switch, slider, knob, etc. The lateral displacement may be controlled by a mechanical, electrical, and/or magnetic means. For example, an elongate tendon member (e.g., wire) which may be flexible may extend through the catheter body from proximal to distal ends to actuate the lateral displacement.


In addition, the devices or systems may also include one or more controls for controlling the rotation of the annular cutting ring. Rotation may be linked to the lateral displacement so that the cutter begins rotating either shortly before or after lateral displacement exposes the cutter. Alternatively, the rotation may be independent of the lateral displacement. The devices or systems may also include controls for an associate imaging (e.g., OCT) system. In some variations the device or system includes control logic for regulating the displacement and/or rotation and/or imaging. Proximal controls may include an automated advancement function to ensure proximal motion correlates to distal tracking in the vessel. In some variations, some or all of these controls may be on a handle, or may be on a separate controller.


Force limiting controls may also be used to ensure the input forces do not exceed what is required to effectively cut diseased tissue. This may reduce the chances of the device moving outside the perimeter of the lesion while activated thereby cutting into healthy arterial wall.


In some variations, the catheter systems described herein are compatible with 7F sheath access to the peripheral arteries, or 6F sheath sizes.


For example, described herein are atherectomy catheters for cutting tissue having a laterally displaceable tip. These devices may include: an elongate, flexible catheter body having a proximal end and a distal end and a longitudinal axis; an elongate and laterally displaceable distal tip assembly; a rotatable annular cutting ring between the distal end of the catheter body and the distal tip assembly; and a distal tip control at the proximal end of the catheter that is configured to expose a cutting edge of the annular cutting ring by laterally displacing the distal tip assembly from a closed configuration in which the distal tip assembly is in-line with the catheter body, to an open configuration in which the distal tip assembly is laterally displaced from the catheter body and parallel to the longitudinal axis of the catheter body.


Any of these devices may also include a drive shaft extending along the length of the catheter body. For example, the drive shaft may comprise a cable drive shaft having a distal gear configured to drive rotation of the cutting ring. In some variations, the annular cutting ring comprises internal gear teeth configured to mate with a drive shaft to rotate the cutting ring.


The drive shaft may be directly connected to the annular cutting ring. For example, the drive shaft comprises a hollow tubular drive shaft.


Any of the catheters described herein may include a guidewire lumen extending the length of the catheter. The lumen may be centered or off-centered, and one or more additional lumens may also be included.


In some variations, the annular cutting ring may form an outer surface of the catheter in both the closed and open configurations.


The device may also include an internal tissue collection region configured to receive tissue cut by the annular cutting ring. For example, the tissue collection region may be located within the distal tip assembly. The tissue collection region may be located within the catheter body.


In some variations, the annular cutting ring may be displaceable with the distal tip assembly. For example “pull to cut” embodiments, in which the tissue is cut as the catheter is withdrawn proximally, may include the annular cutting ring on the displaceable distal tip. In some variations the annular cutting ring remains in-line with the catheter body when the distal tip assembly is displaced.


As mentioned, in any of these variations, the catheter may include an OCT imaging subassembly. For example, the OCT imaging subassembly may include a fiber optic extending the length of the catheter body. The OCT imaging assembly may comprise a side-facing OCT emitting element fixed proximal to the annular cutting ring.


The OCT imaging assembly may include a side-facing OCT emitting element fixed distally to the annular cutting ring.


Also described herein are atherectomy catheters for cutting tissue having a laterally displaceable tip. These devices may include: an elongate catheter body having a longitudinal axis; a laterally displaceable distal tip assembly; an annular cutting ring between the catheter body and the distal tip assembly; and a distal tip control configured to switch the distal tip assembly between a closed configuration, in which the distal tip assembly is in-line with the catheter body, and an open configuration exposing a cutting edge of the annular cutting ring, in which the distal tip assembly is laterally displaced from the catheter body and parallel to the longitudinal axis of the catheter body.


Also described herein are atherectomy catheters for cutting tissue having a laterally displaceable tip, the devices having: an elongate, flexible catheter body having a proximal end and a distal end and a longitudinal axis; an elongate and laterally displaceable distal tip assembly; an annular cutting ring between the distal end of the catheter body and the distal tip assembly forming an outer surface of the atherectomy catheter; and a distal tip control at the proximal end of the catheter that is configured to switch the distal tip assembly from a closed configuration in which the distal tip assembly is in-line with the catheter body, and an open configuration in which the distal tip assembly is laterally displaced from the catheter body and parallel to the longitudinal axis of the catheter body, exposing a cutting edge of the annular cutting ring.


Also described herein are atherectomy catheters for cutting tissue having a laterally displaceable tip, including: an elongate catheter body having a longitudinal axis; a laterally displaceable distal tip assembly; an annular cutting ring between the catheter body and the distal tip assembly, wherein the cutting ring includes an internal gear surface; a drive shaft extending the length of the catheter body having a driving pinion gear for driving rotation of the annular cutting ring; and a distal tip control configured to switch the distal tip assembly between a closed configuration, in which the distal tip assembly is in-line with the catheter body, and an open configuration exposing a cutting edge of the annular cutting ring, in which the distal tip assembly is laterally displaced from the catheter body and parallel to the longitudinal axis of the catheter body.


The driving pinion gear and the internal gear surface of the annular cutting ring may be configured to provide a mechanical advantage for turning the annular cutting ring. The devices may also include a guidewire lumen extending the length of the catheter. In some variations, the annular cutting ring forms an outer surface of the catheter in both the closed and open configurations.


Also described herein are methods of performing an atherectomy to remove tissue from within a vessel lumen using an atherectomy catheter having a catheter body with a longitudinal axis, an annular cutting ring and a laterally displaceable distal tip assembly, the method comprising: advancing the atherectomy catheter within a vessel lumen; exposing a cutting edge of the annular cutting ring of the atherectomy catheter by laterally displacing the distal tip assembly away from the longitudinal axis of the catheter body so that the distal tip assembly is parallel to the longitudinal axis of the catheter body; and driving the cutting edge against a wall of the vessel lumen to remove tissue.


Any of these methods may also include the step of rotating the annular cutting ring while driving it against the wall of the vessel lumen. The annular ring may be rotated by driving an internal gear within an inner surface of the annular ring. The method may also include the step of imaging the tissue using an OCT imaging subassembly on the catheter.


The driving step may comprise pushing the catheter distally, and/or pulling the catheter proximally. Any of these methods may also include the step of collecting cut tissue within an opening of the atherectomy catheter.


Also described herein are methods of performing an atherectomy to remove tissue from within a vessel lumen using an atherectomy catheter having a catheter body, annular cutting ring and a laterally displaceable distal tip assembly, the method may include the steps of: advancing the atherectomy catheter within a vessel lumen while the distal tip assembly is in-line with the catheter body of the atherectomy catheter so that the distal tip assembly and the catheter body have a common longitudinal axis; laterally displacing the distal tip assembly to expose a cutting edge of the annular cutting ring so that the longitudinal axis of the distal tip assembly is parallel but laterally offset from the longitudinal axis of the catheter body; and driving the cutting edge against a wall of the vessel lumen while rotating the annular ring to remove tissue.


The annular ring may be rotated by driving an internal gear within an inner surface of the annular ring.


In some variations, the method further include the step of imaging the tissue using an OCT imaging subassembly on the catheter. In any of the methods described herein, the step of driving the catheter may include pushing the catheter distally and/or pulling the catheter proximally. Any of these methods may also include the step of collecting cut tissue within an opening of the atherectomy catheter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A-1H illustrates different examples of lateral displacement.



FIG. 2A is an isometric view of a catheter having a laterally displaceable distal tip region in a closed/non-activated configuration.



FIG. 2B is an isometric view of the catheter of FIG. 2A showing the distal tip region laterally displaced.



FIG. 2C is a cross-sectional view of the catheter shown in FIG. 2B, above (in the open/laterally displaced configuration).



FIG. 2D is a side view of the catheter shown in FIG. 2B.



FIGS. 3A and 3B illustrate one variation of an actuation mechanism (which may be referred to as a “collar actuation method”) for opening (laterally displacing) and closing the distal tip assembly.



FIGS. 4A and 4B show isometric and face views of an off-axis driving pinion gear and internal gear surface of the cutter body.



FIG. 5 illustrates a perspective view of a gear-driven annular cutting ring including internal gears and a D-bore pinion gear configuration.



FIG. 6 shows one example of a helical gear.



FIG. 7 illustrates, in principle, a bevel gear drive and cutter exposure



FIG. 8 shows one example of a catheter having a laterally displaceable distal tip assembly and an OCT imaging fiber.



FIG. 9A is an isometric view of another variation of an atherectomy catheter having a laterally displaceable distal tip region in a closed/non-activated configuration.



FIG. 9B is an isometric view of the catheter of FIG. 9A showing the distal tip region laterally displaced.



FIG. 9C is a cross-sectional view of the catheter shown in FIG. 9B in the open/laterally displaced configuration.



FIG. 9D is a side perspective view of the catheter shown in FIG. 9B.



FIG. 10A is an isometric view of another variation of an atherectomy catheter having a laterally displaceable distal tip region in a closed/non-activated configuration.



FIG. 10B is an isometric view of the catheter of FIG. 10A showing the distal tip region laterally displaced.



FIG. 10C is an enlarged perspective view of the junction between the annular cutting ring and rest of the catheter body of the device shown in FIG. 10A.



FIG. 10D is an enlarged perspective view of the junction between the annular cutting ring and rest of the catheter body of the device shown in FIG. 10B.



FIGS. 11A and 11B show annotated side perspective views of a catheter such as the one shown in FIGS. 10A-10D.



FIGS. 12A and 12B show cross-sectional views through a length of catheter such as the one shown in FIGS. 10A-10D.



FIG. 13 shows an embodiment of an atherectomy catheter including an OCT imaging system.





DETAILED DESCRIPTION OF THE INVENTION

In general the atherectomy devices described herein include laterally displaceable distal tip regions. FIG. 1A-1H illustrate examples of lateral displacement. As used herein, lateral displacement includes movement of the distal tip region of a catheter from a first position in which the long axis of the distal tip region (the longitudinal axis of the distal tip region) is in-line with the long axis of the proximal body of the catheter (the longitudinal axis of the catheter body) to a second, laterally displaced, position in which the distal tip region has shifted out plane so that the long axis of the distal tip region is parallel with the long axis of the catheter body, but in a different plane. The terms “parallel” and “in line” in reference to the long or longitudinal axis do not require that the catheter regions be straight.



FIGS. 1A and 1B, illustrate lateral displacement of a rectangular region having a proximal 101 and distal 103 elements. In FIG. 1A, the proximal 101 and the distal 103 regions are in-line, and share a common longitudinal (long) axis, which may be imagined as a horizontal axis that passes through the midline of both rectangular regions. In FIG. 1B, the distal 103 element has been laterally displaced relative to the proximal 101 element, and has shifted upwards. Although the longitudinal axis of the proximal 101 element and the longitudinal axis of the distal 103 element are still approximately parallel, they are no longer in-line, but have separated by a radial distance.



FIGS. 1C and 1D illustrate another example, in which the proximal 101 and distal 103 rectangular elements are laterally and slightly longitudinally displaced. Similar examples of lateral displacement are illustrated for cylindrical shapes in FIGS. 1E to 1H. FIGS. 1E and 1F show lateral displacement of a proximal 105 and distal 107 elements along a plane perpendicular to the long axis. FIGS. 1G and 1H illustrate lateral displacement of proximal 105 and distal 107 cylindrical elements along a non-perpendicular plane that (similar to FIGS. 1C and 1D) also result in a slight longitudinal displacement.



FIGS. 2A-8B illustrate one variations of an atherectomy catheter device having a laterally displaceable distal tip region. These variations are configured as gear-driven catheters, in which the cutter is an annular cutting ring that includes a sharp or cutting edge along one side, and includes internal threads on the inner surface of the ring.


For example, FIG. 2A shows a distal portion of a device in a “non-activated” configuration, in which the distal tip region 201 is in-line with the catheter body 205 (or at least the region of the catheter body adjacent to the distal tip region). FIG. 2B shows the same catheter in an “activated” configuration. In the closed/non-activated position, the cutter 203 is protected and is not exposed, which may prevent unintended damage to the inner diameter of ancillary medical devices and the vasculature. In the open/activated position, the distal tip assembly 201 is laterally displaced to expose up to 180 degrees of the cutter edge. When opened, the bottom circumference of the tip assembly increases the overall crossing profile (e.g., diameter) of the device. This enlarged configuration (the distance between bottom tip surface and upper cutter edge) may extend the inner lumen of the vessel (e.g., artery) and create an opposing force for cutter engagement into the tissue. This appositional force may ensure the purchase of the cutting edge against the targeted cutting site will be enough to both engage the tissue and maintain contact during the cutting pass.


The tip actuation method shown in FIGS. 2A and 2B involves sliding a pinion gear drive shaft relative to the cutter assembly. FIG. 2C is a cross-sectional view of the distal assembly of FIGS. 2A-2B. FIG. 2D is an annotated side view of the same device. As illustrated in these figures, as the pinion driveshaft is forced forward in the assembly 201, the proximal 60 degree mating faces and pin slots of the cutting assembly adaptation and tip mechanism may force the tip forward (distal) and down. The angle and distance traveled by the tip may be modified with different face angles and relative pin slot positions. Similar tip actuation methods may be accomplished by translating a collar proximal to the cutter assembly that is attached via a pin and slot design. Translation of this collar will actuate the assembly. An example of this may be shown in FIGS. 3A and 3B.


As illustrated herein, the distal tip assembly or apposition element may be laterally displaced and “drop” directly downward in plane with the main body of the catheter. This y-axis coincidence provides at least two benefits: (1) deflection and/or a curved portion of the distal device assembly may cause rotational instability in tortuous vasculature as the device travels the path of least resistance (curve or deflection continued alignment with bend/turn in the vessel); and (2) cutter apposition forces with a deflected tip configuration that may be applied up and downstream of the cutting location, and may be defined by vascular characteristics potentially a long distance from the key target. This direct “downward” activation of the tip assembly ensures that an apposition force is applied local to the cutting assembly. Apposition force near directly 180 degrees of the cutter edge may make certain that the target lesion define the amount of engagement between cutter and tissue.


In addition, laterally displacing the distal tip assembly and/or cutter exposure with minimal longitudinal motion and no angular deflection of the tip mechanism may provide for the tissue entry window to be mainly defined by the vertical distance from outer tip diameter to cutter edge. This may prevent increased tissue invagination into the exposed tissue entry point with increased apposition forces. Depth of cut may then remain relatively constant at varied force of engagement between cutter and tissue providing the physician with a more predictable and safe device.


Alternate methods of tip actuation may include using a worm gear anchored to a pinion gear driveshaft and rack anchored to the tip assembly. Rotation of the pinion gear drive shaft to rotate the cutter may additionally advance and displace the tip. The direction of rotation may be alternated to open and close the system. Alternatively, a balloon and/or inflatable lumen may be placed between the tip mechanism and cutting assembly adaptation such that inflation will push the tip mechanism off axis. Magnetic elements may also be used to actuate the assembly by taking advantage of the natural means of attraction or repulsion or by preferentially applying an electrical current. Finally, as discussed below and represented in FIG. 6, helical gears may be used for the cutter body internal gears and pinion gear such that the pitch angle may be altered to provide an axial actuation force vector when driving the cutter. In some variations, the distal tip assembly/region may be actuated by a push/pull tendon that extends the length of the catheter.


In some variations, the apposition force for cutter engagement may be achieved by means of a balloon mounted on the circumference of the catheter distal assembly, approximately 180 degrees from the cutting plane. The inflation of this balloon would also increase the effective size of the device, distend the artery, and engage the cutter into the tissue. A highly lubricious base balloon material and/or hydrophilic coating may be used such that the balloon may be in contact with the wall of the artery during the cutting traverse. The balloon may be made of an elastic or inelastic material.


A “sponge” like material may also be used to preferentially appose the cutter in the same manner as the inflated balloon or lumen discussed above. Exposing the porous and absorbent material to infused fluid or blood would expand the material and actuate the tip or directly apply force to the wall of the artery. By extracting the fluid with negative pressure or mechanical compression the overall dimensions of the absorber would be reduced to deactivate the system.


In the catheter variation shown in FIGS. 2C and 2D, the axis of the guide wire Lumen and Pinion Drive Shaft are aligned in both open and closed positions of the distal tip assembly. This may ensure minimal sliding friction as the device is advanced and retracted over the wire. In some variations it may be advantageous to have the guidewire lumen crimp or bend on the guidewire.



FIGS. 4A and 4B illustrate one variation of a primary internal gear assembly with an approximate 2 to 1 gear ratio between internal cutter body and pinion. The annular cutting ring 401 includes internal gear teeth (“female” teeth) 403 on the inner surface that is configured to mate with the driving pinion gear 405. The means for controlling the offset of the internal and pinion gear axis is the supporting non-spinning cutter bearing surface 407. This component may be manufactured from a high grade engineering plastic or high wear coefficient material. The annular “bean” shaped inner lumen may thus define a lumen or space for cut tissue to be stored or to travel through in the catheter. This support component also isolates the gear teeth from the tissue specimen. This component may also ensure an appropriate engagement force is maintained according to gear tooth profile requirements.


As mentioned, in some variations, the pinion driveshaft translation may used to actuate the tip. This pinion gear driveshaft may be anchored longitudinally to the pinion gear, as shown in FIG. 2D, or it may be free to translate relative to the pinion, as shown in FIG. 5. In the case where the driveshaft slides relative to the pinion, an asymmetric mating x-section of the driveshaft and pinion gear may be present to ensure proper torque transmission between components. In this example, the pinion gear may not be required to slide relative to the cutter body while spinning.


As discussed above, a helical gear configuration may be used for the cutter driving assembly. A left-hand pitch angle on the cutter body, and mating pinion pitch would provide proximal thrust with clockwise rotation of the pinion. Relative longitudinal motion created by axial thrust can be used to actuate the distal tip. In addition, this proximal force will seat the cutter within the mating assembly to ensure the cutting edge is predictably aligned with distal window defining and shearing edges. Finally, the helical configuration may provide more gear tooth surface area engagement per length of assembly at each angular position to ensure small gears have more opportunity to transmit the required torque.


A bevel gear interaction may also be used to drive the cutter assembly. As shown in FIG. 7, a pinion bevel gear and driveshaft may remain concentric to a fixed catheter axis and may translate along that axis. In some variations, the moving bevel pinion may be dome-shaped so that the grooves/teeth engage fully. A bevel gear and cutter edge assembly may be fixed longitudinally relative to a main catheter body but be free to move perpendicular to the mating bevel pinion axis. Translation of the pinion gear along its axis of rotation may change the position of the cutter relative to the catheter axis and consequently raise or lower the cutter to expose the cutting edge.


In any of these variations, the catheter device may also include on-board and real time image guidance capabilities. This may include an imaging element, or energy emitting assembly, positioned at the distal portion of the device such that local images of the vessel may guide device usage. One specific configuration of an OCT system that may be used for this distal imaging element is described in co-pending applications, including U.S. patent application Ser. No. 12/790,703, previously incorporated by reference. The distal energy emitter(s) may be positioned in multiple locations in fixed positions or embodied in a mating assembly that may translate in an eccentric lumen or in the hollow lumen of the driveshaft. The emitter may send and receive relevant light or sound signals at 90 degrees from the catheter axis or at angles up to approximately 50 degrees to visualize distal or proximal wall features from a fixed position.



FIG. 8 shows one example of a catheter having a laterally displaceable distal tip assembly and an OCT imaging fiber. The imaging fiber is configured for placement of the OCT sensing element 801 (the end of the fiber forming the “window”) just proximal to cutter body and positioned such that images are obtained in the cutting direction. The OCT sensing element 801 is a side-facing element. In this example, the OCT window is fixed in position on the side, and angular survey mages of the adjacent vessel region may be taken by rotating the entire catheter around the vessel and/or moving it longitudinally as well. This image scanning may preferably be done before laterally displacing the distal tip assembly. In some variation the sensor (window) is positioned in more distal locations, including in the displaceable distal tip, which may allow visualization of the region ahead of tissue removal in push removal devices.


The emitting element may be positioned distal and/or proximal to the cutter edge. Distal placement would provide information during a cutting pass prior to the cutter interacting with the tissue and, therefore, allow the physician to stop or continue cutting as disease changes in depth and/or position. Proximal placement would also provide guidance regarding cut quality, depth and cutting efficiency. FIG. 9 shows an example of the energy emitting portion of the fiber optic assembly mounted proximal to the cutter edge and fixed on the cutting side of the catheter main body.


Furthermore, the data collected at the distal end of the catheter, after transmitted and appropriately processed, may drive an automated means of tip actuation and cutter position. Increased amounts of disease detected by the software may automatically increase tip axially offset consequently increasing cut depth and apposition force. Cutter speeds, gear ratios and torque inputs may be adjusted according to input from the imaging system.



FIGS. 9A-9D illustrate another variation of an atherectomy catheter having a laterally displaceable distal tip assembly as described herein. In this example, the annular cutting ring 903 is also positioned between the distal tip assembly 901 and the rest of the catheter body 905. The annular cutting ring also forms a portion of the outer surface of the catheter, although the cutting edge is protected or “closed” by the distal tip assembly as shown in FIG. 9A. In this embodiment, the annular cutting ring is directly coupled to the drive shaft, which is not geared. The drive shaft may be a braided or solid tube which is bonded at the distal end to the annular cutting ring.


In FIGS. 9A and 9B, the distal portion of the catheter device is shown in the non-activated and activated positions, respectively. This embodiment is in many ways similar to the variations discussed above. In the closed/non-activated position the cutter is protected to prevent unintended damage to the inner diameter of ancillary medical devices and vasculature. In the open/activated position the tip assembly is dropped to expose up to half of the cutter edge. When open, the bottom circumference of the tip assembly increases the overall crossing profile of the device. This maximum dimension between bottom tip surface and upper cutter edge extends to the inner lumen of the artery and creates an opposing force for cutter engagement into the tissue. This appositional force may help ensure the position of the cutting edge against the targeted cutting site will both engage the tissue and maintain contact during the cutting pass.


The tip actuation method shown in FIGS. 9A-9D involves sliding the tip actuation mechanism relative to the cutter assembly. As the mechanism is advanced distally in the assembly, the proximal angled mating faces and pin slots of the cutting assembly adaptation and tip mechanism force the tip forward (distal) and down. The angle and distance traveled by the tip may be modified with different face angles and relative pin slot positions.


As before, the distal tip assembly thus laterally displaces (dropping directly downward in the figure), in parallel with the main body of the catheter.



FIG. 9C shows a cross-section through the device of FIG. 9B (shown with the laterally displaced distal tip assembly), and FIG. 9D is a labeled and annotated side perspective view. In this example, the catheter body contains the driveshaft mechanism, and also forms a proximal tissue storage region which may be positioned within the drive shaft.



FIGS. 10A-13 illustrate another variation of an atherectomy catheter with a laterally displaceable distal tip region. In this example, the atherectomy device is configured as a pull-cutter, so that the tissue may be cut by positioning the device within the vessel, laterally displacing the distal tip assembly, and pulling the catheter proximally to cut tissue from within the vessel.


For example, FIGS. 10A and 10 B show the distal region of the atherectomy catheter devices in both the non-activated and activated positions. In the closed/non-activated position shown in FIGS. 10A and 10C, the cutter 1003 is protected by the closed distal tip assembly 1001 and catheter body 1005 to prevent unintended damage to the inner diameter of ancillary medical devices and vasculature. In the open/activated position shown in FIGS. 10B and 10D, the tip assembly 1001 is raised to expose up to half of the cutter 1003 edge. When open, the top circumference of the cutter 1003 and distal tip assembly 1001 increases the overall crossing profile of the device. This maximum dimension between top of the cutter edge and the bottom of the catheter body extends the inner lumen of the artery and creates an opposing force for cutter engagement into the tissue. This appositional force will ensure the position of the cutting edge against the targeted cutting site will be enough to both engage the tissue and maintain contact during the cutting pass


In the example shown in FIGS. 10A-10D, the annular cutting ring 1003 moves with the distal tip assembly 1001 when the distal tip assembly is laterally displaced. Further, the distal tip assembly includes a storage region 1205 (visible in FIGS. 12A-12B). Pulling the catheter after laterally displacing the cutter and distal tip region, e.g., in the direction indicated by the arrow 1010 in FIG. 10B, may result in tissue being cut and moved into the tissue storage region in the distal tip.



FIGS. 11A and 11B are an annotated illustration of the catheter shown in FIGS. 10A-10D. This example is also a gear-driven atherectomy catheter, and may also include a drive system such as the one illustrated above (e.g., FIGS. 4A-5). Thus, the device may include gear teeth on an inner surface of the annular cutting ring and a pinion gear driveshaft. FIGS. 12A and 12B show cross-sectional views through the variation of FIGS. 10A-10D. As mentioned, the distal tissue collection region 1205 is apparent.


This variation of the device may also include on-board and real time image guidance capabilities, as mentioned above, and may include an imaging element, or energy emitting assembly, to be positioned at the distal portion of the device such that local images of the vessel may guide device usage. The emitting element may be positioned distal and/or proximal to the cutter edge. Proximal placement would provide information during a cutting pass prior to the cutter interacting with the tissue and, therefore, allow the physician to stop or continue cutting as disease changes in depth and/or position. Distal placement would also provide guidance regarding cut quality, depth and cutting efficiency.


Furthermore, the data collected at the distal end of the catheter, after transmitted and appropriately processed, may drive an automated means of tip actuation and cutter position. Increased amounts of disease detected by the software may automatically increase tip axially offset consequently increasing cut depth and apposition force. Cutter speeds, gear ratios and torque inputs may be adjusted according to input from the imaging system.


For example, in FIG. 13, an OCT sensor/emitting element 1307 (which may correspond to the distal end of the optical fiber that forms part of the OCT system) is shown on the distal end of the catheter body 1305 device, immediately before the laterally displaceable annular cutting ring 1305 and distal tip assembly 1301. This may allow for visualization of the material before cutting when pulling the catheter to cut.


Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. An atherectomy catheter device for cutting tissue in a vessel, the device comprising: an elongate, flexible catheter body having a proximal end and a distal end and a longitudinal axis;an elongate displaceable distal tip assembly;a rotatable annular cutting ring between the distal end of the catheter body and the distal tip assembly;a handle attached to the proximal end of the catheter, the handle including a control that is configured to expose a cutting edge of the annular cutting ring by displacing the distal tip assembly from a closed configuration in which the distal tip assembly is in-line with the catheter body to an open configuration in which the distal tip assembly is off-axis from the catheter body, wherein the rotatable annular cutting ring remains in-line with the distal end of the catheter body when the distal tip assembly is displaced and forms a distal cutting edge at the distal end of the catheter body;a balloon mounted on a circumference of the catheter body approximately 180 degrees from an exposed portion of the distal cutting edge, the balloon configured to inflate to urge the exposed portion of the distal cutting edge into the tissue; andan Optical Coherence Tomography (OCT) imaging subassembly comprising a fiber extending the length of the catheter body, a distal end of the fiber fixed in a position that is proximal to the distal cutting edge,wherein the OCT imaging subassembly is configured to be rotated to obtain angular survey images of the vessel.
  • 2. The device of claim 1, further comprising a drive shaft extending along the length of the catheter body, wherein axial movement of the driveshaft moves the distal tip assembly between the open and closed configurations.
  • 3. The device of claim 2, wherein the drive shaft comprises a cable drive shaft having a distal gear configured to drive rotation of the cutting ring.
  • 4. The device of claim 2, wherein the drive shaft is directly connected to the annular cutting ring.
  • 5. The device of claim 2, wherein the drive shaft comprises a hollow tubular drive shaft having a hollow lumen, the optical fiber extending within the hollow lumen.
  • 6. The device of claim 1, wherein the annular cutting ring comprises internal gear teeth configured to mate with a drive shaft to rotate the cutting ring.
  • 7. The device of claim 1, further comprising a guidewire lumen extending the length of the catheter.
  • 8. The device of claim 1, wherein the annular cutting ring forms an outer surface of the catheter in both the closed and open configurations.
  • 9. The device of claim 1, further comprising an internal tissue collection region configured to receive tissue cut by the annular cutting ring.
  • 10. The device of claim 9, wherein the tissue collection region is located within the distal tip assembly.
  • 11. The device of claim 9, wherein the tissue collection region is located within the catheter body.
  • 12. An atherectomy catheter device for cutting tissue having a displaceable tip, the device comprising: an elongate catheter body having a longitudinal axis;a displaceable distal tip assembly attached to a distal end of the catheter body;an annular cutting ring between the catheter body and the distal tip assembly;an inflatable element near the distal end of the catheter body configured to displace the distal tip assembly relative to the elongate catheter body when inflated; anda handle attached to the elongate catheter body, the handle including a control that is configured to switch the distal tip assembly between a closed configuration, in which the distal tip assembly is in-line with the catheter body and the cutter is protected by the distal tip assembly, and an open configuration, in which the distal tip assembly is displaced from the catheter body, by inflating the inflatable element to move the distal tip assembly away from the distal end of the catheter body to expose a cutting edge of the annular cutting ring, wherein the annular cutting ring remains in-line with the distal end of the catheter body when the distal tip is displaced and forms an exposed distal cutting edge at the distal end of the catheter body, further wherein the inflatable element is positioned approximately 180 degrees from the exposed distal cutting edge when the distal tip is displaced.
  • 13. The device of claim 12, further comprising a drive shaft extending along the length of the catheter body.
  • 14. The device of claim 13, wherein the drive shaft comprises a cable drive shaft having a distal gear configured to drive rotation of the cutting ring.
  • 15. The device of claim 13, wherein the drive shaft is directly connected to the annular cutting ring.
  • 16. The device of claim 13, wherein the drive shaft comprises a hollow tubular drive shaft.
  • 17. The device of claim 12, wherein the annular cutting ring comprises internal gear teeth configured to mate with a drive shaft to rotate the cutting ring.
  • 18. The device of claim 12, further comprising a guidewire lumen extending the length of the catheter.
  • 19. The device of claim 12, wherein the annular cutting ring forms an outer surface of the catheter in both the closed and open configurations.
  • 20. The device of claim 12, further comprising an internal tissue collection region configured to receive tissue cut by the annular cutting ring.
  • 21. The device of claim 20, wherein the tissue collection region is located within the distal tip assembly.
  • 22. The device of claim 20, wherein the tissue collection region is located within the catheter body.
  • 23. The device of claim 12, further comprising an OCT imaging subassembly.
  • 24. The device of claim 23, wherein the OCT imaging subassembly comprises a fiber optic extending the length of the catheter body.
  • 25. The device of claim 23, wherein the OCT imaging assembly comprises a side-facing OCT emitting element fixed proximal to the annular cutting ring.
  • 26. The device of claim 23, wherein the OCT imaging assembly comprises a side-facing OCT emitting element fixed distally to the annular cutting ring.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 12/829,277, filed Jul. 1, 2010, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” now U.S. Pat. No. 9,498,600, which claims priority to U.S. Provisional Patent Application No. 61/222,242, titled “GEAR DRIVEN ATHERECTOMY CATHETER” filed on Jul. 1, 2009. This application may also be related to U.S. patent application Ser. No. 12/790,703, titled “OPTICAL COHERENCE TOMOGRAPHY FOR BIOLOGICAL IMAGING,” filed on May 28, 2010.

US Referenced Citations (416)
Number Name Date Kind
3908637 Doroshow Sep 1975 A
4178935 Gekhaman et al. Dec 1979 A
4527553 Upsher Jul 1985 A
4552554 Gould et al. Nov 1985 A
4621353 Hazel et al. Nov 1986 A
4639091 Huignard et al. Jan 1987 A
4654024 Crittenden et al. Mar 1987 A
4686982 Nash Aug 1987 A
4771774 Simpson et al. Sep 1988 A
4841977 Griffith et al. Jun 1989 A
4857046 Stevens et al. Aug 1989 A
4926858 Gifford, III et al. May 1990 A
5000185 Yock Mar 1991 A
5041082 Shiber Aug 1991 A
5047040 Simpson et al. Sep 1991 A
5085662 Willard Feb 1992 A
5099850 Matsui et al. Mar 1992 A
5178153 Einzig Jan 1993 A
5182291 Gubin et al. Jan 1993 A
5190050 Nitzsche Mar 1993 A
5192291 Pannek, Jr. Mar 1993 A
5312415 Palermo May 1994 A
5312425 Evans et al. May 1994 A
5321501 Swanson et al. Jun 1994 A
5333142 Scheps Jul 1994 A
5358472 Vance et al. Oct 1994 A
5366464 Belknap Nov 1994 A
5383460 Jang et al. Jan 1995 A
5383467 Auer et al. Jan 1995 A
5429136 Milo et al. Jul 1995 A
5431673 Summers Jul 1995 A
5459570 Swanson et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5465147 Swanson Nov 1995 A
5507795 Chiang et al. Apr 1996 A
5556405 Lary Sep 1996 A
5620426 Braithwaite Apr 1997 A
5632754 Farley et al. May 1997 A
5632755 Nordgren et al. May 1997 A
5674232 Halliburton Oct 1997 A
5681336 Clement et al. Oct 1997 A
5690634 Muller et al. Nov 1997 A
5722403 McGee et al. Mar 1998 A
5795295 Hellmuth et al. Aug 1998 A
5807339 Bostrom et al. Sep 1998 A
5830145 Tenhoff Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843050 Jones et al. Dec 1998 A
5843103 Wulfman Dec 1998 A
5868778 Gershony et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5904651 Swanson et al. May 1999 A
5907425 Dickensheets et al. May 1999 A
5935075 Casscells et al. Aug 1999 A
5938602 Lloyd Aug 1999 A
5951482 Winston et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5951583 Jensen et al. Sep 1999 A
5956355 Swanson et al. Sep 1999 A
5957952 Gershony et al. Sep 1999 A
5987995 Sawatari et al. Nov 1999 A
5997558 Nash Dec 1999 A
6001112 Taylor Dec 1999 A
6007530 Dornhofer et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6013072 Winston et al. Jan 2000 A
6017359 Gershony et al. Jan 2000 A
6027514 Stine et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6080170 Nash et al. Jun 2000 A
6106515 Winston et al. Aug 2000 A
6110164 Vidlund Aug 2000 A
6120515 Rogers et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6134002 Stimson et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6152938 Curry Nov 2000 A
6152951 Hashimoto et al. Nov 2000 A
6160826 Swanson et al. Dec 2000 A
6175669 Colston et al. Jan 2001 B1
6176871 Pathak et al. Jan 2001 B1
6183432 Milo Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6206898 Honeycutt et al. Mar 2001 B1
6228076 Winston et al. May 2001 B1
6241744 Imran et al. Jun 2001 B1
6283957 Hashimoto et al. Sep 2001 B1
6290668 Gregory et al. Sep 2001 B1
6294775 Seibel et al. Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6307985 Murakami et al. Oct 2001 B1
6402719 Ponzi et al. Jun 2002 B1
6416527 Berg et al. Jul 2002 B1
6445939 Swanson et al. Sep 2002 B1
6445944 Ostrovsky Sep 2002 B1
6447525 Follmer et al. Sep 2002 B2
6451036 Heitzmann et al. Sep 2002 B1
6454717 Pantages et al. Sep 2002 B1
6454779 Taylor Sep 2002 B1
6482216 Hiblar et al. Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6497649 Parker et al. Dec 2002 B2
6501551 Tearney et al. Dec 2002 B1
6503261 Bruneau et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6517528 Pantages et al. Feb 2003 B1
6542665 Reed et al. Apr 2003 B2
6546272 MacKinnon et al. Apr 2003 B1
6551302 Rosinko et al. Apr 2003 B1
6563105 Seibel et al. May 2003 B2
6564087 Pitris et al. May 2003 B1
6565588 Clement et al. May 2003 B1
6572563 Ouchi et al. Jun 2003 B2
6572643 Gharibadeh Jun 2003 B1
6575995 Huter et al. Jun 2003 B1
6579298 Bruneau et al. Jun 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6638233 Corvi et al. Oct 2003 B2
6645217 MacKinnon et al. Nov 2003 B1
6657727 Izatt et al. Dec 2003 B1
6666874 Heitzmann et al. Dec 2003 B2
6687010 Horii Feb 2004 B1
6728571 Barbato Apr 2004 B1
D489973 Root et al. May 2004 S
6730063 Delaney et al. May 2004 B2
6758854 Butler et al. Jul 2004 B1
6760112 Reed et al. Jul 2004 B2
6800085 Selmon et al. Oct 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6824550 Noriega et al. Nov 2004 B1
6830577 Nash et al. Dec 2004 B2
6845190 Smithwick et al. Jan 2005 B1
6852109 Winston et al. Feb 2005 B2
6853457 Bjarklev et al. Feb 2005 B2
6856712 Fauver et al. Feb 2005 B2
6867753 Chinthammit et al. Mar 2005 B2
6879851 McNamara et al. Apr 2005 B2
6947787 Webler Sep 2005 B2
6961123 Wang et al. Nov 2005 B1
6970732 Winston et al. Nov 2005 B2
6975898 Seibel Dec 2005 B2
7068878 Crossman-Bosworth et al. Jun 2006 B2
7074231 Jang Jul 2006 B2
7126693 Everett et al. Oct 2006 B2
7172610 Heitzmann et al. Feb 2007 B2
7242480 Alphonse Jul 2007 B2
7261687 Yang Aug 2007 B2
7288087 Winston et al. Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7311723 Seibel et al. Dec 2007 B2
7344546 Wulfman et al. Mar 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7382949 Bouma et al. Jun 2008 B2
7426036 Feldchtein et al. Sep 2008 B2
7428001 Schowengerdt et al. Sep 2008 B2
7428053 Feldchtein et al. Sep 2008 B2
7455649 Root et al. Nov 2008 B2
7474407 Gutin Jan 2009 B2
7485127 Nistal Feb 2009 B2
7488340 Kauphusman et al. Feb 2009 B2
7530948 Seibel et al. May 2009 B2
7530976 MacMahon et al. May 2009 B2
7538859 Tearney et al. May 2009 B2
7538886 Feldchtein May 2009 B2
7539362 Teramura May 2009 B2
7542145 Toida et al. Jun 2009 B2
7544162 Ohkubo Jun 2009 B2
7545504 Buckland et al. Jun 2009 B2
7555333 Wang et al. Jun 2009 B2
7577471 Camus et al. Aug 2009 B2
7583872 Seibel et al. Sep 2009 B2
7616986 Seibel et al. Nov 2009 B2
7637885 Maschke Dec 2009 B2
7674253 Fisher et al. Mar 2010 B2
7682319 Martin et al. Mar 2010 B2
7706863 Imanishi et al. Apr 2010 B2
7728985 Feldchtein et al. Jun 2010 B2
7729745 Maschke Jun 2010 B2
7734332 Sher Jun 2010 B2
7738945 Fauver et al. Jun 2010 B2
7753852 Maschke Jul 2010 B2
7771425 Dycus et al. Aug 2010 B2
7785286 Magnin et al. Aug 2010 B2
7813609 Petersen et al. Oct 2010 B2
7821643 Amazeen et al. Oct 2010 B2
7824089 Charles Nov 2010 B2
7840283 Bush et al. Nov 2010 B1
7944568 Teramura et al. May 2011 B2
7952718 Li et al. May 2011 B2
7972299 Carter et al. Jul 2011 B2
8059274 Splinter Nov 2011 B2
8062316 Patel et al. Nov 2011 B2
8313493 Fisher Nov 2012 B2
8361097 Patel et al. Jan 2013 B2
8548571 He et al. Oct 2013 B2
8548603 Swoyer et al. Oct 2013 B2
8632557 Thatcher et al. Jan 2014 B2
8644913 Simpson et al. Feb 2014 B2
8696695 Patel et al. Apr 2014 B2
8911459 Simpson et al. Dec 2014 B2
9119662 Moberg Sep 2015 B2
9125562 Spencer et al. Sep 2015 B2
9345398 Tachibana et al. May 2016 B2
9345406 Spencer et al. May 2016 B2
9345510 Patel et al. May 2016 B2
9498247 Patel et al. Nov 2016 B2
9498600 Rosenthal et al. Nov 2016 B2
9557156 Kankaria Jan 2017 B2
20010020126 Swanson et al. Sep 2001 A1
20020019644 Hastings Feb 2002 A1
20020038097 Corvi Mar 2002 A1
20020082626 Donohoe et al. Jun 2002 A1
20020111548 Swanson et al. Aug 2002 A1
20020115931 Strauss et al. Aug 2002 A1
20020158547 Wood Oct 2002 A1
20030028100 Tearney et al. Feb 2003 A1
20030032880 Moore Feb 2003 A1
20030045835 Anderson et al. Mar 2003 A1
20030095248 Frot May 2003 A1
20030097044 Rovegno May 2003 A1
20030120150 Govari Jun 2003 A1
20030120295 Simpson et al. Jun 2003 A1
20030125756 Shturman et al. Jul 2003 A1
20030125757 Patel et al. Jul 2003 A1
20030125758 Simpson et al. Jul 2003 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040039371 Tockman et al. Feb 2004 A1
20040057667 Yamada et al. Mar 2004 A1
20040059257 Gaber Mar 2004 A1
20040082850 Bonner et al. Apr 2004 A1
20040092915 Levatter May 2004 A1
20040093001 Hamada May 2004 A1
20040147934 Kiester Jul 2004 A1
20040167553 Simpson Aug 2004 A1
20040167554 Simpson et al. Aug 2004 A1
20040181249 Torrance et al. Sep 2004 A1
20040186368 Ramzipoor et al. Sep 2004 A1
20040202418 Ghiron et al. Oct 2004 A1
20040220519 Wulfman et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040236312 Nistal et al. Nov 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20040254599 Lipoma et al. Dec 2004 A1
20040260236 Manning et al. Dec 2004 A1
20050020925 Kleen et al. Jan 2005 A1
20050043614 Huizenga et al. Feb 2005 A1
20050054947 Goldenberg Mar 2005 A1
20050075660 Chu et al. Apr 2005 A1
20050085708 Fauver et al. Apr 2005 A1
20050085721 Fauver et al. Apr 2005 A1
20050105097 Fang-Yen et al. May 2005 A1
20050141843 Warden et al. Jun 2005 A1
20050154407 Simpson Jul 2005 A1
20050159712 Andersen Jul 2005 A1
20050159731 Lee Jul 2005 A1
20050177068 Simpson Aug 2005 A1
20050182295 Soper et al. Aug 2005 A1
20050187571 Maschke Aug 2005 A1
20050192496 Maschke Sep 2005 A1
20050201662 Petersen et al. Sep 2005 A1
20050203553 Maschke Sep 2005 A1
20050222519 Simpson Oct 2005 A1
20050222663 Simpson et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20060032508 Simpson Feb 2006 A1
20060046235 Alexander Mar 2006 A1
20060049587 Cornwell Mar 2006 A1
20060064009 Webler et al. Mar 2006 A1
20060084911 Belef et al. Apr 2006 A1
20060109478 Tearney et al. May 2006 A1
20060135870 Webler Jun 2006 A1
20060173475 Lafontaine et al. Aug 2006 A1
20060229646 Sparks Oct 2006 A1
20060229659 Gifford et al. Oct 2006 A1
20060235262 Arnal et al. Oct 2006 A1
20060235366 Simpson Oct 2006 A1
20060236019 Soito et al. Oct 2006 A1
20060239982 Simpson Oct 2006 A1
20060241503 Schmitt et al. Oct 2006 A1
20060244973 Yun et al. Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060264741 Prince Nov 2006 A1
20060264743 Kleen et al. Nov 2006 A1
20060264907 Eskridge et al. Nov 2006 A1
20070010840 Rosenthal et al. Jan 2007 A1
20070015969 Feldman et al. Jan 2007 A1
20070015979 Redel Jan 2007 A1
20070035855 Dickensheets Feb 2007 A1
20070038061 Huennekens et al. Feb 2007 A1
20070038173 Simpson Feb 2007 A1
20070078469 Soito et al. Apr 2007 A1
20070081166 Brown et al. Apr 2007 A1
20070088230 Terashi et al. Apr 2007 A1
20070106155 Goodnow et al. May 2007 A1
20070135712 Maschke Jun 2007 A1
20070196926 Soito et al. Aug 2007 A1
20070219484 Straub Sep 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070255252 Mehta Nov 2007 A1
20070270647 Nahen et al. Nov 2007 A1
20070276419 Rosenthal Nov 2007 A1
20070288036 Seshadri Dec 2007 A1
20070299309 Seibel et al. Dec 2007 A1
20080004643 To et al. Jan 2008 A1
20080004644 To et al. Jan 2008 A1
20080004645 To et al. Jan 2008 A1
20080004646 To et al. Jan 2008 A1
20080015491 Bei et al. Jan 2008 A1
20080027334 Langston Jan 2008 A1
20080033396 Danek et al. Feb 2008 A1
20080045986 To et al. Feb 2008 A1
20080049234 Seitz Feb 2008 A1
20080058629 Seibel et al. Mar 2008 A1
20080065124 Olson Mar 2008 A1
20080065125 Olson Mar 2008 A1
20080065205 Nguyen et al. Mar 2008 A1
20080103439 Torrance et al. May 2008 A1
20080103446 Torrance et al. May 2008 A1
20080103516 Wulfman et al. May 2008 A1
20080139897 Ainsworth et al. Jun 2008 A1
20080146942 Dala-Krishna Jun 2008 A1
20080147000 Seibel et al. Jun 2008 A1
20080154293 Taylor et al. Jun 2008 A1
20080177138 Courtney et al. Jul 2008 A1
20080186501 Xie Aug 2008 A1
20080221388 Seibel et al. Sep 2008 A1
20080228033 Tumlinson et al. Sep 2008 A1
20080243030 Seibel et al. Oct 2008 A1
20080243031 Seibel et al. Oct 2008 A1
20080262312 Carroll et al. Oct 2008 A1
20080275485 Bonnette et al. Nov 2008 A1
20090018565 To et al. Jan 2009 A1
20090018566 Escudero et al. Jan 2009 A1
20090018567 Escudero et al. Jan 2009 A1
20090024084 Khosla et al. Jan 2009 A1
20090024085 To et al. Jan 2009 A1
20090024191 Seibel et al. Jan 2009 A1
20090028407 Seibel et al. Jan 2009 A1
20090028507 Jones et al. Jan 2009 A1
20090073444 Wang Mar 2009 A1
20090093764 Pfeffer et al. Apr 2009 A1
20090099641 Wu et al. Apr 2009 A1
20090125019 Douglass et al. May 2009 A1
20090135280 Johnston et al. May 2009 A1
20090137893 Seibel et al. May 2009 A1
20090152664 Tian et al. Jun 2009 A1
20090185135 Volk Jul 2009 A1
20090198125 Nakabayashi et al. Aug 2009 A1
20090208143 Yoon et al. Aug 2009 A1
20090216180 Lee et al. Aug 2009 A1
20090221904 Shealy et al. Sep 2009 A1
20090221920 Boppart et al. Sep 2009 A1
20090235396 Wang et al. Sep 2009 A1
20090244485 Walsh et al. Oct 2009 A1
20090244547 Ozawa Oct 2009 A1
20090264826 Thompson Oct 2009 A1
20090284749 Johnson et al. Nov 2009 A1
20090292199 Bielewicz Nov 2009 A1
20090306520 Schmitt et al. Dec 2009 A1
20090316116 Melville et al. Dec 2009 A1
20090318862 Ali et al. Dec 2009 A1
20100049225 To et al. Feb 2010 A1
20100080016 Fukui et al. Apr 2010 A1
20100125253 Olson et al. May 2010 A1
20100130996 Doud et al. May 2010 A1
20100241147 Maschke Sep 2010 A1
20100253949 Adler et al. Oct 2010 A1
20100292539 Lankenau et al. Nov 2010 A1
20100292721 Moberg Nov 2010 A1
20100305452 Black et al. Dec 2010 A1
20100312263 Moberg et al. Dec 2010 A1
20100317973 Nita Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110023617 Miao et al. Feb 2011 A1
20110028977 Rauscher et al. Feb 2011 A1
20110040238 Wulfman et al. Feb 2011 A1
20110058250 Liu et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110092955 Purdy et al. Apr 2011 A1
20110106004 Eubanks et al. May 2011 A1
20110118660 Torrance et al. May 2011 A1
20110130777 Zhang et al. Jun 2011 A1
20110144673 Zhang et al. Jun 2011 A1
20110201924 Tearney et al. Aug 2011 A1
20110257478 Kleiner et al. Oct 2011 A1
20110270187 Nelson Nov 2011 A1
20110295148 Destoumieux et al. Dec 2011 A1
20110301625 Mauch et al. Dec 2011 A1
20110319905 Palme et al. Dec 2011 A1
20120004506 Tearney et al. Jan 2012 A1
20120238869 Schmitt et al. Sep 2012 A1
20130096589 Spencer et al. Apr 2013 A1
20130138128 Patel et al. May 2013 A1
20130289392 Patel et al. Oct 2013 A1
20130296695 Spencer et al. Nov 2013 A1
20140005534 He et al. Jan 2014 A1
20140213893 Simpson et al. Jul 2014 A1
20150141816 Gupta et al. May 2015 A1
20150208922 Simpson et al. Jul 2015 A1
20150272615 Newhauser et al. Oct 2015 A1
20150320975 Simpson et al. Nov 2015 A1
20160008025 Gupta et al. Jan 2016 A1
20160029902 Smith et al. Feb 2016 A1
20160038030 Smith et al. Feb 2016 A1
20160135832 Simpson et al. May 2016 A1
20160144155 Simpson et al. May 2016 A1
20160192962 Simpson et al. Jul 2016 A1
20160262791 Patel et al. Sep 2016 A1
20160262839 Spencer et al. Sep 2016 A1
20160338582 Tachibana et al. Nov 2016 A1
20170238803 Kankaria Aug 2017 A1
20170238808 Simpson et al. Aug 2017 A1
Foreign Referenced Citations (68)
Number Date Country
1875242 Dec 2006 CN
1947652 Apr 2007 CN
101601581 Dec 2009 CN
202006018883.5 Feb 2007 DE
0347098 Dec 1989 EP
0808638 Nov 1997 EP
1859732 Nov 2007 EP
2353526 Sep 2013 EP
03502060 Feb 1990 JP
05103763 Apr 1993 JP
H06-027343 Feb 1994 JP
H07-308393 Nov 1995 JP
2002-214127 Jul 2002 JP
2004-509695 Apr 2004 JP
2004-516073 Jun 2004 JP
2005-114473 Apr 2005 JP
2005-249704 Sep 2005 JP
2005-533533 Nov 2005 JP
2008-175698 Jul 2006 JP
2006-288775 Oct 2006 JP
2006-313158 Nov 2006 JP
2006-526790 Nov 2006 JP
2006-326157 Dec 2006 JP
2007-83053 Apr 2007 JP
2007-83057 Apr 2007 JP
2007-225349 Sep 2007 JP
2007533361 Nov 2007 JP
2008-023627 Feb 2008 JP
2008-128708 Jun 2008 JP
2008-145376 Jun 2008 JP
2008-183208 Aug 2008 JP
2008-253492 Oct 2008 JP
2009-14751 Jan 2009 JP
2009-509690 Mar 2009 JP
2009-66252 Apr 2009 JP
2009-78150 Apr 2009 JP
2010042182 Feb 2010 JP
2010518900 Jun 2010 JP
2011521747 Jul 2011 JP
2012533353 Dec 2012 JP
20070047221 May 2007 KR
2185859 Jul 2002 RU
2218191 Dec 2003 RU
WO 9117698 Nov 1991 WO
WO 9923958 May 1999 WO
WO 0054659 Sep 2000 WO
WO0115609 Mar 2001 WO
WO 0176680 Oct 2001 WO
WO 2006133030 Dec 2006 WO
WO2008005888 Jan 2008 WO
WO 2008029506 Mar 2008 WO
WO 2008042987 Apr 2008 WO
WO2008051951 May 2008 WO
WO2008065600 Jun 2008 WO
WO 2008086613 Jul 2008 WO
WO 2008087613 Jul 2008 WO
WO2009005779 Jan 2009 WO
WO2009006335 Jan 2009 WO
WO 2009009799 Jan 2009 WO
WO2009009802 Jan 2009 WO
WO 2009023635 Feb 2009 WO
WO2009024344 Feb 2009 WO
WO 2009094341 Jul 2009 WO
WO 2009140617 Nov 2009 WO
WO2009148317 Dec 2009 WO
WO2010039464 Apr 2010 WO
WO2010056771 May 2010 WO
WO2011044387 Apr 2011 WO
Non-Patent Literature Citations (14)
Entry
Aziz et al.; Chronic total occlusions—a stiff challege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005.
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5; No. 9; pp. 1156-1164; Sep. 1987.
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009.
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990.
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004; 4 pages.
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994.
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages.
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages.
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp.(011104-1)-(011104-8); Jan.-Feb. 2010.
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010.
Patel et al.; U.S. Appl. No. 15/354,842 entitled “Atherectomy catheters and occlusion crossing devices,” filed Nov. 17, 2016.
Patel et al.; U.S. Appl. No. 15/324,325 entitled “High speed chronic total occulusion crossing devices,” filed Jan. 6, 2017.
Simpson et al.; U.S. Appl. No. 15/457,960 entitled “Atherectomy catheters devices having multi-channel bushings,” filed Mar. 13, 2017.
Patel et al.; U.S. Appl. No. 15/480,238 entitled “Guidewire positioning catheter,” filed Apr. 5, 2017.
Related Publications (1)
Number Date Country
20170065293 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
61222242 Jul 2009 US
Continuations (1)
Number Date Country
Parent 12829277 Jul 2010 US
Child 15354898 US