All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Described herein are devices for treatment of an occluded body lumen, such as for the removal of occlusive materials from blood vessels. In particular, described herein are atherectomy catheters that are adapted to easily maneuver against tissue and plaque buildup within vessels for debulking.
Atherosclerosis is disease in which accumulation of atheromatous materials builds up inside a person's arteries. Atherosclerosis occurs as part of the natural aging process, but may also occur due to a person's diet, hypertension, vascular injury, heredity, and so forth. Atherosclerosis can affect any artery in the body, including arteries in the heart, brain, arms, legs, pelvis, and kidneys. Atherosclerosis deposits may vary in their properties as well. Some deposits are relatively soft, other types may be fibrous, some are calcified, or a combination of all three. Based on the location of the plaque accumulation, different diseases may develop. For example, coronary heart disease occurs when plaque builds up in the coronary arteries, which supply oxygenated blood to the heart. If plaque buildup blocks the carotid artery, arteries located on each side of the neck that supply oxygen to the brain, a stroke may be the result.
Atherosclerosis may be treated in a number of ways including medication, bypass surgery, and catheter-based approaches. Atherectomy procedures involve excising or dislodging materials that block a blood vessel. Many atherectomy catheters typically have a substantially straight central axis. However, atherectomy catheters having a straight profile may be difficult to maneuver close enough to the inner surface of the arterial walls to remove all plaque buildup. Moreover, plaque removal can be complicated with such straight profile catheters when plaque formations accumulate in the curves and more tortuous portions of an artery.
The atherectomy catheters described herein address some of these challenges.
In general, in one embodiment, an atherectomy catheter for use in a vessel includes an elongate catheter body and an annular cutter. The elongate catheter body includes a fixed jog section with a pre-set curvature and a flexible section that has a greater flexibility than a remainder of the elongate catheter body. The fixed jog section and flexible section are formed of a frame including a plurality of circumferential slits therein.
This and other embodiments can include one or more of the following features. The frame in the fixed jog section can further include a longitudinal spine extending therethrough that does not have slits. The atherectomy catheter can further include a cutting window through which the annular cutter extends. The cutting window can be positioned distal of the fixed jog section and the flexible section so as to urge the cutter into the vessel. The atherectomy catheter can further include at least one laminating layer positioned over or under the frame of the fixed jog section. The laminating layer can be made of a polymer. The frame can be made of metal. The plurality of circumferential slits can be arranged in a repeating pattern. The fixed jog section can form an angle of 130° to 160° in the elongate catheter body. The frame can further include an annular spine without slits that extends between the fixed jog section and the flexible section. The flexible section can be configured to passively bend to angles of 130°-160°.
In general, in one embodiment, an atherectomy catheter for use in a vessel includes an elongate catheter body, an annular cutter, and an s-shaped curved portion in the elongate catheter body. The curved portion includes a frame having a plurality of annular spines connected together by a longitudinal proximal spine and a longitudinal distal spine. The longitudinal proximal spine is positioned approximately 180 degrees away from the longitudinal distal spine.
This and other embodiments can include one or more of the following features. The plurality of annular spines can include a first annular spine, a second annular spine, and a third annular spine. The longitudinal proximal spine can connect the first annular spine and the second annular spine, and the longitudinal distal spine can connect the second annular spine and the third annular spine. The atherectomy catheter can further include a cutting window through which the annular cutter extends. The cutting window can be positioned distal of the curved portion and on an outer circumference of the s-shaped curve so as to urge the cutter into the vessel. The s-shaped curved portion can be configured to be activated by pulling or pushing on a shaft of the atherectomy catheter. The atherectomy catheter can further include at least one laminating layer positioned over or under the frame. The laminating layer can be made of a polymer. The frame can be made of metal. The distal longitudinal spine can be positioned adjacent to an exposed portion of the cutter. The distal longitudinal spine can be on a same side of the elongate catheter body as the exposed portion of the cutter. The longitudinal proximal spine can form a first angle, and the longitudinal distal spine can form a second angle. The first and second angles can extend in opposite directions, and the first angle can be between 140 and 160 degrees and the second angle can be between 140 and 160 degrees. A distal-most spine of the plurality of spines can include a beveled distal edge. The atherectomy catheter can further include a nosecone configured to pivot away from the elongate body to expose the cutter. The bevel can be configured to provide space for the nosecone to pivot.
In general, in one embodiment, an atherectomy catheter for use in a vessel includes an elongate catheter body, an annular cutter, and an s-shaped curved portion in the elongate catheter body. The curved portion includes a frame having a proximal section and a distal section. The proximal section has a plurality of circumferential proximal slits and a longitudinal proximal spine without slits, and the distal section having a plurality of circumferential distal slits and a longitudinal distal spine without slits. The longitudinal proximal spine is positioned approximately 180 degrees away from the longitudinal distal spine.
This and other embodiments can include one or more of the following features. The atherectomy catheter can further include a cutting window through which the annular cutter extends. The cutting window can be positioned distal of the distal section and on an outer circumference of the s-shaped curve so as to urge the cutter into the vessel. The s-shaped curved portion can be configured to be activated by pulling or pushing on a shaft of the atherectomy catheter. The atherectomy catheter can further include at least one laminating layer positioned over or under the frame. The laminating layer can be made of a polymer. The frame can be made of metal. The plurality of circumferential proximal slits can be arranged in a first repeating pattern, and the plurality of circumferential distal slits can be arranged in a second repeating pattern. The first repeating pattern and the second repeating pattern can be circumferentially offset from one another. The distal longitudinal spine can be positioned adjacent to an exposed portion of the cutter. The distal longitudinal spine can be on a same side of the elongate catheter body as the exposed portion of the cutter. The proximal section can form a first angle, and the distal section forms a second angle. The first and second angles can extend in opposite directions, and the first angle can be between 140 and 160 degrees and the second angle can be between 140 and 160 degrees. The frame can further include an annular spine without slits extending between the proximal section and the distal section.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Described herein is an atherectomy catheter having an elongate body with a curved distal portion, a nosecone and a rotatable annular cutter. The curved portion (which can otherwise be called a bent/bendable portion or jog mechanism) can advantageously be used to push the cutter up against the vessel wall to enhance the efficiency of cutting.
The curved portion 133 can be a fixed jog (i.e., have a pre-set shape). Further, the curved portion can be curved or bent such that the cutting window 107 is on the radially outermost portion of the curved portion 133 (thereby allowing the cutting window 107 to be urged against a vessel wall in use). In one embodiment, the curved portion 133 can be pre-formed, for example, by using pre-deflected shaped-set nitinol ribbon segments embedded in the outer shaft. The curved portion 133 can have two inflection points 155, 166 of opposite curvature (i.e., one curving up and the other curving down) so as to form an approximate “s” shape. In one embodiment, the s-shape can be configured such that a distal end of the catheter body 101 is offset from, but substantially parallel to, a proximal end of the catheter body 101. In other embodiments, the distal end and proximal ends of the catheter body 101 can be at a slight angle to one another so as to control the angle of cutter engagement with the vessel wall.
Thus, as shown in
The curved portion 133 can advantageously radially push the distal end of the catheter against a vessel wall 200, thereby enabling optimized cutting and/or imaging of the vessel as shown in
Another embodiment of an atherectomy catheter 400 including a user-activated curved portion 433 is shown in
Thus, as shown in
An exemplary user-activated curved portion 533 (e.g., for use as curved portion 433) is shown in
Referring to
In some examples, pushing or pulling on a shaft of the catheter, such as the cutter drive shaft, a pullshaft, or a pullwire can activate the curved portion 533. That is, as the shaft is pulled back proximally, it can place compression on the outer elongate body 501, causing the slits 550 to compress and/or move over one another while the spines 560a,b maintain their length. The resulting s-shape (see
The slits 550 shown in
Areas of the catheter body having a greater degree of slits will be more flexible than those having lesser degrees of slits. In one embodiment, the slits can extend all the way through the elongate catheter. In other instances, some of the slits may be deeper or shallower than others which also affects the flexibility of the corresponding region. In some variations of the curved portion, a range of deflection between the flexible segments may be achieved. This may be accomplished through different geometric patterns of slits, different spacing of the slits, frequency of the slits, size of the slits, and so forth. In some instances, the degree of stiffness may be adjusted by adding additional spines of various lengths in certain areas or adjusting the width of the spines.
Referring to
Referring to
In some embodiments, the curved portion 777 can be made of a laminated frame. Referring to
Referring to
Further, the slits 750b in fixed jog section 707 (except the shorter slits bordering the spine 560a) can likewise have a length equivalent to the width of columns A+B+A. Further, the slits can be offset from one another by a distance of A+B. Thus, each column A can include slits from every row 1,2 while column B can include alternating slits (from either row 1 or 2). In fixed jog section 707, however, the spine 760 can be heat-set to set the angle of the jog, fixing the jog.
Referring to
In some embodiments, the curved portions of the elongate catheter bodies described herein can form a substantially s-shape with two different inflection points of opposite curvatures. In other embodiments, the curved portion can include a single inflection point that forms a substantially C-shape. Further, in some embodiments, one or more of the curves can be fixed. In other embodiments, one or more of the curves can be user activated (e.g., by pulling on the driveshaft or a separate pullshaft or wire). Further, any of the designs described herein can include a flexible section (e.g., of the elongate body or the nosecone) that allows the catheter to take the desired curvature during use.
In some embodiments, the amount of curvature of the user-adjusted curved portions can be further adjusted either prior to or during an atherectomy procedure based on the curvatures of the artery and the location of the plaque formation. For example, by tensioning a shaft of the catheter, the curved portion can constrict and adopt a sharper angle. Alternatively, when the shaft is relaxed, the curved portion can relax and adopt a wider angle. In such examples, the angles of deflection may be adjusted, for example, by 5 to 20 degrees.
In some embodiments, the user-adjusted curved portions can have a pre-shaped bend or curvature that can be further adjusted prior to or during an atherectomy procedure. In other embodiments, the curved portions can be straight before the user-activated bend is activated.
In any of the embodiments described herein, the nosecone can be configured to hold tissue that is debulked by the cutter. Further, the driveshaft and cutter can be configured to move distally to pack tissue into the nosecone.
In some embodiments, lamination of a framework can cause the laminating material to heat and shrink, pushing into open slits and fixing the shape of the frame (e.g., in a pre-shaped jog). For example, the curved portions 533 and/or 633 can be laminated so as to create a fixed jog that can either be further adjusted by pulling on the driveshaft or that remains fixed throughout the procedure. In other embodiments, lamination of the framework can keep the slits open and free of material, allowing for greater flexibility.
Any of the curved portions described herein may be used alone or in combination with a mechanism to deflect the nosecone. In some embodiments, the nosecone can be deflected by pulling on a cutter driveshaft. Such deflection mechanisms are described in U.S. patent application Ser. No. 15/072,272, filed Mar. 16, 2016, titled “ATHERECTOMY CATHETERS DEVICES HAVING MULTI-CHANNEL BUSHINGS,” now U.S. Pat. No. 9,592,075, and U.S. patent application Ser. No. 15/076,568 filed Mar. 21, 2016, titled “ATHERECTOMY CATHETERS AND OCCLUSION CROSSING DEVICES,” now U.S. Pat. No. 9,498,247, both of which are incorporated by reference in their entireties. In some embodiments, placing further tension on the drive shaft (i.e., after exposing the nosecone) can result in compression being applied to the curved portion, causing the curved portion to assume its final curved configuration. Having both the nosecone deflect and the curved portion can result in better tissue invagination and thus better or more efficient tissue cutting.
In embodiments where the nosecone is not deflected, the respective cutting windows can be optimized so as to allow for automatic invagination of tissue into the cutting window. Further, having the nosecone not deflect and relying entirely on the curved portion for tissue apposition can advantageously prevent the cutter from escaping from the nosecone during packing. Further, having the curved portion alone (i.e., without the nosecone activation) can advantageously eliminate having to use additional mechanisms to force a jog mid-surgery, such as pulling or pushing on a shaft, thereby enhancing both case of use and enhancing image stability.
The atherectomy catheters having a curved portion described herein advantageously allows easier and closer positioning of the atherectomy cutter to plaque close to the inner artery walls. That is, the curved portions can be configured such that the exposed portion of the cutter (e.g., the area extending through the cutter window) moves closer to the vessel wall than the unexposed side of the cutter. This positioning can make cutting during the atherectomy procedure more efficient.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for case of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application is a continuation of U.S. patent application Ser. No. 16/310,470, filed on Dec. 17, 2018, titled “ATHERECTOMY CATHETER WITH SHAPEABLE DISTAL TIP,” now U.S. Publication No. US-2019-0209206-A1, which is a U.S. National Phase Application Under 35 U.S.C. § 371 of International Application No. PCT/US2017/040431, filed on Jun. 30, 2017, titled “ATHERECTOMY CATHETER WITH SHAPEABLE DISTAL TIP,” now International Publication No. WO 2018/006041, which claims priority to U.S. Provisional Patent Application No. 62/357,173, filed Jun. 30, 2016, titled “ATHERECTOMY CATHETER WITH SHAPEABLE DISTAL TIP,” each of which is herein incorporated by reference in its entirety. This application may also be related to U.S. Publication No. 20150141816, titled “ATHERECTOMY CATHETER WITH IMAGING,” filed on Mar. 15, 2013, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3367727 | Ward et al. | Feb 1968 | A |
3908637 | Doroshow | Sep 1975 | A |
4178935 | Gekhaman et al. | Dec 1979 | A |
4487206 | Aagard | Dec 1984 | A |
4527553 | Upsher | Jul 1985 | A |
4552554 | Gould et al. | Nov 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4598710 | Kleinberg et al. | Jul 1986 | A |
4611600 | Cohen | Sep 1986 | A |
4621353 | Hazel et al. | Nov 1986 | A |
4639091 | Huignard et al. | Jan 1987 | A |
4651753 | Lifton | Mar 1987 | A |
4654024 | Crittenden et al. | Mar 1987 | A |
4681106 | Kensey et al. | Jul 1987 | A |
4686982 | Nash | Aug 1987 | A |
4691708 | Kane | Sep 1987 | A |
4729763 | Henrie | Mar 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4808163 | Laub | Feb 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4842578 | Johnson et al. | Jun 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4857046 | Stevens et al. | Aug 1989 | A |
4920961 | Grossi et al. | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
5000185 | Yock | Mar 1991 | A |
5002560 | Machold et al. | Mar 1991 | A |
5018529 | Tenerz et al. | May 1991 | A |
5041082 | Shiber | Aug 1991 | A |
5047040 | Simpson et al. | Sep 1991 | A |
5085662 | Willard | Feb 1992 | A |
5099850 | Matsui et al. | Mar 1992 | A |
5178153 | Einzig | Jan 1993 | A |
5182291 | Gubin et al. | Jan 1993 | A |
5190050 | Nitzsche | Mar 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5217479 | Shuler | Jun 1993 | A |
5312415 | Palermo | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5333142 | Scheps | Jul 1994 | A |
5358472 | Vance et al. | Oct 1994 | A |
5366464 | Belknap | Nov 1994 | A |
5372601 | Lary | Dec 1994 | A |
5383460 | Jang et al. | Jan 1995 | A |
5383467 | Auer et al. | Jan 1995 | A |
5425273 | Chevalier | Jun 1995 | A |
5425371 | Mischenko | Jun 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5437284 | Trimble | Aug 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507760 | Wynne et al. | Apr 1996 | A |
5507795 | Chiang et al. | Apr 1996 | A |
5517998 | Madison | May 1996 | A |
5529580 | Kusunok et al. | Jun 1996 | A |
5556405 | Lary | Sep 1996 | A |
5607394 | Andersen et al. | Mar 1997 | A |
5613981 | Boyle et al. | Mar 1997 | A |
5620426 | Braithwaite | Apr 1997 | A |
5632754 | Farley et al. | May 1997 | A |
5632755 | Nordgren et al. | May 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5676012 | Ceriale | Oct 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5690634 | Muller et al. | Nov 1997 | A |
5722403 | McGee et al. | Mar 1998 | A |
5728148 | Bostrom et al. | Mar 1998 | A |
5749846 | Edwards et al. | May 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5807339 | Bostrom et al. | Sep 1998 | A |
5830145 | Tenhoff | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5868778 | Gershony et al. | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5907425 | Dickensheets et al. | May 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5935139 | Bates | Aug 1999 | A |
5938602 | Lloyd | Aug 1999 | A |
5938671 | Katoh et al. | Aug 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5951583 | Jensen et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5957952 | Gershony et al. | Sep 1999 | A |
5987995 | Sawatari et al. | Nov 1999 | A |
5997558 | Nash | Dec 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6007530 | Dornhofer et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6017359 | Gershony et al. | Jan 2000 | A |
6027514 | Stine et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6080170 | Nash et al. | Jun 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6110164 | Vidlund | Aug 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134002 | Stimson et al. | Oct 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6152938 | Curry | Nov 2000 | A |
6152951 | Hashimoto et al. | Nov 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6175669 | Colston et al. | Jan 2001 | B1 |
6176871 | Pathak et al. | Jan 2001 | B1 |
6183432 | Milo | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6241744 | Imran et al. | Jun 2001 | B1 |
6283957 | Hashimoto et al. | Sep 2001 | B1 |
6285903 | Rosenthal et al. | Sep 2001 | B1 |
6290668 | Gregory et al. | Sep 2001 | B1 |
6294775 | Seibel et al. | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6307985 | Murakami et al. | Oct 2001 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6402719 | Ponzi et al. | Jun 2002 | B1 |
6416527 | Berg et al. | Jul 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6447525 | Follmer et al. | Sep 2002 | B2 |
6451009 | Dasilva et al. | Sep 2002 | B1 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6454717 | Pantages et al. | Sep 2002 | B1 |
6454779 | Taylor | Sep 2002 | B1 |
6482216 | Hiblar et al. | Nov 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6497649 | Parker et al. | Dec 2002 | B2 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6503261 | Bruneau et al. | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6542665 | Reed et al. | Apr 2003 | B2 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6551302 | Rosinko et al. | Apr 2003 | B1 |
6563105 | Seibel et al. | May 2003 | B2 |
6564087 | Pitris et al. | May 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6572563 | Ouchi et al. | Jun 2003 | B2 |
6572643 | Gharibadeh | Jun 2003 | B1 |
6575995 | Huter et al. | Jun 2003 | B1 |
6579298 | Bruneau et al. | Jun 2003 | B1 |
6599296 | Gillick et al. | Jul 2003 | B1 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6629953 | Boyd | Oct 2003 | B1 |
6638233 | Corvi et al. | Oct 2003 | B2 |
6645217 | MacKinnon et al. | Nov 2003 | B1 |
6657727 | Izatt et al. | Dec 2003 | B1 |
6666874 | Heitzmann et al. | Dec 2003 | B2 |
6673042 | Samson et al. | Jan 2004 | B1 |
6687010 | Horii | Feb 2004 | B1 |
6728571 | Barbato | Apr 2004 | B1 |
D489973 | Root et al. | May 2004 | S |
6730063 | Delaney et al. | May 2004 | B2 |
6758854 | Butler et al. | Jul 2004 | B1 |
6760112 | Reed et al. | Jul 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6830577 | Nash et al. | Dec 2004 | B2 |
6845190 | Smithwick et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6853457 | Bjarklev et al. | Feb 2005 | B2 |
6856712 | Fauver et al. | Feb 2005 | B2 |
6867753 | Chinthammit et al. | Mar 2005 | B2 |
6879851 | McNamara et al. | Apr 2005 | B2 |
6947787 | Webler | Sep 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6970732 | Winston et al. | Nov 2005 | B2 |
6975898 | Seibel | Dec 2005 | B2 |
7068878 | Crossman-Bosworth et al. | Jun 2006 | B2 |
7074231 | Jang | Jul 2006 | B2 |
7126693 | Everett et al. | Oct 2006 | B2 |
7172610 | Heitzmann et al. | Feb 2007 | B2 |
7242480 | Alphonse | Jul 2007 | B2 |
7261687 | Yang | Aug 2007 | B2 |
7288087 | Winston et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7311723 | Seibel et al. | Dec 2007 | B2 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7382949 | Bouma et al. | Jun 2008 | B2 |
7426036 | Feldchtein et al. | Sep 2008 | B2 |
7428001 | Schowengerdt et al. | Sep 2008 | B2 |
7428053 | Feldchtein et al. | Sep 2008 | B2 |
7455649 | Root et al. | Nov 2008 | B2 |
7474407 | Gutin | Jan 2009 | B2 |
7485127 | Nistal | Feb 2009 | B2 |
7488340 | Kauphusman et al. | Feb 2009 | B2 |
7530948 | Seibel et al. | May 2009 | B2 |
7530976 | MacMahon et al. | May 2009 | B2 |
7538859 | Tearney et al. | May 2009 | B2 |
7538886 | Feldchtein | May 2009 | B2 |
7539362 | Teramura | May 2009 | B2 |
7542145 | Toida et al. | Jun 2009 | B2 |
7544162 | Ohkubo | Jun 2009 | B2 |
7545504 | Buckland et al. | Jun 2009 | B2 |
7555333 | Wang et al. | Jun 2009 | B2 |
7577471 | Camus et al. | Aug 2009 | B2 |
7583872 | Seibel et al. | Sep 2009 | B2 |
7616986 | Seibel et al. | Nov 2009 | B2 |
7637885 | Maschke | Dec 2009 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7706863 | Imanishi et al. | Apr 2010 | B2 |
7728985 | Feldchtein et al. | Jun 2010 | B2 |
7729745 | Maschke | Jun 2010 | B2 |
7734332 | Sher | Jun 2010 | B2 |
7738945 | Fauver et al. | Jun 2010 | B2 |
7753852 | Maschke | Jul 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7776062 | Bessellink et al. | Aug 2010 | B2 |
7785286 | Magnin et al. | Aug 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7821643 | Amazeen et al. | Oct 2010 | B2 |
7824089 | Charles | Nov 2010 | B2 |
7840283 | Bush et al. | Nov 2010 | B1 |
7944568 | Teramura et al. | May 2011 | B2 |
7952718 | Li et al. | May 2011 | B2 |
7972299 | Carter et al. | Jul 2011 | B2 |
8002763 | Berthiaume et al. | Aug 2011 | B2 |
8059274 | Splinter | Nov 2011 | B2 |
8062316 | Patel et al. | Nov 2011 | B2 |
8068921 | Prakash et al. | Nov 2011 | B2 |
8313493 | Fisher | Nov 2012 | B2 |
8361097 | Patel et al. | Jan 2013 | B2 |
8548571 | He et al. | Oct 2013 | B2 |
8548603 | Swoyer et al. | Oct 2013 | B2 |
8632557 | Thatcher et al. | Jan 2014 | B2 |
8644913 | Simpson et al. | Feb 2014 | B2 |
8647335 | Markus | Feb 2014 | B2 |
8696695 | Patel et al. | Apr 2014 | B2 |
8911459 | Simpson et al. | Dec 2014 | B2 |
9119662 | Moberg | Sep 2015 | B2 |
9125562 | Spencer et al. | Sep 2015 | B2 |
9333007 | Escudero et al. | May 2016 | B2 |
9345398 | Tachibana et al. | May 2016 | B2 |
9345406 | Spencer et al. | May 2016 | B2 |
9345510 | Patel et al. | May 2016 | B2 |
9345511 | Smith et al. | May 2016 | B2 |
9351757 | Kusleika | May 2016 | B2 |
9498247 | Patel et al. | Nov 2016 | B2 |
9498600 | Rosenthal et al. | Nov 2016 | B2 |
9557156 | Kankaria | Jan 2017 | B2 |
9572492 | Simpson et al. | Feb 2017 | B2 |
9579157 | Moberg | Feb 2017 | B2 |
9592075 | Simpson et al. | Mar 2017 | B2 |
9642646 | Patel et al. | May 2017 | B2 |
9788790 | Black et al. | Oct 2017 | B2 |
9854979 | Smith et al. | Jan 2018 | B2 |
9918734 | Patel et al. | Mar 2018 | B2 |
9949754 | Newhauser et al. | Apr 2018 | B2 |
10052125 | Rosenthal et al. | Aug 2018 | B2 |
10130386 | Simpson et al. | Nov 2018 | B2 |
10213224 | Guggenheimer et al. | Feb 2019 | B2 |
10244934 | Tachibana et al. | Apr 2019 | B2 |
10314667 | Garvey et al. | Jun 2019 | B2 |
10335173 | Carver et al. | Jul 2019 | B2 |
10342491 | Black et al. | Jul 2019 | B2 |
10349974 | Patel et al. | Jul 2019 | B2 |
10357277 | Patel et al. | Jul 2019 | B2 |
10363062 | Spencer et al. | Jul 2019 | B2 |
10406316 | Garvey et al. | Sep 2019 | B2 |
10470795 | Patel et al. | Nov 2019 | B2 |
10548478 | Simpson et al. | Feb 2020 | B2 |
10568520 | Patel et al. | Feb 2020 | B2 |
10568655 | Simpson et al. | Feb 2020 | B2 |
10722121 | Smith et al. | Jul 2020 | B2 |
10729326 | Spencer et al. | Aug 2020 | B2 |
10860484 | McKenna et al. | Dec 2020 | B2 |
10869685 | Patel et al. | Dec 2020 | B2 |
10932670 | Smith et al. | Mar 2021 | B2 |
10952615 | Kankaria | Mar 2021 | B2 |
10952763 | Newhauser et al. | Mar 2021 | B2 |
11033190 | Patel et al. | Jun 2021 | B2 |
11076773 | Patel et al. | Aug 2021 | B2 |
11096717 | Gupta et al. | Aug 2021 | B2 |
11134849 | Simpson et al. | Oct 2021 | B2 |
11135019 | Spencer et al. | Oct 2021 | B2 |
11147583 | Patel et al. | Oct 2021 | B2 |
11206975 | Tachibana et al. | Dec 2021 | B2 |
11224459 | Patel et al. | Jan 2022 | B2 |
20010005788 | McGuckin, Jr. | Jun 2001 | A1 |
20010020126 | Swanson et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020072706 | Hiblar et al. | Jun 2002 | A1 |
20020082585 | Carroll et al. | Jun 2002 | A1 |
20020082626 | Donohoe et al. | Jun 2002 | A1 |
20020097400 | Jung et al. | Jul 2002 | A1 |
20020111548 | Swanson et al. | Aug 2002 | A1 |
20020115931 | Strauss et al. | Aug 2002 | A1 |
20020138091 | Pflueger | Sep 2002 | A1 |
20020147459 | Bashiri et al. | Oct 2002 | A1 |
20020158547 | Wood | Oct 2002 | A1 |
20030002038 | Mawatari | Jan 2003 | A1 |
20030028100 | Tearney et al. | Feb 2003 | A1 |
20030032880 | Moore | Feb 2003 | A1 |
20030045835 | Anderson et al. | Mar 2003 | A1 |
20030095248 | Frot | May 2003 | A1 |
20030097044 | Rovegno | May 2003 | A1 |
20030120150 | Govari | Jun 2003 | A1 |
20030120295 | Simpson et al. | Jun 2003 | A1 |
20030125756 | Shturman et al. | Jul 2003 | A1 |
20030125757 | Patel et al. | Jul 2003 | A1 |
20030125758 | Simpson et al. | Jul 2003 | A1 |
20030139751 | Evans et al. | Jul 2003 | A1 |
20030181855 | Simpson et al. | Sep 2003 | A1 |
20040002650 | Mandrusov et al. | Jan 2004 | A1 |
20040039371 | Tockman et al. | Feb 2004 | A1 |
20040057667 | Yamada et al. | Mar 2004 | A1 |
20040059257 | Gaber | Mar 2004 | A1 |
20040082850 | Bonner et al. | Apr 2004 | A1 |
20040092915 | Levatter | May 2004 | A1 |
20040093001 | Hamada | May 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040167553 | Simpson | Aug 2004 | A1 |
20040167554 | Simpson et al. | Aug 2004 | A1 |
20040181249 | Torrance et al. | Sep 2004 | A1 |
20040186368 | Ramzipoor et al. | Sep 2004 | A1 |
20040193140 | Griffin et al. | Sep 2004 | A1 |
20040202418 | Ghiron et al. | Oct 2004 | A1 |
20040220519 | Wulfman et al. | Nov 2004 | A1 |
20040230212 | Wulfman | Nov 2004 | A1 |
20040230213 | Wulfman et al. | Nov 2004 | A1 |
20040236312 | Nistal et al. | Nov 2004 | A1 |
20040243162 | Wulfman et al. | Dec 2004 | A1 |
20040254599 | Lipoma et al. | Dec 2004 | A1 |
20040260236 | Manning et al. | Dec 2004 | A1 |
20050020925 | Kleen et al. | Jan 2005 | A1 |
20050021075 | Bonnette et al. | Jan 2005 | A1 |
20050027199 | Clarke | Feb 2005 | A1 |
20050043614 | Huizenga et al. | Feb 2005 | A1 |
20050054947 | Goldenberg | Mar 2005 | A1 |
20050075660 | Chu et al. | Apr 2005 | A1 |
20050085708 | Fauver et al. | Apr 2005 | A1 |
20050085721 | Fauver et al. | Apr 2005 | A1 |
20050105097 | Fang-Yen et al. | May 2005 | A1 |
20050141843 | Warden et al. | Jun 2005 | A1 |
20050149096 | Hilal et al. | Jul 2005 | A1 |
20050154407 | Simpson | Jul 2005 | A1 |
20050159712 | Andersen | Jul 2005 | A1 |
20050159731 | Lee | Jul 2005 | A1 |
20050171478 | Selmon et al. | Aug 2005 | A1 |
20050177068 | Simpson | Aug 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050187571 | Maschke | Aug 2005 | A1 |
20050192496 | Maschke | Sep 2005 | A1 |
20050197623 | Leeflang et al. | Sep 2005 | A1 |
20050201662 | Petersen et al. | Sep 2005 | A1 |
20050203553 | Maschke | Sep 2005 | A1 |
20050222519 | Simpson | Oct 2005 | A1 |
20050222663 | Simpson et al. | Oct 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20060011820 | Chow-Shing et al. | Jan 2006 | A1 |
20060032508 | Simpson | Feb 2006 | A1 |
20060046235 | Alexander | Mar 2006 | A1 |
20060049587 | Cornwell | Mar 2006 | A1 |
20060064009 | Webler et al. | Mar 2006 | A1 |
20060084911 | Belef et al. | Apr 2006 | A1 |
20060109478 | Tearney et al. | May 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060173475 | Lafontaine et al. | Aug 2006 | A1 |
20060229646 | Sparks | Oct 2006 | A1 |
20060229659 | Gifford et al. | Oct 2006 | A1 |
20060235262 | Arnal et al. | Oct 2006 | A1 |
20060235366 | Simpson | Oct 2006 | A1 |
20060236019 | Soito et al. | Oct 2006 | A1 |
20060239982 | Simpson | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060264741 | Prince | Nov 2006 | A1 |
20060264743 | Kleen et al. | Nov 2006 | A1 |
20060264907 | Eskridge et al. | Nov 2006 | A1 |
20070010840 | Rosenthal et al. | Jan 2007 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070015979 | Redel | Jan 2007 | A1 |
20070035855 | Dickensheets | Feb 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070038125 | Kleen et al. | Feb 2007 | A1 |
20070038173 | Simpson | Feb 2007 | A1 |
20070050019 | Hyde | Mar 2007 | A1 |
20070078469 | Soito et al. | Apr 2007 | A1 |
20070078500 | Ryan et al. | Apr 2007 | A1 |
20070081166 | Brown et al. | Apr 2007 | A1 |
20070088230 | Terashi et al. | Apr 2007 | A1 |
20070106155 | Goodnow et al. | May 2007 | A1 |
20070135712 | Maschke | Jun 2007 | A1 |
20070167710 | Unal et al. | Jul 2007 | A1 |
20070196926 | Soito et al. | Aug 2007 | A1 |
20070213618 | Li et al. | Sep 2007 | A1 |
20070219484 | Straub | Sep 2007 | A1 |
20070250080 | Jones et al. | Oct 2007 | A1 |
20070255252 | Mehta | Nov 2007 | A1 |
20070270647 | Nahen et al. | Nov 2007 | A1 |
20070276419 | Rosenthal | Nov 2007 | A1 |
20070288036 | Seshadri | Dec 2007 | A1 |
20070299309 | Seibel et al. | Dec 2007 | A1 |
20080004643 | To et al. | Jan 2008 | A1 |
20080004644 | To et al. | Jan 2008 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004646 | To et al. | Jan 2008 | A1 |
20080015491 | Bei et al. | Jan 2008 | A1 |
20080015618 | Sonnenschein et al. | Jan 2008 | A1 |
20080027334 | Langston | Jan 2008 | A1 |
20080033396 | Danek et al. | Feb 2008 | A1 |
20080045986 | To et al. | Feb 2008 | A1 |
20080049234 | Seitz | Feb 2008 | A1 |
20080058629 | Seibel et al. | Mar 2008 | A1 |
20080065124 | Olson | Mar 2008 | A1 |
20080065125 | Olson | Mar 2008 | A1 |
20080065205 | Nguyen et al. | Mar 2008 | A1 |
20080095421 | Sun et al. | Apr 2008 | A1 |
20080103439 | Torrance et al. | May 2008 | A1 |
20080103446 | Torrance et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080132929 | O'Sullivan et al. | Jun 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080146942 | Dala-Krishna | Jun 2008 | A1 |
20080147000 | Seibel et al. | Jun 2008 | A1 |
20080154293 | Taylor et al. | Jun 2008 | A1 |
20080154296 | Taylor et al. | Jun 2008 | A1 |
20080177138 | Courtney et al. | Jul 2008 | A1 |
20080186501 | Xie | Aug 2008 | A1 |
20080207996 | Tsai | Aug 2008 | A1 |
20080221388 | Seibel et al. | Sep 2008 | A1 |
20080228033 | Tumlinson et al. | Sep 2008 | A1 |
20080243030 | Seibel et al. | Oct 2008 | A1 |
20080243031 | Seibel et al. | Oct 2008 | A1 |
20080262312 | Carroll et al. | Oct 2008 | A1 |
20080275485 | Bonnette et al. | Nov 2008 | A1 |
20080287795 | Klingensmith et al. | Nov 2008 | A1 |
20090018565 | To | Jan 2009 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090024084 | Khosla et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090024191 | Seibel et al. | Jan 2009 | A1 |
20090028407 | Seibel et al. | Jan 2009 | A1 |
20090028507 | Jones et al. | Jan 2009 | A1 |
20090043191 | Castella et al. | Feb 2009 | A1 |
20090073444 | Wang | Mar 2009 | A1 |
20090073455 | Onimura | Mar 2009 | A1 |
20090076447 | Casas et al. | Mar 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090099641 | Wu et al. | Apr 2009 | A1 |
20090125019 | Douglass et al. | May 2009 | A1 |
20090135280 | Johnston et al. | May 2009 | A1 |
20090137893 | Seibel et al. | May 2009 | A1 |
20090152664 | Tian et al. | Jun 2009 | A1 |
20090185135 | Volk | Jul 2009 | A1 |
20090196477 | Cense | Aug 2009 | A1 |
20090196554 | Irisawa | Aug 2009 | A1 |
20090198125 | Nakabayashi et al. | Aug 2009 | A1 |
20090208143 | Yoon et al. | Aug 2009 | A1 |
20090216180 | Lee et al. | Aug 2009 | A1 |
20090221904 | Shealy et al. | Sep 2009 | A1 |
20090221920 | Boppart et al. | Sep 2009 | A1 |
20090234220 | Maschke | Sep 2009 | A1 |
20090235396 | Wang et al. | Sep 2009 | A1 |
20090244485 | Walsh et al. | Oct 2009 | A1 |
20090244547 | Ozawa | Oct 2009 | A1 |
20090264826 | Thompson | Oct 2009 | A1 |
20090268159 | Xu et al. | Oct 2009 | A1 |
20090275966 | Mitusina | Nov 2009 | A1 |
20090284749 | Johnson et al. | Nov 2009 | A1 |
20090292199 | Bielewicz et al. | Nov 2009 | A1 |
20090306520 | Schmitt et al. | Dec 2009 | A1 |
20090316116 | Melville et al. | Dec 2009 | A1 |
20090318862 | Ali et al. | Dec 2009 | A1 |
20100004544 | Toida | Jan 2010 | A1 |
20100021926 | Noordin | Jan 2010 | A1 |
20100049225 | To et al. | Feb 2010 | A1 |
20100080016 | Fukui et al. | Apr 2010 | A1 |
20100082000 | Honeck et al. | Apr 2010 | A1 |
20100125253 | Olson | May 2010 | A1 |
20100130996 | Doud et al. | May 2010 | A1 |
20100198081 | Hanlin et al. | Aug 2010 | A1 |
20100217245 | Prescott | Aug 2010 | A1 |
20100241147 | Maschke | Sep 2010 | A1 |
20100253949 | Adler et al. | Oct 2010 | A1 |
20100292539 | Lankenau et al. | Nov 2010 | A1 |
20100292721 | Moberg | Nov 2010 | A1 |
20100312263 | Moberg et al. | Dec 2010 | A1 |
20100317973 | Nita | Dec 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110023617 | Yu et al. | Feb 2011 | A1 |
20110028977 | Rauscher et al. | Feb 2011 | A1 |
20110040238 | Wulfman et al. | Feb 2011 | A1 |
20110058250 | Liu et al. | Mar 2011 | A1 |
20110060186 | Tilson et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110092955 | Purdy et al. | Apr 2011 | A1 |
20110106004 | Eubanks et al. | May 2011 | A1 |
20110118660 | Torrance et al. | May 2011 | A1 |
20110130777 | Zhang et al. | Jun 2011 | A1 |
20110137140 | Tearney et al. | Jun 2011 | A1 |
20110144673 | Zhang et al. | Jun 2011 | A1 |
20110201924 | Tearney et al. | Aug 2011 | A1 |
20110208222 | Ljahnicky et al. | Aug 2011 | A1 |
20110257478 | Kleiner et al. | Oct 2011 | A1 |
20110264125 | Wilson et al. | Oct 2011 | A1 |
20110270187 | Nelson | Nov 2011 | A1 |
20110295148 | Destoumieux et al. | Dec 2011 | A1 |
20110301625 | Mauch et al. | Dec 2011 | A1 |
20110319905 | Palme et al. | Dec 2011 | A1 |
20120002928 | Irisawa | Jan 2012 | A1 |
20120004506 | Tearney et al. | Jan 2012 | A1 |
20120123352 | Fruland et al. | May 2012 | A1 |
20120136350 | Goshgarian et al. | May 2012 | A1 |
20120203230 | Adams | Aug 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120259337 | del Rio et al. | Oct 2012 | A1 |
20120277730 | Salahieh et al. | Nov 2012 | A1 |
20120289971 | Segermark et al. | Nov 2012 | A1 |
20130023865 | Steinke et al. | Jan 2013 | A1 |
20130035692 | Sorensen et al. | Feb 2013 | A1 |
20130072787 | Wallace et al. | Mar 2013 | A1 |
20130184549 | Avitall et al. | Jul 2013 | A1 |
20130211221 | Sunnarborg et al. | Aug 2013 | A1 |
20130223798 | Jenner et al. | Aug 2013 | A1 |
20130223801 | Bhagavatula et al. | Aug 2013 | A1 |
20130255069 | Higashi et al. | Oct 2013 | A1 |
20130266259 | Bhagavatula et al. | Oct 2013 | A1 |
20130287282 | Yokota et al. | Oct 2013 | A1 |
20130317519 | Romo et al. | Nov 2013 | A1 |
20130325003 | Kapur et al. | Dec 2013 | A1 |
20130331819 | Rosenman et al. | Dec 2013 | A1 |
20140005534 | He et al. | Jan 2014 | A1 |
20140046250 | Jain et al. | Feb 2014 | A1 |
20140128893 | Guggenheimer et al. | May 2014 | A1 |
20140187949 | Zhao et al. | Jul 2014 | A1 |
20140222042 | Kessler et al. | Aug 2014 | A1 |
20140222047 | Vreeman | Aug 2014 | A1 |
20140243881 | Lees et al. | Aug 2014 | A1 |
20140275996 | Stigall | Sep 2014 | A1 |
20140291985 | Cabrera et al. | Oct 2014 | A1 |
20140343410 | Graf et al. | Nov 2014 | A1 |
20140371718 | Alvarez et al. | Dec 2014 | A1 |
20150025310 | Everingham et al. | Jan 2015 | A1 |
20150036146 | Staloff | Feb 2015 | A1 |
20150141816 | Gupta et al. | May 2015 | A1 |
20150146211 | Bhagavatula et al. | May 2015 | A1 |
20150320975 | Simpson et al. | Nov 2015 | A1 |
20150327866 | Eckhouse et al. | Nov 2015 | A1 |
20160144155 | Simpson et al. | May 2016 | A1 |
20160310700 | Drake et al. | Oct 2016 | A1 |
20160354109 | Guggenheimer et al. | Dec 2016 | A1 |
20160354110 | Guggenheimer et al. | Dec 2016 | A1 |
20170100144 | Zhadkevich | Apr 2017 | A1 |
20170172666 | Govari et al. | Jun 2017 | A1 |
20180084985 | Saw et al. | Mar 2018 | A1 |
20180200488 | Drake et al. | Jul 2018 | A1 |
20180207417 | Zung et al. | Jul 2018 | A1 |
20180364024 | Baca et al. | Dec 2018 | A1 |
20190021679 | Christensen | Jan 2019 | A1 |
20190029714 | Patel et al. | Jan 2019 | A1 |
20190110809 | Rosenthal et al. | Apr 2019 | A1 |
20190313941 | Radjabi | Oct 2019 | A1 |
20200060718 | Patel et al. | Feb 2020 | A1 |
20200069253 | Black et al. | Mar 2020 | A1 |
20200315654 | Patel et al. | Oct 2020 | A1 |
20200323553 | Fernandez et al. | Oct 2020 | A1 |
20210059713 | Patel et al. | Mar 2021 | A1 |
20210076949 | Smith et al. | Mar 2021 | A1 |
20210177262 | Spencer et al. | Jun 2021 | A1 |
20210267621 | Simpson et al. | Sep 2021 | A1 |
20210330345 | Newhauser et al. | Oct 2021 | A1 |
20210345903 | Patel et al. | Nov 2021 | A1 |
20220007941 | Kankaria | Jan 2022 | A1 |
20220031168 | Patel et al. | Feb 2022 | A1 |
20220039658 | Smith et al. | Feb 2022 | A1 |
20220039828 | Patel et al. | Feb 2022 | A1 |
20220168011 | Patel et al. | Jun 2022 | A1 |
20220273336 | Fernandez et al. | Sep 2022 | A1 |
20220273337 | Patel et al. | Sep 2022 | A1 |
20230225616 | Patel et al. | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
1875242 | Dec 2006 | CN |
1947652 | Apr 2007 | CN |
101601581 | Dec 2009 | CN |
103027727 | Apr 2013 | CN |
104968285 | Oct 2015 | CN |
202006018883.5 | Feb 2007 | DE |
0347098 | Dec 1989 | EP |
0808638 | Nov 1997 | EP |
0845692 | Nov 2005 | EP |
1859732 | Nov 2007 | EP |
2090245 | Aug 2009 | EP |
2353526 | Sep 2013 | EP |
2942028 | Nov 2015 | EP |
3446648 | Feb 2019 | EP |
S62-275425 | Nov 1987 | JP |
03502060 | Feb 1990 | JP |
H05501065 | Mar 1993 | JP |
05103763 | Apr 1993 | JP |
06027343 | Feb 1994 | JP |
H07184888 | Jul 1995 | JP |
07308393 | Nov 1995 | JP |
2002214127 | Jul 2002 | JP |
2004509695 | Apr 2004 | JP |
2004516073 | Jun 2004 | JP |
2005114473 | Apr 2005 | JP |
2005230550 | Sep 2005 | JP |
2005249704 | Sep 2005 | JP |
2005533533 | Nov 2005 | JP |
2008175698 | Jul 2006 | JP |
2006288775 | Oct 2006 | JP |
2006313158 | Nov 2006 | JP |
2006526790 | Nov 2006 | JP |
2006326157 | Dec 2006 | JP |
200783053 | Apr 2007 | JP |
200783057 | Apr 2007 | JP |
2007225349 | Sep 2007 | JP |
2007533361 | Nov 2007 | JP |
2008023627 | Feb 2008 | JP |
2008128708 | Jun 2008 | JP |
2008145376 | Jun 2008 | JP |
2008183208 | Aug 2008 | JP |
2008253492 | Oct 2008 | JP |
200914751 | Jan 2009 | JP |
2009509690 | Mar 2009 | JP |
200978150 | Apr 2009 | JP |
2009066252 | Apr 2009 | JP |
2009201969 | Sep 2009 | JP |
2010042182 | Feb 2010 | JP |
2010518900 | Jun 2010 | JP |
2011521747 | Jul 2011 | JP |
2012143558 | Aug 2012 | JP |
2012229976 | Nov 2012 | JP |
2012533353 | Dec 2012 | JP |
2013512736 | Apr 2013 | JP |
2013524930 | Jun 2013 | JP |
2015533584 | Nov 2015 | JP |
2016508758 | Mar 2016 | JP |
20070047221 | May 2007 | KR |
2185859 | Jul 2002 | RU |
2218191 | Dec 2003 | RU |
WO9117698 | Nov 1991 | WO |
WO9923958 | May 1999 | WO |
WO0054659 | Sep 2000 | WO |
WO0115609 | Mar 2001 | WO |
WO0176680 | Oct 2001 | WO |
WO2006133030 | Dec 2006 | WO |
WO2008005888 | Jan 2008 | WO |
WO2008029506 | Mar 2008 | WO |
WO2008042987 | Apr 2008 | WO |
WO2008051951 | May 2008 | WO |
WO2008065600 | Jun 2008 | WO |
WO2008086613 | Jul 2008 | WO |
WO2008087613 | Jul 2008 | WO |
WO2008151155 | Dec 2008 | WO |
WO2009005779 | Jan 2009 | WO |
WO2009006335 | Jan 2009 | WO |
WO2009009799 | Jan 2009 | WO |
WO2009009802 | Jan 2009 | WO |
WO2009023635 | Feb 2009 | WO |
WO2009024344 | Feb 2009 | WO |
WO2009094341 | Jul 2009 | WO |
WO2009140617 | Nov 2009 | WO |
WO2009148317 | Dec 2009 | WO |
WO2010039464 | Apr 2010 | WO |
WO2010056771 | May 2010 | WO |
WO2011044387 | Apr 2011 | WO |
WO2011062087 | May 2011 | WO |
WO2012057940 | May 2012 | WO |
WO2012061935 | May 2012 | WO |
WO2012123737 | Sep 2012 | WO |
WO2012166332 | Dec 2012 | WO |
WO2013033490 | Mar 2013 | WO |
WO2013056262 | Apr 2013 | WO |
WO-2013172970 | Nov 2013 | WO |
WO2014077870 | May 2014 | WO |
WO2014093148 | Jun 2014 | WO |
WO2015074018 | May 2015 | WO |
WO2015101747 | Jul 2015 | WO |
WO2015120146 | Aug 2015 | WO |
WO2015165736 | Nov 2015 | WO |
WO2017007853 | Jan 2017 | WO |
WO2017132247 | Aug 2017 | WO |
WO2017161166 | Sep 2017 | WO |
WO2018094041 | May 2018 | WO |
Entry |
---|
Rosenthal et al.; U.S. Appl. No. 18/337,852 entitled “Atherectomy catheter with laterally-displaceable tip,” filed Jun. 20, 2023. |
Tachibana et al.; U.S. Appl. No. 17/645,722 entitled “Atherectomy catheter drive assemblies,” filed Dec. 22, 2021. |
Black et al.; U.S. Appl. No. 17/652,073 entitled “Optical coherence tomography for biological imaging,” filed Feb. 22, 2022. |
Patel et al.; U.S. Appl. No. 17/762,815 entitled “Atherectomy catheter with shapeable distal tip,” filed Mar. 23, 2022. |
Patel et al.; U.S. Appl. No. 17/763,810 entitled “Occlusion-crossing devices,” filed Mar. 25, 2022. |
Aziz et al.; Chronic total occlusions—a stiff challege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005. |
Bayer Material Science: ; Snap-Fit Joints for Plastics; 26 pages; retrieved from the Internet: ( https://web.archive.org/web/20121119232733if_/http://fab.cba.mit.edu:80/classes/S62.12/people/vemelle.noel/Plastic_Snap_fit_design.pdf) on Sep. 26, 2018. |
Choma et al.; Sensitivity advantage of swept source and fourier domain optical coherence tomography; Optics Express; 11(18); pp. 2183-2189; Sep. 8, 2003. |
De Boer et al.; Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography; Optics Letters; 28(21); pp. 2067-2069; Nov. 2003. |
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5; No. 9; pp. 1156-1164; Sep. 1987. |
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009. |
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages. |
Leitgeb et al.; Performance of fourier domain vs time domain optical coherence tomography; Optics Express; 11(8); pp. 889-894; Apr. 21, 2003. |
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990. |
Merriam Webster; Proximal (Definition); 10 pages; retrieved from the internet (https://www.merriam-webster.com/dictionary/proximal) on Jun. 9, 2021. |
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages. |
Rollins et al.; Optimal interferometer designs for optical coherence tomography; Optics Letters; 24(21); pp. 1484-1486; Nov. 1999. |
Schmitt et al.; A new rotational thrombectomy catheter: System design and first clinical experiences; Cardiovascular and Interventional Radiology; Springer-Verlag; 22(6); pp. 504-509; Nov. 1, 1999. |
Sharma et al.; Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography; Rev. Sci. Instrum.; vol. 78; 113102; 5 pages; Nov. 6, 2007. |
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004; 4 pages. |
Shinkle et al.; Evaluation of stent placement and outcomes with optical coherence tomography; Interv. Cardiol.; 2(4); pp. 535-543; (manuscript version, 12 pages); Aug. 2010. |
Stamper et al.; Plaque characterization with optical coherence tomography. Journal of the American College of Cardiology. 47(8); pp. 69-79; Apr. 18, 2006. |
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994. |
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp. (011104-1)-(011104-8); Jan.-Feb. 2010. |
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010. |
Wikipedia; Hinge; 4 pages; retrieved from the internet (https://en.wikipedia.org/w/index.php?title=Hinge&oldid=479569345) on Jun. 9, 2021. |
Gupta et al.; U.S. Appl. No. 17/445,648 entitled “Tissue collection device for catheter,” filed Aug. 23, 2021. |
Simpson et al.; U.S. Appl. No. 17/449,867 entitled “Occlusion-crossing devices, imaging, and atherectomy devices,” filed Oct. 4, 2021. |
Spencer et al.; U.S. Appl. No. 17/449,895 entitled “Occlusion-crossing devices, atherectomy devices, and imaging,” filed Oct. 4, 2021. |
Patel et al.; U.S. Appl. No. 17/816,673 entitled “Atherectomy catheter with serrated cutter,” filed Aug. 1, 2022. |
Patel et al.; U.S. Appl. No. 18/550,243 entitled “Occlusion-crossing devices,” filed Sep. 12, 2023. |
Patel; U.S. Appl. No. 18/480,452 entitled “Occlusion-crossing devices,” filed Oct. 3, 2023. |
Number | Date | Country | |
---|---|---|---|
20220071656 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62357173 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16310470 | US | |
Child | 17455655 | US |