All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Described herein are atherectomy catheters with independently controlled imaging. These atherectomy catheters may include longitudinally actuated cutters, systems including such catheters and methods of using them.
A significant body of scientific and clinical evidence supports atherectomy as a viable primary or adjunctive therapy prior to stenting for the treatment of occlusive coronary artery disease. Atherectomy offers a simple mechanical advantage over alternative therapies. By removing the majority of plaque mass (debulking) it creates a larger initial lumen and dramatically increases the compliance of the arterial wall. As a result, stent deployment is greatly enhanced.
Additionally, there are advantages related to the arterial healing response. When circumferential radial forces are applied to the vasculature, as in the case of angioplasty or stenting, the plaque mass is displaced, forcing the vessel wall to stretch dramatically. This stretch injury is a known stimulus for the cellular in-growth that leads to restenosis. By removing the disease with minimal force applied to the vessel and reducing the plaque burden prior to stent placement, large gains in lumen size can be created with decreased vessel wall injury and limited elastic recoil which have shown to translate into better acute results and lower restenosis rates.
Traditional atherectomy devices have been plagued by a number of problems, which have severely limited market adoption. These challenges include the need for large access devices, rigid distal assemblies that make control and introduction challenging, fixed cut length, unpredictable depth of cut, insufficient tissue collection and removal, and complex operation. The systems and devices described herein may overcome these hurdles and offer physicians a safe, reliable, and simple cutting system that offers the precision required in eccentric lesions, various disease states, and tortuous anatomy.
Despite the potential to improve restenosis rates associated with angioplasty and stenting in the coronary and peripheral vasculature, atherectomy is not commonly performed. The primary reason for this limited use is the cost, complexity and limited applicability of currently available devices. Many designs are unable to treat the wide range of disease states present in long complex lesions; luminal gain is often limited by the requirement of the physician to introduce multiple devices with increased crossing profiles; tissue collection is either unpredictable or considered unnecessary based on assumptions regarding small particle size and volumes; and optimal debulking is either not possible due to lack of intravascular visualization or requires very long procedure times. Based on these limitations current devices are likely to perform poorly in the coronary vasculature where safety and efficacy in de novo lesions, ostials, and bifurcations continue to pose great challenges.
Previously, atherectomy devices focused on macerating or emulsifying the atherosclerotic plaque such that it may be considered clinically insignificant and remain in the blood stream or aspirated proximally through small spaces in the catheter main body. The reliability of these devices to produce clinically insignificant embolization has been questioned when not aspirated through the catheter to an external reservoir. Aspiration requires a vacuum be applied to a lumen or annular space within the catheter to remove emulsified tissue. In early clinical evaluations of aspiration the presence of negative pressure at the distal working assembly cause the artery to collapse around the cutting element causing more aggressive treatment, dissections and/or perforations. In addition, the option for post procedural analysis of any removed disease is extremely limited or impossible. Atheromed, Pathway Medical and Cardio Vascular Systems, Inc. are examples of companies working on such product designs.
Other atherectomy devices include the directional atherectomy devices such as those developed by DVI and FoxHollow. These catheters use cupped cutters that cut and “turn” the tissue distal into a storage reservoir in the distal tip of the device. This approach preserves the “as cut” nature of the plaque but requires large distal collection elements. These large distal tip assemblies can limit the capabilities of the system to access small lesions and create additional trauma to the vessel.
Currently available atherectomy devices also do not include, and are poorly adapted for use with, real time image guidance. Physician practice is often to treat target lesion as if they contain concentric disease even though intravascular diagnostic devices have consistently shown significantly eccentric lesions. This circumferential treatment approach virtually ensures that native arterial wall and potentially healthy vessel will be cut from the vasculature.
Atherectomy catheter devices, systems and methods that may address some of these concerns are described and illustrated below.
Described herein are atherectomy catheters, systems including them and methods of using them. Some of the distinguishing features that may be included as part of these devices, systems and methods are summarized below.
In particular, described herein are atherectomy catheters devices described including one or more cutters configured to cut tissue that are actuated by longitudinal motion of a drive shaft, e.g., in the proximal/distal axis of the device. The same drive shaft may be used to rotate the cutter, which may be a ring-type cutter at a rotational speed appropriate for cutting the tissue. For example, the cutter may rotate at between about 200 and 5000 RPM (e.g., about 500 RPM, about 600 rpm, about 700 RPM, about 1000 RPM, etc.). Any of these variations may also include imaging such as optical coherence tomography (OCT) imaging configured to image the vessels tissue, including penetrating some depth into the vessel to image the tissue surrounding the blood vessel (such as the intima, media and externa layers). Imaging may help navigate as well as remove atheromatous plaques.
In general the imaging may include an optical sensor, such as an optical fiber end region when OCT is used, which may also rotate around the circumference of the device. This sensor region may be located proximally or distally to the cutter. The imaging sensor may include a lens and/or window through which light is transmitted. In general, the imaging sensor may be rotated around the periphery of the device. In some variations the imaging elements include OCT imaging elements that are off-axis within the catheter, which may be rotated manually or automatically for a number of turns in a first direction before rotating for a number of turns in a second direction. A separate drive shaft from the cutting drive shaft may be used to drive rotation of the imaging sensor, or the same drive shaft may be used. In general, the imaging sensor rotates at a much slower rate than the cutter. For example, the imaging sensor may rotates at about 30 RPM (e.g., between about 2 and about 50 RPM, between about 10 and 40 PM, between about 15 and 40 RPM, etc.). As mentioned, the imaging sensor may rotate approximately 10 time e.g., 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) times around the circumference of the device clockwise before then switches direction to rotate counterclockwise for the same number of rotations, and switching direction again.
The cutter, which may be a rotating ring, may rotate in a single direction (e.g., clockwise, counterclockwise), or it may oscillate back and forth between clockwise and counterclockwise directions. The ring may have a sharp edge, a serrated edge, or the like.
In some variations, the catheter device also includes a handle having one or more controls for controlling the catheter. In addition, the devices or systems may also include one or more controls for controlling the rotation and/or oscillation of the annular cutting ring and/or the imaging system. The devices or systems may also include controls for an associate imaging (e.g., OCT) system. In some variations the device or system includes control logic for regulating the displacement and/or rotation and/or imaging. Proximal controls may include an automated advancement function to ensure proximal motion correlates to distal tracking in the vessel. In some variations, some or all of these controls may be on a handle, or may be on a separate controller.
Force limiting controls may also be used to ensure the input forces do not exceed what is required to effectively cut diseased tissue. This may reduce the chances of the device moving outside the perimeter of the lesion white activated thereby cutting into healthy arterial wall.
In some variations, the catheter systems described herein are compatible with 7F sheath access to the peripheral arteries, or 6F sheath sizes.
Any of these devices may also include one or more drive shafts (e.g., a cutter drive shaft and/or an imaging drive shaft) extending along the length of the catheter body. For example, the cutter drive shaft may comprise a cable drive shaft having a distal gear configured to drive rotation of the cutting ring. In some variations, the annular cutting ring comprises internal gear teeth configured to mate with a drive shaft to rotate the cutting ring.
The drive shaft may be directly connected to the annular cutting ring. For example, the drive shaft comprises a hollow tubular drive shaft. Similarly, the imaging drive shaft (in variations having a separate imaging drive shaft) may be directly connected to the optical head that rotates, or the rotation may be geared. The optical and cutting drive shafts may be coaxially arranged. For example, the cutting drive shaft may be surrounded by the imaging drive shaft; a lubricious fluid and/or intermediary layer may be positioned between the drive shafts. In some variations the drive shafts may be coaxially positioned relative to each other. Alternatively, in some variations, the drive shafts are parallel to each other within the lumen of the catheter.
In some variations the imaging element is driven off of the same drive shaft that moves the cutting element, but at a different rate; thus the imaging element may be geared down (or the cutting element may be geared up) to drive the imaging sensor and cutting element at different rates.
Any of the catheters described herein may include a guidewire lumen extending the length of the catheter. The lumen may be centered or off-centered, and one or more additional lumens may also be included.
In some variations, the annular cutting ring may form an outer surface of the catheter in both the closed and open configurations.
In some variations the distal tip region of the catheter is deflected off-axis from the proximal region of the catheter and cutter, to expose the rotating cutting edge of the cutter and allow it to cut tissue. For example, the catheter may be configured so that lateral movement of the cutter drive shaft causes the distal end of the catheter to displace (e.g., bend) away from the cutting ring, exposing it so that it may cut tissue. The distal end of the device may bend at an angle for the immediately adjacent proximal region of the catheter, and/or it may displace off-axis, as described in the U.S. Ser. No. 12/829,277, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” which was previously incorporated by reference. The distal tip region may also be moved back into line with the proximal region of the catheter, preventing further cutting. Other variations are also described herein, including variations in which lateral movement of the cutting element extends the cutting element radially from the side of the catheter, where it may engage with the wall of the vessel. Other variations include oscillating cutters.
Some variations of the atherectomy catheter devices may also include an internal tissue collection region configured to receive tissue cut by the annular cutting ring. For example, the tissue collection region may be located within the distal tip assembly. The tissue collection region may be located within the catheter body.
As mentioned, in any of these variations, the catheter may include an OCT imaging subassembly. For example, the OCT imaging subassembly may include a fiber optic extending the length of the catheter body. The OCT imaging assembly may comprise a side-facing OCT emitting element fixed proximal to the annular cutting ring. Alternatively, the OCT imaging assembly may include a side-facing OCT emitting element fixed distally to the annular cutting ring.
For example, described herein are atherectomy catheter devices configured to visualize and to cut tissue. Such devices may include: a distal tip; a cutter proximal to the distal tip, the cutter having a cutting edge that is configured to rotate; an imaging sensor proximal to the cutter and configured to rotate independently of the cutter; and a cutter drive shaft coupled to the cutter and configured to rotate the cutter wherein the cutter drive shaft is further configured to be longitudinally displaced proximally or distally to deflect the distal tip to expose the cutting edge of the cutter.
The device may also include a ramped slide surface between the distal tip and a region of the catheter proximal to the cutter, wherein the ramped slide surface is configured to guide deflection of the distal tip as the cutter drive shaft is moved longitudinally. The device may also include an imaging drive shaft coupled to the imaging sensor and configured to rotate the imaging sensor. The imaging drive shaft may be located coaxially to the cutting drive shaft. For example, in some variations the imaging drive shaft is positioned within the cutting drive shaft. In some variations the catheter does not include a separate drive shaft for the imaging and cutting elements, but a single drive shaft is used with gears to step up or step down the rate of rotation so that the cutter may be rotated more rapidly than the imaging drive shaft. Also, in general, the imaging drive shaft may be configured to alternately rotate the imaging sensor clockwise and counterclockwise, particularly in variations in which the imaging sensor element is an OCT imaging element having an off-axis optical fiber within the catheter.
Thus, as just indicated, in some variations the imaging sensor comprises an OCT imaging sensor, and in some variations the imaging sensor comprises a fiber optic extending off-axis along the longitudinal length of the catheter.
The cutter may be a ring cutter; for example, the cutter may be a complete or partial ring of metal having a cutting edge that is exposed only when the distal tip region is displaced. In general, the distal tip region may be displaced by sliding it at least slightly off-axis, and in some variations, also bending it away from the longitudinal axis of the catheter (relative to the region of the catheter just proximal to the distal tip region). Thus, in some variations, the slider region may be used to guide the deflection of the distal tip region.
The distal tip may be hollow, and in some variations may be clear. The distal tip region may be configured to collect tissue cut by the cuter. In some variations the distal tip region is configured to be removable (and/or replaceable). For example, the distal tip may be threaded or otherwise removably secured to the distal end of the catheter. The distal tip region may include a flush port to allow removal of the cut material collected therein.
In any of the variations described herein, the catheters may include a proximal handle having a first driver for driving rotation of the cutter and a second driver for driving rotation of the imaging sensor.
For example, described herein are proximal handles having a first driver for driving rotation of the cutter between 100 and 10,000 rpm, and a second driver for driving rotation of the imaging sensor at less than 100 rpm. As mentioned, the proximal handle may include a first driver for driving rotation of the cutter in a first direction and a second driver for alternately driving rotation of the imaging sensor in a first rotational direction and a second rotational direction.
Also described herein are atherectomy catheter devices configured to visualize and to cut tissue that include: a distal tip; a cutter proximal to the distal tip, the cutter having a cutting edge that is configured to rotate; an imaging sensor proximal to the cutter and configured to rotate independently of the cutter; a cutter drive shaft coupled to the cutter and configured to rotate the cutter wherein the cutter drive shaft is further configured to be longitudinally displaced proximally or distally to deflect the distal tip to expose the cutting edge of the cutter; and an imaging drive shaft coupled to the imaging sensor and configured to alternately rotate the imaging sensor clockwise and counterclockwise.
Some variations of the catheters described herein do not necessarily include imaging (e.g., OCT imaging or other imaging modalities), although OCT imaging may be incorporated into any of them. For example, described herein are atherectomy catheter devices having: a distal tip; a cutter proximal to the distal tip, the cutter having a cutting edge that is configured to rotate; and a cutter drive shaft coupled to the cutter and configured to rotate the cutter wherein the cutter drive shaft is further configured to be longitudinally displaced proximally or distally to deflect the distal tip to expose the cutting edge of the cutter. The device may also include a proximal handle having a control for controlling the longitudinal displacement of the cutter drive shaft.
Also described herein are atherectomy catheter devices including: a distal tip; a cutter proximal to the distal tip, the cutter having a cutting edge that is configured to rotate; a cutter drive shaft coupled to the cutter and configured to rotate the cutter; and a ramped slide surface between the distal tip and a region of the catheter proximal to the cutter, wherein the ramped slide surface guides deflection of the distal tip to expose the cutting edge of the cutter.
Another variation of an atherectomy catheter device as described herein for visualizing and cutting tissue may include: a distal tip; a cutter proximal to the distal tip, the cutter having a cutting edge that is configured to rotate; an imaging sensor proximal to the cutter and configured to rotate independently of the cutter; a cutter drive shaft coupled to the cutter and configured to rotate the cutter; and a ramped slide surface between the distal tip and a region of the catheter proximal to the cutter, wherein the ramped slide surface guides deflection of the distal tip to expose the cutting edge of the cutter.
Methods of operating an atherectomy device, and/or for performing an atherectomy are also described. For example, described herein is a method for operating an atherectomy device comprising deflecting the distal tip region of an atherectomy catheter by driving the distal tip region against a ramped slide surface to displace the distal tip region and expose a rotatable cutter; rotating the cutter at a first rate between 100 and 10,000 rpm; and rotating an imaging element located proximal to the cutter on the catheter at a rate that is less than 100 rpm while imaging. As mentioned, the imaging element (e.g., the end of the fiber optic in an OCT imaging modality) may be alternately rotated clockwise and then counterclockwise; in some variations the imaging element is rotated first clockwise a predetermined number of rotations (e.g., between 1 and 20, such as 9, 10, 11, 12, etc. rotations) then counterclockwise the same number of rotations.
Deflecting the distal tip may include moving a rotatable drive shaft within the catheter longitudinally to displace the distal tip.
Also described herein is a method of operating an atherectomy device, the method comprising: deflecting the distal tip of an atherectomy catheter by moving a drive shaft of the catheter longitudinally to drive a distal tip region of the catheter against a ramped slide surface and thereby to displace the distal tip region and expose a rotatable cutter; rotating the cutter at a first rate between 100 and 10,000 rpm; and rotating an imaging element located proximal to the cutter on the catheter alternately clockwise and counterclockwise at a rate that is less than 100 rpm.
Any of the atherectomy devices described herein may be used without imaging, and may therefore be adapted for use without an imaging sensor (e.g., mirror, fiber, etc.). Thus, in one variation an atherectomy device may be configured to allow axial pushing or pulling of a member (e.g., a torque shaft) to displace the distal tip region and expose the cutting member.
Also described herein are imaging catheters or imaging wires having an optical fiber (e.g., for use with an OCT imaging sensor) that is configured to wrap around a central wire or fiber which may be configured as a drive shaft. These imaging catheters may be used without (or as part of) an atherectomy device or system. The distal end of the fiber is coupled (e.g., glued, epoxied, etc.) to the rotatable distal end of the imaging wire, and the distal end and end of the imaging fiber may be rotated by rotating the central drive shaft. The portion of the imaging catheter proximal to the rotating distal tip region (which may be referred to as a torque shaft) does not rotate with the tip region, and may remain stationary relative to the distal tip. In operation, the optical fiber connected to the distal may wrap around the central wire/fiber, and may be configured to allow numerous (up to a few hundred) rotations in a first direction (e.g., clockwise) before having to rotate counterclockwise, and then cycling back through clockwise rotations again. In some variations the catheter may include a central lumen through which fluid (e.g., saline) may be flushed, with one or more flushing ports located distally to allow flushing to clear the imaging pathway.
Also described herein are variations of imaging catheters in which both the distal end of the catheter and the torque shaft region of the catheter rotates while the centrally located optical fiber twists. In this variation the distal end of the optical fiber is configured as the imaging sensor, and is fixed to the rotating imaging head. The more proximal end of the fiber is fixed relative to the rotating distal tip. As the distal tip rotates, the fiber is allowed to twist and rotate; although this would seem to damage the optical fiber, in practice the fiber may be rotated in this manner though hundreds of complete rotations without substantially degrading in signal transmission or structure.
In general the atherectomy devices described herein include one or more cutters configured to cut tissue that are actuated by longitudinal motion of a drive shaft. By “actuation” the cutter may be exposed to the tissue so that it may cut. The cutting drive shaft may be rotatable as well and may also move longitudinally (e.g., forward and backwards along the long axis of the catheter). The longitudinal motion to expose the cutter may be controlled manually or automatically, and may cause deflection of the distal tip region out of the axis of the more proximal region of the catheter; in some variations it may move the catheter laterally out of the long axis of the catheter. Typically any of these catheters may also include an imaging system for imaging the walls (and into the walls) of the vessel, e.g., using an off-axis OCT imaging system that rotates at a much slower rate around the perimeter of the catheter than the cutting edge rotates for cutting. Thus, in some variations, the device an elongate catheter body, and a rotatable OCT imaging element having a fiber optic extending off-axis within the elongate catheter body. In some variations the catheter body also contains two drive shafts: an imaging drive shaft and a cutting drive shaft. The two drive shafts may be concentrically arranged, while the imaging drive shaft rotates at a much lower speed (and in alternating directions) compared to the cutting drive shaft.
In variations having two drive shafts, both drive shafts may be a flexible; the cutting drive shaft in particular may have sufficient column strength to push or pull to activate the rotating cutter by longitudinally moving (e.g., a slight longitudinal movement) proximally-to-distally along the longitudinal length of the catheter. In some variations the longitudinal movement of the cutting drive shaft deflects the distal tip away from (or back to) the long axis of the more proximal region of the catheter, exposing the rotating cutter and allowing it to cut. In other variations the longitudinal movement of the drive shaft pushes or drives the cutting element away from the long axis of the catheter, exposing the cutting edge to allow cutting. The driving movement does not need to be substantial (e.g., a few millimeters of movement may be sufficient). The catheter may also include a longitudinal lock to hold the catheter with the cutting element exposed.
Described herein are variations of atherectomy devices having longitudinal actuators.
For example,
Cutter
Any appropriate cutter may be used. Typically the cutter is a ring or partial ring cutter that is rotated by connection with a cutting drive shaft. The cutting drive shaft rotates to drive rotation of the cutter. One or more edges of the ring may be configured to cut. For example, the cutter may include at least one cutting edge that is typically not exposed until the distal tip region is deflected out of the way. The cutting edge may be sharp, smooth, serrated, etc. In some variations the cutting edge is configured to face distally. The cutter may be made of any appropriate material, including a metal, ceramic, polymeric, or composite material, or the like.
When not exposed, a portion of the cuter may form a portion of the outer surface of the catheter; for example, a side wall of the cutter may form a portion of the outer surface of the catheter.
Distal Tip Region
The distal tip region is configured to deflect to expose the cutting surface of the cutter. The distal tip region may be hollow or otherwise configured to hold material cut by the atherectomy device. In some variations the distal tip region is clear or at least partially transparent, allowing one to see if material has been collected or remains in the tip region. The distal tip region may include a flush port or may otherwise be adapted to allow removal of cut material stored therein. For example, the distal end may be tapered but may be open. The distal tip region may be removable and/or replaceable. A reusable locking mechanism, such as threads, or the like, may be used to secure a distal tip region on the catheter.
In some variations the distal tip region is relatively stiff; in other variations the distal tip region is flexible, and may be formed of a soft or resilient material. For example, the distal tip region may be a mesh or woven material.
In general, the distal tip region is deflectable. Typically, the distal tip region is deflectable so that it is displaced away from the axis of the catheter, thereby exposing the cutter. The cutter therefore remains in the same radial position both in active and inactive configurations, while the distal tip region is deflected. For example, the distal tip region may be deflected off-axis of the long axis of the catheter; thus, the distal tip region may be dropped radially away from the longitudinal axis of the catheter. The distal tip may also or alternatively be angled away from the rest of the catheter (e.g., the region of the catheter proximal to the distal tip region).
Typically, the interface between the distal tip region and the rest of the catheter may be configured as a ramped slide surface. This slide surface is angled relative to a plane perpendicular through the long axis of the catheter, though the direction of the angle determine if the distal tip region is deflected by pushing or by pulling the actuator (e.g., the cutting drive shaft). The ramp ramped slide surface is configured to guide deflection of the distal tip as the cutter drive shaft is moved longitudinally.
Imaging Sensor
Any of the catheters described herein may include an imaging sensor. The imaging sensor may be, in some variations, configured to rotate independently of the rotating cutter to allow visualization of the vessel. An imaging sensor may rotate independently of the rest of the catheter, including the cutter. In some variations, the cutter may rotate at a much faster rate (10×-100× faster) than the imaging sensor. The imaging sensor may also rotate in more than one direction (e.g., first clockwise for some number of rotations, then counterclockwise for some number of rotations). In contrast, the cutter may be configured to rotate in a single direction.
In general, an imaging sensor captures images of the lumen, or into the wall of the lumen. The imaging sensor may provide real-time images from before, during and/or after cutting when used as part of an atherectomy device. In any of the variations described herein the imaging sensors may be OCT imaging sensors. An OCT imaging sensor may include an optical fiber, a mirror to direct the light into the tissue and back into the fiber for processing. The sensor may therefore include an optical fiber. This fiber may be held off-axis within the catheter. The distal end (e.g., imaging sensor end) of the optical fiber may be secured to allow rotation of the distal end of the fiber, while the region between the proximal end (which may be fixed) and the distal end (which may be fixed to a rotating head) is allowed to rotate somewhat freely within the catheter body, and therefore to wind and unwind around within the catheter body as the imaging sensor end is rotated. As mentioned, the distal end of the optical fiber may form an imaging sensor that may include a mirror to allow imaging of the inside of a vessel as the imaging sensor is rotated. The unrestrained optical fiber may be held in a channel, passage, tube, or other structure that constrains its ability to kink or knot up on itself as it is rotated. In some variations the optical fiber may be configured to wrap around a wire, shaft, tube, or the like. In some variations, the optical fiber does not wrap around anything, but twists on itself. In general, systems including optical fibers may limit the number of rotations clockwise and counterclockwise, and may alternate between clockwise and counterclockwise rotation to allow continuous imaging when desired.
Drive Shafts
As mentioned, the devices may include a drive shaft for rolling rotation of the cutter, and (in some variations) a separate drive shaft for controlling rotation of the imaging sensor. For example, a cutting drive shaft may be connected to the rotatable cutter and may also be coupled to a drive (e.g., motor) in proximal end of the catheter such as the handle to drive rotation of the cutter. A separate imaging drive shaft may be coupled to the imaging sensor for driving rotation of the imaging sensor. In some variations a drive shaft, such as the cutting drive shaft, may also be used to actuate deflection of the distal tip region.
An alternate variation of the devices described herein may include a single drive shaft that rotates from which rotation of both the cutter and the imaging sensor may be achieved. For example, the distal end may include gears for stepping down (or up) the rotation rate of the drive shaft to drive rotation of either the cutter or imaging element. In addition, in some variations a separate actuator may be used to control deflection of the distal tip region. For example, the distal tip region may be deflected by a tendon or other member (e.g., a member having a high column strength) extending the length of the catheter.
Referring now to
The distal tip region 109 (which may include a distal tip region chamber for holding material removed by the device as shown in
Returning now to
As mentioned, the catheter may be configured so that the imaging sensor is sequentially rotated both clockwise and counterclockwise. For example, the imaging sensor may be configured so that after a number of rotations clockwise, the imaging sensor is then rotated counterclockwise for the same number of rotations, and this cycle may be repeated. In variations in which the imaging element is an off-axis optical fiber, the fiber may therefore wind and unwind around the inside of the catheter (e.g., around the drive shaft or shafts, in some variations).
As mentioned, an atherectomy catheter such as the one shown in
As may be seen by comparison, for example, of
In general, in the atherectomy device variations illustrated in
Any of the variations described herein may also include a rinse or flush port that is located near the imaging sensor to allow fluid (e.g., saline) to be flushed from the catheter to clear debris or red blood cells (which may otherwise occlude or degrade the field of view). For example, fluid may be pressurized and released from the region of the catheter near the imaging sensor to rinse the imaging sensor. This rinse may occur continuously or when controlled by the user. For example, fluid from between the two drive shafts may be pressurized to flush the imaging sensor. The rotatable imaging chassis may be configured with one or more flush ports for this purpose; the proximal end region of the catheter may include a port for applying and/or pressurizing fluid.
The handle shown in
Also described herein, and shown in
The handle 1001 shown in
The side view of the handle shown in
The imaging drive sub-system within the handle 1001 may include a motor 1003 and drive gears 1015, 1016, 1017 that can drive the imaging drive shaft to rotate the imaging sensor on the rotatable chassis at the distal end of the device allowing OCT imaging into the walls of the vessel, as described above. In some variations the imaging drive sub-system is controlled or regulated by a toggling/directional control subsystem for switching the direction of rotation of the drive shaft between the clockwise and counterclockwise direction for a predetermined number of turns (e.g., between about 4 and about 100, e.g., between 8 and 20, about 10, etc.). In
The number of threads and/or length of the threaded track (screw) 1011 may determine the number of rotations that are made by the system between changes in rotational direction. For example the number of rotations may be adjusted by changing the width of the shaped toggle 1014 (e.g., the spacing between the arms); lengthening the arms (or increasing the pitch of the screw) would increase the number of rotational turns between changes in direction (n). The toggle may therefore slide from side-to-side in order to switch the direction of the motor.
In some variations the motor is rotated in a constant direction and the switch between clockwise and counterclockwise are achieved by switching between gearing systems, engaging and disengaging an additional gear or gears that mechanically change the direction that the driveshaft is driven.
As mentioned above, the catheters described herein typically an elongate, flexible catheter length extending from the handle. The catheter typically includes an outer sheath surrounding an inner guidewire lumen (not shown). The various drive shafts extend along the length of the catheter to drive the cutter and/or imaging sensor at the distal end of the device in rotation. In some variations the imaging drive shaft is a tubular shaft and may surround the cutter drive shaft. The cutter drive shaft may be a solid shaft which extends through the length of the catheter.
In the exemplary device shown in
In operation, the user may turn on a switch (e.g., on the handle and/or the torque/control handle) to start operation of the overall system, including the rotation of the imaging system and/or cutter. In some variations the user may control the rate or speed of operation by controlling these rates of rotation, as mentioned above.
In any of the variations shown herein, the distal end of the catheter may include one or more fiduciary marks to aid in visualizing the catheter or to help determine the catheter orientation relative to the patient. For example, the catheter may include one or more electodense regions or markers that can be readily visualized using fluoroscopy to help orient the device within the body, including the rotational orientation. Any of the systems described herein may also include a control system for receiving and displaying the images received from the imaging sensor. The control system (e.g., see U.S. patent application Ser. No. 12/829,267 and U.S. patent application Ser. No. 12/790,703) may connect to the handle and control or modify the rotation rate, rotation direction, cutting speed, contrast, display, data storage, data analysis, etc. of the atherectomy device.
The variation illustrated in
In any of these variations, the catheter device may also include on-board and real time image guidance capabilities. This may include an imaging element, or energy emitting assembly, positioned at the distal portion of the device such that local images of the vessel may guide device usage. One specific configuration of an OCT system that may be used for this distal imaging element is described in co-pending applications, including U.S. patent application Ser. No. 12/790,703, previously incorporated by reference. The distal energy emitter(s) may be positioned in multiple locations in fixed positions or embodied in a mating assembly that may translate in an eccentric lumen or in the hollow lumen of the driveshaft. The emitter may send and receive relevant light or sound signals at 90 degrees from the catheter axis or at angles up to approximately 50 degrees to visualize distal or proximal wall features from a fixed position.
Furthermore, the data collected at the distal end of the catheter, after transmitted and appropriately processed, may drive an automated means of tip actuation and cutter position. Increased amounts of disease detected by the software may automatically increase tip axially offset consequently increasing cut depth and apposition force. Cutter speeds, gear ratios and torque inputs may be adjusted according to input from the imaging system.
As mentioned brie fly above, in some variations any of the atherectomy catheters may be configured for use, and used, without a rotating imaging system (e.g., OCT imaging system). Alternatively, in some variations, such as those shown in
For example,
Imaging Catheters
Also described herein are imaging catheters that do not necessarily including cutting elements as described above. For example, in some variations an imaging catheter may include an elongate body having a distal end that includes an imaging sensor (e.g., an OCT imaging sensor) including fiber optic element that is attached to the distal and extends (loose or unattached) within the elongate body of the catheter until it is secured in a proximal end of the device. In some variations just the distal tip of the imaging catheter is configured to rotate with the imaging sensor; in some variations the entire imaging catheter outer body may rotate, including the imaging sensor. In general, the imaging catheters described herein allow the optical fiber to be wound, wrapped or coiled as the imaging sensor is rotated. Thus, the distal and proximal ends may be fixed; for example, the distal end may be fixed to a rotatable chassis that may rotate relative to the handle, while the proximal end of the fiber is fixed relative to the rotating distal tip, and the intermediate portion is allowed to wrap and/or twist while in rotation. As a result, the imaging sensors are configured to rotate for a finite number of rotations in a first (e.g., clockwise) direction, followed by rotation in the opposite (e.g., counterclockwise) direction, and this clockwise/counterclockwise rotation may be repeated.
As mentioned above, the devices described herein may be rotated through a surprising number of rotations without damaging the fiber optic properties; in some variations in which the optical fiber is allowed to twist around itself (rather than wrapping around a shaft, wire, or the like) the fiber may be rotated for hundreds or rotations (e.g., 100, 200, 300, 400, 500, 600, etc.). The optical fiber may be held within a channel or passage having a fixed diameter to prevent the twisting fiber from kinking. In some variations, the optical fiber may be coated or clad with a material to provide support or strength; for example, the optical fiber may be coated with an elastomeric material, or a stiffer material.
For example,
The imaging catheter 1900 shown in
In operation, this imaging catheter may be used as an OCT imaging catheter, and allowed to rotate the drive shaft (and thus the imaging sensor) alternately clockwise, then counterclockwise some number of rotations. The number of rotations clockwise/counterclockwise may be predetermined, or it may be based on some estimate of tension in the optical fiber.
Another variation of an imaging catheter is shown in
Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
This patent application claims priority to U.S. Provisional Patent Application No. 61/360,886, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFT,” filed on Jul. 1, 2010. This patent application also claims priority to U.S. Provisional Patent Application No. 61/468,396, titled “OCCLUSION CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed on Mar. 28, 2011. This patent application also claims priority to U.S. Provisional Patent Application No. 61/492,693, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS” and filed on Jun. 2, 2011. This patent application may be related to U.S. patent application Ser. No. 12/829,277, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” filed on Jul. 1, 2010.
Number | Name | Date | Kind |
---|---|---|---|
4178935 | Gekhaman et al. | Dec 1979 | A |
4552554 | Gould et al. | Nov 1985 | A |
4621353 | Hazel et al. | Nov 1986 | A |
4639091 | Huignard et al. | Jan 1987 | A |
4654024 | Crittenden et al. | Mar 1987 | A |
4686982 | Nash | Aug 1987 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4926858 | Gifford, III et al. | May 1990 | A |
5000185 | Yock | Mar 1991 | A |
5041082 | Shiber | Aug 1991 | A |
5047040 | Simpson et al. | Sep 1991 | A |
5085662 | Willard | Feb 1992 | A |
5099850 | Matsui et al. | Mar 1992 | A |
5178153 | Einzig | Jan 1993 | A |
5182291 | Gubin et al. | Jan 1993 | A |
5190050 | Nitzsche | Mar 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5312415 | Palermo | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5333142 | Scheps | Jul 1994 | A |
5358472 | Vance et al. | Oct 1994 | A |
5383460 | Jang et al. | Jan 1995 | A |
5383467 | Auer et al. | Jan 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5556405 | Lary | Sep 1996 | A |
5632754 | Farley et al. | May 1997 | A |
5632755 | Nordgren et al. | May 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5690634 | Muller et al. | Nov 1997 | A |
5722403 | McGee et al. | Mar 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5807339 | Bostrom et al. | Sep 1998 | A |
5830145 | Tenhoff | Nov 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5868778 | Gershony et al. | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5907425 | Dickensheets et al. | May 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5938602 | Lloyd | Aug 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5951583 | Jensen et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5957952 | Gershony et al. | Sep 1999 | A |
5987995 | Sawatari et al. | Nov 1999 | A |
5997558 | Nash | Dec 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6007530 | Dornhofer et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6017359 | Gershony et al. | Jan 2000 | A |
6027514 | Stine et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6080170 | Nash et al. | Jun 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6110164 | Vidlund | Aug 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134002 | Stimson et al. | Oct 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6152938 | Curry | Nov 2000 | A |
6152951 | Hashimoto et al. | Nov 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6175669 | Colston et al. | Jan 2001 | B1 |
6176871 | Pathak et al. | Jan 2001 | B1 |
6183432 | Milo | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6241744 | Imran et al. | Jun 2001 | B1 |
6283957 | Hashimoto et al. | Sep 2001 | B1 |
6290668 | Gregory et al. | Sep 2001 | B1 |
6294775 | Seibel et al. | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6307985 | Murakami et al. | Oct 2001 | B1 |
6402719 | Ponzi et al. | Jun 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6447525 | Follmer et al. | Sep 2002 | B2 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6454779 | Taylor | Sep 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6497649 | Parker et al. | Dec 2002 | B2 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6503261 | Bruneau et al. | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6542665 | Reed et al. | Apr 2003 | B2 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6551302 | Rosinko et al. | Apr 2003 | B1 |
6563105 | Seibel et al. | May 2003 | B2 |
6564087 | Pitris et al. | May 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6572643 | Gharibadeh | Jun 2003 | B1 |
6575995 | Huter et al. | Jun 2003 | B1 |
6579298 | Bruneau et al. | Jun 2003 | B1 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6623496 | Snow et al. | Sep 2003 | B2 |
6638233 | Corvi et al. | Oct 2003 | B2 |
6645217 | MacKinnon et al. | Nov 2003 | B1 |
6666874 | Heitzmann et al. | Dec 2003 | B2 |
6687010 | Horii | Feb 2004 | B1 |
6728571 | Barbato | Apr 2004 | B1 |
D489973 | Root et al. | May 2004 | S |
6730063 | Delaney et al. | May 2004 | B2 |
6758854 | Butler et al. | Jul 2004 | B1 |
6760112 | Reed et al. | Jul 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6830577 | Nash et al. | Dec 2004 | B2 |
6845190 | Smithwick et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6853457 | Bjarklev et al. | Feb 2005 | B2 |
6856712 | Fauver et al. | Feb 2005 | B2 |
6867753 | Chinthammit et al. | Mar 2005 | B2 |
6879851 | McNamara et al. | Apr 2005 | B2 |
6947787 | Webler | Sep 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6970732 | Winston et al. | Nov 2005 | B2 |
6975898 | Seibel | Dec 2005 | B2 |
7068878 | Crossman-Bosworth et al. | Jun 2006 | B2 |
7074231 | Jang | Jul 2006 | B2 |
7126693 | Everett et al. | Oct 2006 | B2 |
7172610 | Heitzmann et al. | Feb 2007 | B2 |
7242480 | Alphonse | Jul 2007 | B2 |
7261687 | Yang | Aug 2007 | B2 |
7288087 | Winston et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7311723 | Seibel et al. | Dec 2007 | B2 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7382949 | Bouma et al. | Jun 2008 | B2 |
7426036 | Feldchtein et al. | Sep 2008 | B2 |
7428001 | Schowengerdt et al. | Sep 2008 | B2 |
7428053 | Feldchtein et al. | Sep 2008 | B2 |
7455649 | Root et al. | Nov 2008 | B2 |
7474407 | Gutin | Jan 2009 | B2 |
7485127 | Nistal | Feb 2009 | B2 |
7488340 | Kauphusman et al. | Feb 2009 | B2 |
7530948 | Seibel et al. | May 2009 | B2 |
7530976 | MacMahon et al. | May 2009 | B2 |
7538859 | Tearney et al. | May 2009 | B2 |
7538886 | Feldchtein | May 2009 | B2 |
7539362 | Teramura | May 2009 | B2 |
7542145 | Toida et al. | Jun 2009 | B2 |
7544162 | Ohkubo | Jun 2009 | B2 |
7545504 | Buckland et al. | Jun 2009 | B2 |
7555333 | Wang et al. | Jun 2009 | B2 |
7577471 | Camus et al. | Aug 2009 | B2 |
7583872 | Seibel et al. | Sep 2009 | B2 |
7616986 | Seibel et al. | Nov 2009 | B2 |
7637885 | Maschke | Dec 2009 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7706863 | Imanishi et al. | Apr 2010 | B2 |
7728985 | Feldchtein et al. | Jun 2010 | B2 |
7734332 | Sher | Jun 2010 | B2 |
7738945 | Fauver et al. | Jun 2010 | B2 |
7753852 | Maschke | Jul 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7785286 | Magnin et al. | Aug 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7821643 | Amazeen et al. | Oct 2010 | B2 |
7824089 | Charles | Nov 2010 | B2 |
7840283 | Bush et al. | Nov 2010 | B1 |
7944568 | Teramura et al. | May 2011 | B2 |
7952718 | Li et al. | May 2011 | B2 |
7972299 | Carter et al. | Jul 2011 | B2 |
8059274 | Splinter | Nov 2011 | B2 |
8062316 | Patel et al. | Nov 2011 | B2 |
8313493 | Fisher | Nov 2012 | B2 |
8548603 | Swoyer et al. | Oct 2013 | B2 |
20010020126 | Swanson et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020082626 | Donohoe et al. | Jun 2002 | A1 |
20020111548 | Swanson et al. | Aug 2002 | A1 |
20020115931 | Strauss et al. | Aug 2002 | A1 |
20020158547 | Wood | Oct 2002 | A1 |
20030028100 | Tearney et al. | Feb 2003 | A1 |
20030032880 | Moore | Feb 2003 | A1 |
20030045835 | Anderson et al. | Mar 2003 | A1 |
20030095248 | Frot | May 2003 | A1 |
20030097044 | Rovegno | May 2003 | A1 |
20030120295 | Simpson et al. | Jun 2003 | A1 |
20030125756 | Shturman et al. | Jul 2003 | A1 |
20030125757 | Patel et al. | Jul 2003 | A1 |
20030125758 | Simpson et al. | Jul 2003 | A1 |
20040002650 | Mandrusov et al. | Jan 2004 | A1 |
20040039371 | Tockman et al. | Feb 2004 | A1 |
20040057667 | Yamada et al. | Mar 2004 | A1 |
20040082850 | Bonner et al. | Apr 2004 | A1 |
20040092915 | Levatter | May 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040167553 | Simpson et al. | Aug 2004 | A1 |
20040167554 | Simpson et al. | Aug 2004 | A1 |
20040181249 | Torrance et al. | Sep 2004 | A1 |
20040186368 | Ramzipoor et al. | Sep 2004 | A1 |
20040202418 | Ghiron et al. | Oct 2004 | A1 |
20040220519 | Wulfman et al. | Nov 2004 | A1 |
20040230212 | Wulfman | Nov 2004 | A1 |
20040230213 | Wulfman et al. | Nov 2004 | A1 |
20040236312 | Nistal et al. | Nov 2004 | A1 |
20040243162 | Wulfman et al. | Dec 2004 | A1 |
20040254599 | Lipoma et al. | Dec 2004 | A1 |
20040260236 | Manning et al. | Dec 2004 | A1 |
20050020925 | Kleen et al. | Jan 2005 | A1 |
20050043614 | Huizenga et al. | Feb 2005 | A1 |
20050054947 | Goldenberg | Mar 2005 | A1 |
20050085708 | Fauver et al. | Apr 2005 | A1 |
20050085721 | Fauver et al. | Apr 2005 | A1 |
20050105097 | Fang-Yen et al. | May 2005 | A1 |
20050141843 | Warden et al. | Jun 2005 | A1 |
20050154407 | Simpson | Jul 2005 | A1 |
20050159712 | Andersen | Jul 2005 | A1 |
20050159731 | Lee | Jul 2005 | A1 |
20050177068 | Simpson | Aug 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050187571 | Maschke | Aug 2005 | A1 |
20050192496 | Maschke | Sep 2005 | A1 |
20050201662 | Petersen et al. | Sep 2005 | A1 |
20050222519 | Simpson | Oct 2005 | A1 |
20050222663 | Simpson et al. | Oct 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20060015126 | Sher | Jan 2006 | A1 |
20060032508 | Simpson | Feb 2006 | A1 |
20060046235 | Alexander | Mar 2006 | A1 |
20060064009 | Webler et al. | Mar 2006 | A1 |
20060084911 | Belef et al. | Apr 2006 | A1 |
20060109478 | Tearney et al. | May 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060173475 | Lafontaine et al. | Aug 2006 | A1 |
20060229646 | Sparks | Oct 2006 | A1 |
20060229659 | Gifford et al. | Oct 2006 | A1 |
20060235366 | Simpson | Oct 2006 | A1 |
20060236019 | Soito et al. | Oct 2006 | A1 |
20060239982 | Simpson | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060264741 | Prince | Nov 2006 | A1 |
20070010840 | Rosenthal et al. | Jan 2007 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070015979 | Redel | Jan 2007 | A1 |
20070035855 | Dickensheets | Feb 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070038173 | Simpson | Feb 2007 | A1 |
20070078469 | Soito et al. | Apr 2007 | A1 |
20070081166 | Brown et al. | Apr 2007 | A1 |
20070106155 | Goodnow et al. | May 2007 | A1 |
20070135712 | Maschke | Jun 2007 | A1 |
20070196926 | Soito et al. | Aug 2007 | A1 |
20070255252 | Mehta | Nov 2007 | A1 |
20070270647 | Nahen et al. | Nov 2007 | A1 |
20070276419 | Rosenthal | Nov 2007 | A1 |
20070288036 | Seshadri | Dec 2007 | A1 |
20070299309 | Seibel et al. | Dec 2007 | A1 |
20080004643 | To et al. | Jan 2008 | A1 |
20080004644 | To et al. | Jan 2008 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004646 | To et al. | Jan 2008 | A1 |
20080015491 | Bei et al. | Jan 2008 | A1 |
20080027334 | Langston | Jan 2008 | A1 |
20080033396 | Danek et al. | Feb 2008 | A1 |
20080045986 | To et al. | Feb 2008 | A1 |
20080049234 | Seitz | Feb 2008 | A1 |
20080058629 | Seibel et al. | Mar 2008 | A1 |
20080065124 | Olson | Mar 2008 | A1 |
20080065125 | Olson | Mar 2008 | A1 |
20080065205 | Nguyen et al. | Mar 2008 | A1 |
20080103439 | Torrance et al. | May 2008 | A1 |
20080103446 | Torrance et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080147000 | Seibel et al. | Jun 2008 | A1 |
20080154293 | Taylor et al. | Jun 2008 | A1 |
20080177138 | Courtney et al. | Jul 2008 | A1 |
20080186501 | Xie | Aug 2008 | A1 |
20080221388 | Seibel et al. | Sep 2008 | A1 |
20080228033 | Tumlinson et al. | Sep 2008 | A1 |
20080243030 | Seibel et al. | Oct 2008 | A1 |
20080243031 | Seibel et al. | Oct 2008 | A1 |
20080262312 | Carroll et al. | Oct 2008 | A1 |
20080275485 | Bonnette et al. | Nov 2008 | A1 |
20090018565 | To et al. | Jan 2009 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090024084 | Khosla et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090024191 | Seibel et al. | Jan 2009 | A1 |
20090028407 | Seibel et al. | Jan 2009 | A1 |
20090073444 | Wang | Mar 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090099641 | Wu et al. | Apr 2009 | A1 |
20090135280 | Johnston et al. | May 2009 | A1 |
20090137893 | Seibel et al. | May 2009 | A1 |
20090152664 | Tian et al. | Jun 2009 | A1 |
20090185135 | Volk | Jul 2009 | A1 |
20090198125 | Nakabayashi et al. | Aug 2009 | A1 |
20090208143 | Yoon et al. | Aug 2009 | A1 |
20090216180 | Lee et al. | Aug 2009 | A1 |
20090221904 | Shealy et al. | Sep 2009 | A1 |
20090221920 | Boppart et al. | Sep 2009 | A1 |
20090235396 | Wang et al. | Sep 2009 | A1 |
20090244485 | Walsh et al. | Oct 2009 | A1 |
20090264826 | Thompson | Oct 2009 | A1 |
20090284749 | Johnson et al. | Nov 2009 | A1 |
20090292199 | Bielewicz et al. | Nov 2009 | A1 |
20090306520 | Schmitt et al. | Dec 2009 | A1 |
20090316116 | Melville et al. | Dec 2009 | A1 |
20090318862 | Ali et al. | Dec 2009 | A1 |
20100049225 | To et al. | Feb 2010 | A1 |
20100125253 | Olson | May 2010 | A1 |
20100130996 | Doud et al. | May 2010 | A1 |
20100241147 | Maschke | Sep 2010 | A1 |
20100253949 | Adler et al. | Oct 2010 | A1 |
20100274270 | Patel et al. | Oct 2010 | A1 |
20100280534 | Sher | Nov 2010 | A1 |
20100292539 | Lankenau et al. | Nov 2010 | A1 |
20100292721 | Moberg | Nov 2010 | A1 |
20100305452 | Black et al. | Dec 2010 | A1 |
20100312263 | Moberg et al. | Dec 2010 | A1 |
20100317973 | Nita | Dec 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110004107 | Rosenthal et al. | Jan 2011 | A1 |
20110021926 | Spencer et al. | Jan 2011 | A1 |
20110040238 | Wulfman et al. | Feb 2011 | A1 |
20110106004 | Eubanks et al. | May 2011 | A1 |
20110118660 | Torrance et al. | May 2011 | A1 |
20110130777 | Zhang et al. | Jun 2011 | A1 |
20110144673 | Zhang et al. | Jun 2011 | A1 |
20110201924 | Tearney et al. | Aug 2011 | A1 |
20110263936 | He et al. | Oct 2011 | A1 |
20110301625 | Mauch et al. | Dec 2011 | A1 |
20120004506 | Tearney et al. | Jan 2012 | A1 |
20120041307 | Patel et al. | Feb 2012 | A1 |
20120123352 | Fruland et al. | May 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120289971 | Segermark et al. | Nov 2012 | A1 |
20130289392 | Patel et al. | Oct 2013 | A1 |
20130296695 | Spencer et al. | Nov 2013 | A1 |
20140213893 | Simpson et al. | Jul 2014 | A1 |
20150208922 | Simpson et al. | Jul 2015 | A1 |
20160008025 | Gupta et al. | Jan 2016 | A1 |
20160029902 | Smith et al. | Feb 2016 | A1 |
20160038030 | Smith et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1875242 | Dec 2006 | CN |
1947652 | Apr 2007 | CN |
101601581 | Dec 2009 | CN |
202006018883.5 | Feb 2007 | DE |
0347098 | Dec 1989 | EP |
0808638 | Nov 1997 | EP |
1859732 | Nov 2007 | EP |
2353526 | Sep 2013 | EP |
2002-214127 | Jul 2002 | JP |
2004-509695 | Apr 2004 | JP |
2004-516073 | Jun 2004 | JP |
2005-114473 | Apr 2005 | JP |
2005-249704 | Sep 2005 | JP |
2008-175698 | Jul 2006 | JP |
2006-288775 | Oct 2006 | JP |
2006-313158 | Nov 2006 | JP |
2006-526790 | Nov 2006 | JP |
2006-326157 | Dec 2006 | JP |
2007-225349 | Sep 2007 | JP |
2008-023627 | Feb 2008 | JP |
2008-128708 | Jun 2008 | JP |
2008-145376 | Jun 2008 | JP |
2008-183208 | Aug 2008 | JP |
2008-253492 | Oct 2008 | JP |
2009-14751 | Jan 2009 | JP |
2009-509690 | Mar 2009 | JP |
2009-78150 | Apr 2009 | JP |
20070047221 | May 2007 | KR |
2185859 | Jul 2002 | RU |
2218191 | Dec 2003 | RU |
WO 9117698 | Nov 1991 | WO |
WO 9923958 | May 1999 | WO |
WO 0054659 | Sep 2000 | WO |
WO 0176680 | Oct 2001 | WO |
WO 2006133030 | Dec 2006 | WO |
WO 2008029506 | Mar 2008 | WO |
WO 2008042987 | Apr 2008 | WO |
WO 2008086613 | Jul 2008 | WO |
WO 2008087613 | Jul 2008 | WO |
WO2009006335 | Jan 2009 | WO |
WO 2009009799 | Jan 2009 | WO |
WO2009009802 | Jan 2009 | WO |
WO 2009023635 | Feb 2009 | WO |
WO2009024344 | Feb 2009 | WO |
WO 2009094341 | Jul 2009 | WO |
WO 2009140617 | Nov 2009 | WO |
WO2010039464 | Apr 2010 | WO |
WO2010056771 | May 2010 | WO |
WO 2012061935 | May 2012 | WO |
Entry |
---|
Patel et al.; U.S. Appl. No. 13/752,325 entitled “Catheter system and method for boring through blocked vascular passages,” filed Jan. 28, 2013. |
Aziz et al.; Chronic total occlusions—a stiff challege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005. |
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages. |
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages. |
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010. |
Simpson et. al; U.S. Appl. No. 13/433,049 entitled “Occlusion-Crossing Devices, Imaging, and Atherectomy Devices,” filed Mar. 28, 2012. |
Spencer et al.; U.S. Appl. No. 13/654,357 entitled “Atherectomy Catheters and Non-Contact Actuation Mechanism for Catheters,” filed Oct. 17, 2012. |
Spencer et al.; U.S. Appl. No. 13/675,867 entitled “Occlusion-Crossing Devices, Atherectomy Devices, and Imaging,” filed Nov. 13, 2012. |
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5; No. 9; pp. 1156-1164; Sep. 1987. |
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990. |
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994. |
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004. |
He et al.; U.S. Appl. No. 14/019,466 entitled “Devices and Methods for Predicting and Preventing Restenosis,” filed Sep. 5, 2013. |
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009. |
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp. 011104-1-011104-8; Jan.-Feb. 2010. |
Kankaria; U.S. Appl. No. 14/400,140 entitled “Optical coherence tomography with index fiber for biological imaging,” filed Nov. 10, 2014. |
Gupta et al.; U.S. Appl. No. 14/401,175 entitled “Atherectomy catheters with imaging,” filed Nov. 14, 2014. |
Tachibana et al.; U.S. Appl. No. 14/400,151 entitled “Atherectomy catheter drive assemblies,” filed Nov. 10, 2014. |
Simpson et al.; U.S. Appl. No. 14/424,266 entitled “Re-entry stylet for catheter,” filed Feb. 26, 2015. |
Simpson et al.; U.S. Appl. No. 14/424,277 entitled “Balloon atherectomy catheters with imaging,” filed Feb. 26, 2015. |
Simpson et al.; U.S. Appl. No. 14/899,877 entitled “Occusion sheath for imaging catheter,” filed Dec. 18, 2015. |
Simpson et al.; U.S. Appl. No. 14/899,893 entitled “Identification of elastic lamina to guide interventional therapy,” filed Dec. 18, 2015. |
Number | Date | Country | |
---|---|---|---|
20120046679 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61360886 | Jul 2010 | US | |
61468396 | Mar 2011 | US | |
61492693 | Jun 2011 | US |