The invention relates generally to protective padded undergarments. More particularly, the invention relates to an undergarment constructed of thin, stretchable fabric with protective foam components that can be worn under the outer clothing worn by participants in physical activities.
A range of factors must be considered in the construction of protective padded undergarments worn during participation in physical activities, such as contact sports. In particular, the factors include the comfort, the flexibility and the evaporative cooling enabled by the protective padded undergarments.
The conventional protective padded undergarment is an assembly composed of a fabric undergarment with one or more padded foam assemblies in which soft pad components are permanently attached to the fabric undergarment by sewing and/or adhesives.
A padded foam assembly of the conventional protective padded undergarment is typically a lamination comprised of a pad component, such as foam, and a fabric overlayer component. Typically, the foam component is affixed to the fabric overlayer using an adhesive. However, by fixing the fabric overlayer component to the pad component of the assembly using adhesive, the flexibility of the assembly is limited to the properties of the least flexible portion of the assembly.
Moreover, by laminating the fabric overlayer of the padded foam assembly to the foam component of the assembly by means of adhesive, there are limitations on the ability of the assembly to allow the flow of body heat and moisture generated by the wearer. These limitations are significant if “webbing type” film adhesive is used, but are even more objectionable if non “webbing type” adhesive is applied to at least one of the components.
In the conventional protective padded undergarment, the padded foam assembly is permanently attached to the fabric undergarment by stitching the perimeter of the assembly to the adjacent surface of the fabric undergarment. The flexibility properties of the thread-and-stitch design limits the stretching properties of the conventional protective padded undergarment, since the flexibility of the fabric area encompassed by the stitching is limited to the combined flexibility properties of the thread material and the particular stitch pattern.
Another concern with stitching the padding subassembly to the adjacent surface of the fabric undergarment is that it creates an abrasive raised thread surface on which the seam is exposed. This abrasive seam acts as a potential irritant to the skin of the wearer.
A protective undergarment in accordance with the invention achieves high levels of comfort, flexibility and material breathing by “welding” one or more protective pad segments to the main body of material, which defines the shape of the undergarment. In one embodiment, the undergarment has the shape of trousers and is designed to be worn between the body of the wearer and a pair of pants. In another embodiment, the main body of material has the shape of an undershirt. As used herein, the term “weld” refers to a connection that is threadless and that initially requires the application of heat.
The invention is further directed to the method of permanently attaching a protective pad segment to the main body of material of the undergarment. The main body is formed of a fabric which is air permeable and moisture wicking. Moreover, the material is capable of simultaneously stretching in orthogonal directions.
Each protective pad segment is trapped in position between the main body of material and a small-area fabric member. In the preferred embodiment, this fabric member is dimensioned to be larger than the protective pad segment, so as to enable the fabric member to directly contact the main body of material beyond the perimeter of the protective pad segment. This small-area fabric member should also be air permeable, moisture wicking, and capable of simultaneously stretching in orthogonal directions. The trapped protective pad segment is constructed of compressible, energy-absorbing material intended to provide protection for the wearer.
Each small-area fabric member is threadlessly welded, or “fused,” to the main body of material. Thus, rather than a connection that potentially affects the comfort of the wearer as a result of exposed threaded seams, the welded coupling of components is likely to be tactically undetectable after the undergarment is covered by other clothing.
In another aspect, the present invention is directed to the use of an ultrasonic welding process. Whereas ultrasonic welding has been used for fusing non-stretching, non-moisture wicking polymeric materials to create moisture-proof seams, the present invention utilizes ultrasonic welding of polymeric materials which stretch in orthogonal directions and which contain micro fibers that provide permanent moisture wicking. The physical properties of the fabrics used in the present invention have a melting temperature (i.e., a temperature at which the material changes from its solid state to its liquid state) that is substantially higher than its softening temperature (i.e., the temperature at which the material becomes soft and sticky without losing shape and without damaging fiber structures. In addition, the softening temperature of the materials of the undergarment which are bonded using ultrasonic welding is substantially equal to the melting temperature of a flexible polymeric film which is added at the junction of the main body of material and the small-area fabric member or members. Upon the application of ultrasonic energy, the flexible polymeric film reaches its melting temperature and the materials being fused reach their softening temperature, so that the materials are permanently fused when the ultrasonic energy is removed. An advantage of the invention is that threadless bonding of the different components is achieved through ultrasonic welding, so as to avoid compromise of the strength or stretching properties of the components.
In another feature of the invention, the material that is added in order to enable a reliable welding of components has a flexibility that equals or exceeds the flexibility properties of the material or materials of the main body and the small-area fabric member. Thus, the resulting undergarment enables greater flexibility for the wearer than the conventional padded protective undergarment that employs threads and/or adhesives in the assembly process. In accordance with this feature of the invention, the flexible polymeric film used in the ultrasonic welding process of the preferred embodiment has a flexibility equal to or exceeding that of the other materials.
In another aspect of the invention, the protective pad segments are permanently positioned relative to the main body of material of the undergarment without the use of adhesives on any surface of the pad segments or any surface of adjacent fabric components in direct contact with the pad segments. Thus, the protective undergarment provides improvements with respect to breathability and moisture management.
Particularly with larger protective pad segments, there may be a concern that the pad segment will fold or will rotate within the “pocket” formed between the main body of material and the small-area fabric member associated with the particular pad segment. This concern may be addressed by providing one or more channels through the pad segment and then extending the welding of fabrics so as to include the area within the channels. That is, in addition to welding along the perimeter of the pad segment, the welding extends within the channel or channels.
Another advantage of the invention is a result of use of fabrics that include micro fibers, which permanently enhance the transport of moisture away from the body of the wearer. That is, the material is moisture wicking. As used herein, “moisture wicking” fabric is defined as a fabric having fibers adapted to carry moisture outwardly away from contact with the skin of the wearer. The term “stretchable” is defined as the capability of extending or distending in response to a force or stress and then resuming substantially its original shape and dimensions immediately upon release of the force or stress.
With reference to
As best viewed in
The protective undergarment 10 is shown as having three pad segments 45, 50 and 55 attached to the main body of material. In the illustrated embodiment, protective pad segment 45 is attached to leg 25, protective pad segment 50 is attached to the center panel 30, and protective pad segment 55 is attached to leg 35. The pad segments are preferably constructed of perforated compressible and energy absorbing material. Acceptable materials include PE (polyethylene) foam and EVA (ethyl vinyl acetate) foam.
The attachment of a protective pad segment to the main body of material is best illustrated in
When a protective pad segment is small or is appropriately shaped, the welding may be limited to the perimeter of the pad segment. However, the larger the protective pad segment, the greater the risk that the pad segment will fold or relocate within its pocket. To control relocation, the pad segments 55 shown in
Referring now to
The four protective pad segments 65, 75, 85 and 95 are welded to the main body of material in the same manner that was described with reference to the trousers embodiment. Thus, ultrasonic welding may be used to permanently fuse the pad segments to the main body of the shirt. In