The present invention is related to a plasma processing apparatus usable for plasma cleaning, surface modification and surface coating. More in particular, the present application is related to a novel plasma jet.
Atmospheric-pressure plasma jets are known in the art, e.g. as described by WO 98/35379 or WO 99/20809. These plasma jet devices comprise two coaxially placed electrodes defining a plasma discharge space between the outer diameter of the centrally placed electrode and the inner diameter of the outer electrode. A plasma jet can be generated at an open end of the device by introducing a flow of gas at a closed end of the device while a sufficient voltage is applied between the electrodes. Between said electrodes, a dielectric material can be placed to avoid arcing. The jet of plasma can be used to etch, clean or coat a surface. In the prior art devices, it is difficult to obtain a reasonably efficient plasma jet, due to several constraints of the currently known devices. For example, it is currently impossible to activate rubber sufficiently with a reasonably sized state-of-the-art classical plasma jet due to insufficient energy output. Most plasma jet devices therefore use nozzles to converge the plasma jet in order to obtain higher plasma densities. This however has the disadvantage that the treated spot is smaller and more devices, more time, or larger devices are necessary to treat a specific surface.
The present invention aims to provide a more efficient plasma jet device than known from the state of the art.
The present invention concerns an atmospheric-pressure plasma jet comprising a cylindrical 2-electrode device or a parallel 3-electrode device. The 2-electrode device can be a tubular device comprising a central cylindrical metal electrode and an outer cylindrical metal electrode, said cylindrical metal electrodes being coaxial and defining a plasma discharge lumen, said device having an open (proximal) end and a closed (distal) end, said plasma discharge lumen being open to the atmosphere at said open end and comprising a gas flow feed opening at said closed end, a dielectric material interposed between said central cylindrical metal electrode and said outer cylindrical metal electrode and is characterised in that said dielectric barrier is radially extended at said open end.
One embodiment of the parallel device comprises a central flat or specially formed metal electrode and 2 outer metal electrodes, said electrodes being substantially parallel, i.e. at a constant (±1 mm) distance and defining a plasma discharge lumen, said parallel device having an open (proximal) end and a closed (distal) end, said plasma discharge lumen being open to the atmosphere at said open end and comprising a gas flow feed opening at said closed end, a dielectric material interposed between said central metal electrode and said outer metal electrodes and is characterised in that said dielectric barrier is outwardly extended at said open end. According to a specific embodiment, the outer electrodes are connected at the sides to form one electrode which is coaxial with the central electrode. This embodiment and the tubular embodiment are therefore two variations of the cylindrical device with one inner and one outer electrode.
The present invention concerns thus a plasma jet apparatus for performing plasma processing of an article. A cylindrical 2-electrode configuration and a parallel 3-electrode configuration are described. The cylindrical plasma jet device comprises:
According to a preferred embodiment, a supply canal is present through the central electrode for introducing reactive chemical compounds immediately into the plasma afterglow at the proximal end.
The 3-electrode parallel plasma jet device according to the invention comprises:
In the plasma jet apparatus according to the present invention the electrical insulator preferably further extends towards the distal end at the outer surface of the outer electrode. Advantageously, the distance between an outer surface of the central electrode and the inner surface of the electrical insulator lies between 0.1 and 10 mm. The power source is preferably arranged to provide an AC or Pulse DC voltage between 1 and 10 kV for the tubular configuration and between 1 and 100 kV for the parallel configuration.
Another aspect of the present invention concerns a method for producing a plasma flow, comprising the steps of:
State-of-the-art plasma jets, such as depicted in
The tubular embodiment of the present invention can be seen in
The central electrode 2 and the outer electrode 1 can be cylindrical with a circular cross-section, i.e. tubular. Alternatively, the central electrode may be a flat electrode 2, while the outer electrode 1 comprises a front and backside 70, 71 (see
In general, the following operating characteristics can be used when using the plasma jet according to the present invention:
When a high voltage AC or pulsed DC power is put on one of the electrodes, a dielectric barrier discharge takes place in between the dielectricum and the inner electrode. The active species from the plasma are blown out of the plasma jet by the plasma gas flow. This afterglow is directed against a sample and this way 3-D objects can be plasma treated. In case a pulsed DC power is used, the frequency is preferably comprised between 1 and 200 kHz, and advantageously between 50 and 100 kHz
The advantages of the radially or outwardly extending dielectricum from the plasma jet apparatus according to the present invention can be summarised with the following 3 concepts: distance to the plasma source, width of activation and consumption of plasma gases.
It should be noted that radicals, and particularly ions, in the plasma discharge are extremely short lived, and can almost not be transported outside the discharge region. Metastable species produced inside the plasma, on the other hand, have longer lifetimes at atmospheric pressure, typically in the order of hundreds of milliseconds. This longer lifetime allows them to be carried out of the plasma volume with the plasma gas flow. Obviously the most reactive metastable species will be lost first. The closer to the plasma source the more reactive the plasma afterglow. With the novel plasma jet apparatus according to the present invention, samples can be brought up to 2 mm from the actual plasma source. Experiments have shown that stable activation of certain polymers can only be realised when using the described plasma jet configuration with the radially or outwardly extending dielectricum.
Rubber is impossible to activate sufficiently with the classical concept: the distance rubber/plasma source seems to be too large. The most reactive and in this case needed species of the plasma are lost before they hit the rubber sample.
When using a U-shaped dielectricum such as in
PVC is thermal sensitive. The activation performed with the classical concept is not stable in time. After a few hours, activation was completely lost.
When using a U-shaped dielectricum, more reactive plasma afterglow is obtained.
If flat samples are brought close to a plasma afterglow, the active species of the plasma afterglow are spread out over a certain region in between the plasma jet and the samples. This means that the activated spot can be much broader than the diameter of the plasma jet. The closer the samples are brought to the actual plasma source, the broader the activated spot will be. Experiments have confirmed that with the plasma jet according to the invention (with U-shaped dielectricum) this activated spot for the same plasma conditions is much broader than with the classical concept.
Increasing the broadness of the activated spot would decrease the overall working costs of a (multi-) plasma jet. When using a plasma jet according to the present invention, more reactive plasma afterglow is obtained and active species are spread out over a broader region.
With the classical concept the broadness of homogenous activated spot was maximum 32 mm at 1.5 mm distance sample/plasma jet.
Increasing the broadness of the activated spot would decrease the overall working costs of a (multi-) plasma jet. When using a plasma jet according to the present invention, more reactive plasma afterglow is obtained and active species are spread out over a broader region.
With the classical concept the broadness of homogenous activated spot was maximum 33 mm at 1.5 mm distance sample/plasma jet.
As a consequence of the fact that the samples can be brought closer to the actual plasma zone, less reactive species are lost in the afterglow. So compared to the classical plasma jet, the same effect can be obtained with a lower consumption of gas and/or power. This last advantage can be seen as an indirect consequence of the two former advantages.
It has been shown experimentally that one needs less gasses and/or power for the same plasma activation effect. Such experiments can be performed by the skilled person.
Number | Date | Country | Kind |
---|---|---|---|
05447010.4 | Feb 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/BE06/00008 | 2/6/2006 | WO | 00 | 4/7/2008 |