The present invention relates generally to an internal combustion engine intake valve, and more specifically to a structurally unique intake valve that facilitates even distribution and atomization of gasoline and/or other fuels within the cylinder, thereby boosting the overall power and performance of the engine.
An internal combustion engine is a heat engine in which the burning of a fuel such as hydrocarbons occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an oxidizer creates gases of high temperature and pressure, which are permitted to expand. The defining feature of an internal combustion engine is that useful work is performed by the expanding hot gases acting directly to cause movement, for example by acting on pistons, rotors, or even by pressing on and moving the entire engine itself. One of the most common internal combustion engines in automobiles are piston engines.
Valves are used in most piston engines to open and close the intake and exhaust ports in the cylinder head. The valve is usually a flat disk of metal with a long rod known as the valve stem extending from one end. The stem is used to push down on the valve and open it, with a spring generally used to close it when the stem is not being pushed on. Desmodromic valves are closed by positive mechanical action instead of by a spring, and are used in some high speed motorcycle and auto racing engines, eliminating ‘valve float’ at high RPM.
The power output of the engine is dependent, at least in part, on the ability of the engine to allow large volume flow of both air-fuel mixture and exhaust gas through the respective valve ports, typically located in the cylinder head. Therefore a great number of resources are used in designing this part of an engine. Factory flow specifications are generally lower than what the engine is capable of, but due to the time-consuming and expensive nature of smoothing the entire intake and exhaust track, compromises in flow for reduction in cost is often made. In order to gain power, irregularities such as casting flaws are removed and with the aid of a flow bench, the radii of valve port turns and valve seat configuration can be modified to promote high flow. This process is called porting, and can be done by hand, or via CNC machine.
There are many common design and porting strategies to increase flow. Increasing the diameter of the valves to take up as much of the cylinder diameter as possible to increase the flow into the intake and exhaust ports is one method. However, increased valve size can increase valve shrouding, i.e., the impedance of flow created by the cylinder wall. To counteract this adverse effect, valves are commonly designed to open into the middle of the cylinder, such as the Dodge Hemi or the Ford Cleveland engines with canted valves. Also, increasing valve lift, or the distance valves are opened into the cylinder or using multiple smaller valves can increase flow. With the advent of computer technology, in modern engines valves events can be controlled directly by the engines computer, optimizing engine operation at any speed or load. Atomization is conversion of bulk liquid into a spray or mist, i.e., collection of drops, often by passing the liquid through a nozzle.
An atomizer is an atomization apparatus—carburetors, airbrushes, misters, and spray bottles are only a few examples of atomizers used ubiquitously. In internal combustion engines, fine-grained fuel atomization is instrumental to efficient combustion.
The present invention is an improved intake valve in an internal combustion engine mainly in automobiles to enhance atomization of fuel/air during the intake stroke. With a special engravement on the upper surface of the valve head portion, the atomization of intake fuel/air mixture is much enhanced and consequently the efficiency of the entire engine.
One object of the present invention is to enhance atomization of fuel and air mixture and increase the degree of combustion of fuel in an internal combustion engine.
Another object of the present invention is to increase the fuel efficiency of an internal combustion engine.
Another object of the present invention is to increase atomization of fuel entering a combustion chamber of an internal combustion engine.
Another object of the present invention is that it helps reduce pollutants in the exhaust gas emission of an automobile.
Yet another object of the present invention is that it can be made in any valve dimension and henceforth is completely interchangeable with any intake valve that is being used in the engine.
The present invention is an atomization valve for use as an intake valve in an internal combustion engine. The atomization valve consists essentially of an elongated valve stem with two opposed ends, a valve head that is located at one of the two opposed ends and formed integrally with the valve stem. The valve head also has an outer rim and a tapered shoulder portion that terminates adjacent to the valve stem portion and the tapered shoulder portion has an upper surface bearing a plurality of grooves.
The plurality of grooves on the atomization valve extend from the valve stem to the outer rim.
The plurality of grooves on the atomization valve extend radially from the valve stem to the outer rim.
The plurality of grooves on the atomization valve extend from the valve stem to the outer rim at an angle oblique to the radius.
The plurality of grooves on the atomization valve extend spirally from the valve stem to the outer rim.
The plurality of grooves on the atomization valve are in the shape of a straight line or a curve.
The plurality of grooves on the atomization valve have a depth of between about 0.01 mm and about 5.0 mm.
The plurality of grooves on the atomization valve have a depth of between about 0.1 mm and about 4.0 mm.
The plurality of grooves on the atomization valve have a depth of between about 0.5 mm and about 3.0 mm.
The plurality of grooves on the atomization valve have a Vee-shaped cross section, a square-shaped cross section, a H-shaped cross section, a I-shaped cross section, a U-shaped cross section, an oval-shaped cross section or an irregular-shaped cross section.
The plurality of grooves on the atomization valve have regular, patterned surfaces.
The plurality of grooves on the atomization valve have regular, serrations essentially perpendicular to the plurality of grooves.
The plurality of grooves on the atomization valve have irregular, random-patterned surfaces.
Further details, objects and advantages of the present invention will be come apparent through the following descriptions, and will be included and incorporated herein.
The description that follows is presented to enable one skilled in the art to make and use the present invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be apparent to those skilled in the art, and the general principals discussed below may be applied to other embodiments and applications without departing from the scope and spirit of the invention. Therefore, the invention is not intended to be limited to the embodiments disclosed, but the invention is to be given the largest possible scope which is consistent with the principals and features described herein.
It will be understood that in the event parts of different embodiments have similar functions or uses, they may have been given similar or identical reference numerals and descriptions. It will be understood that such duplication of reference numerals is intended solely for efficiency and ease of understanding the present invention, and are not to be construed as limiting in any way, or as implying that the various embodiments themselves are identical.
In one version of the prior art, during intake stroke, fuel and air mixture flows from intake port 108, through intake valve bore 106 that is generated between intake valve 100′ and internal wall of combustion chamber 105. As shown in
In one embodiment, the atomization valve of the present invention 100 can be manufactured in the similar manner that current intake valves and materials they are therefore made of. As shown in
In one embodiment, the number of slit grooves 206 should be in the range of between about 2 and about 20 depending on the size, materials of construction, etc., of the atomization valve of the present invention 100. In one embodiment, the atomization valve of the present invention 100 can be manufactured by simply creating slit grooves 206 on existing intake valve 100 by simple machinery such as a milling, embossing, engraving or machining tool, or even hand crafted. The shapes, depth and quantity of slit grooves 206 can be adjusted to fit certain internal combustion engine 90′.
Additionally, the outer lip 210 is at a lower position than the inner stem base 212 of the stem portion 204. Thus, it will be understood that a vertical height H separates the lip 210 and the inner stem base 212 and the upper surface 208 bears the series of grooves or etchings 206.
It will be understood that flow of fuel across the engraved slits 206 upon the upper surface 208 of the valve head portion 202 assists in atomization of fuel into optimum condition for combustion. The cross-section shape of the slit or grooves 206 can be U-shaped or oval, Vee-shaped, half-moon shaped, other elliptical shape, square or keyed, S-channel, I-channel, H-channel, etc. Additionally, there can be a chatter-mark or other pattern through the length of each slit or groove 206. The slots or grooves 206 can be angled across the upper surface 208 of the head portion 202, such as shown in the top view
It will be understood that anywhere between about 0 and about 360 or more slots or grooves 206 can be etched or milled into the upper surface 208 of the valve head portion 202. As described above, the slots or grooves 206 can also be banked or arched, at various and/or at varying bank rates and arc rates. It will be understood that these grooves or etchings 206 can be formed by casting, scoring grooves, milling, mechanical or chemical or electronic etch, machining or similar means. The grooves 206 can be formed simultaneously with the formation of the valve stem 204 and head portions 202, or subsequent to valve construction.
It will further be understood that the valve 100 of the present invention are suitable for use in regular and lead-free gasoline or diesel fuel vehicles. The present invention can also be used in rotary-valve 2-cycle engines. Vehicles can include cars, trucks, vans, buses, other utility and recreational and other passenger vehicles, cargo transports, race cars, heavy equipment, boats, and other vehicles.
In an initial test of the feasibility and overall performance of an engine enhanced with the valve 100 of the present invention, a standard powerboat was utilized. Significant fuel savings were achieved upon utilization of the valve 100. Additionally, both increased high-end as well as low-end torque was achieved and experienced by the operators of the vessel.
In a further experiment, a Geo Prizm automobile was used. Mileage increased from 37 miles per gallon while using the standard valves 100′ of the prior art, to about 64 miles per gallon using the improved valves 100 of the present invention.
The test was a regular Smog Check carried out by a certified Smog Check Test Station. Two sets of test results are submitted. The first was a control test (Table 1) as internal combustion engine 90′ with regular intake valve 100′ being tested. The second test (Table 2) is on the exact same internal combustion engine 90 except that the presented invention of atomization valve 100 replaced the regular intake valve 100′.
It will be understood that the test vehicle was used only to demonstrate the dramatic increase in fuel efficiency and decrease in emissions possible through use of the valve 100 of the present invention. Furthermore, the test vehicle used was in need of a replacement catalytic convertor, and therefore was not compliant with current vehicle emission standards ab initio.
Upon inspection of the data, it is observed that emissions decrease dramatically upon upgrading to valves 100 of the present invention. Emission of carbon dioxide, for example, dropped almost 7.5% from 14.6 to 13.4 at 25 mph, while emission of carbon monoxide dropped almost 27%, or from 0.14 to 0.11 at 25 mph. Other decrease in nitrogen monoxide, such as at slower speeds, is also observed.
From test results of Table 1 and Table 2, it is obvious that there is a drop in unburnt fuel. Suggesting that fuel is being consumed more completely and hence fuel efficiency. Since both tested engines are literally the same except for the use of the atomization valve of the present invention 100 in the second test. It is therefore assumed that the increase in fuel efficiency is largely due to the structure of the atomization valve of the present invention 100.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Although any methods and materials similar or equivalent to those described can be used in the practice or testing of the present invention, preferred methods and materials are now described. All publications and patent documents referenced in the present invention are incorporated herein by reference.
While the principles of the invention have been made clear in illustrative embodiments, there will be immediately obvious to those skilled in the art many modifications of structure, arrangement, proportions, the elements, materials, and components used in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from those principles. The appended claims are intended to cover and embrace any and all such modifications, with the limits only of the true purview, spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1539167 | Diel et. al. | May 1925 | A |
4137886 | Hiramatsu | Feb 1979 | A |
4744340 | Kirby | May 1988 | A |
5771852 | Heimann et al. | Jun 1998 | A |
20080011268 | Sawyer | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090114182 A1 | May 2009 | US |