1. Field of the Invention
The present invention relates to a cleaning device and, more particularly, to an atomized cleaning device and a method for atomizing an air current.
2. Description of the Related Art
A conventional atomized cleaning device comprises a container and a sprayer mounted on the container. The container has an inside provided with a chamber for receiving a cleaning (or medicine) liquid. An air current is delivered by an air pump and is introduced into the sprayer, and the cleaning liquid in the chamber of the container is sucked into the sprayer to mix with the air current so that the cleaning liquid is pressurized and atomized in the sprayer, and the atomized liquid is injected outward from the sprayer. However, it is necessary to increase the air supply from the air pump so as to increase the flow rate of the atomized liquid, thereby increasing the costs. In addition, after the cleaning liquid is atomized in the sprayer, the contact area between the atomized particles and the air is increased largely so that the temperature of the atomized liquid injected outward from the sprayer is decreased largely, thereby easily causing an uncomfortable sensation to a user especially when the user is cleaning the teeth. Further, when the pressure in the chamber of the container is not released or balanced, the cleaning liquid easily remains in the chamber of the container.
In accordance with the present invention, there is provided an atomized cleaning device, comprising a container defining a chamber for receiving a liquid, and an opening; an atomizing module mounted on the container and having a sleeve and an air inlet pipe connected with one end of the sleeve to deliver an air current through the sleeve; a sprayer mounted in an inner space of the sleeve and having a channel and at least one slot; and at least one air hole provided on the air inlet pipe and connected to the chamber of the container to introduce a part of the air current into the chamber of the container.
In accordance with the present invention, there is further provided a method for atomizing an air current, comprising a first step of providing a container for receiving a liquid; a second step of providing an atomizing module which is connected to the container; a third step of providing a sprayer which is mounted in the atomizing module; a fourth step of introducing an air current into the atomizing module; a fifth step of dividing the air current into a first partial air current and a second partial air current; a sixth step of introducing the second partial air current of the air current into the container; a seventh step of introducing the first partial air current of the air current into the sprayer; and a eighth step of sucking the liquid of the container into the sprayer to mix with the first partial air current of the air current so that the liquid is atomized in the sprayer and is sprayed outward from the sprayer.
According to the primary advantage of the present invention, when the smaller partial air current of the air current in the air inlet pipe is introduced through the air hole into the chamber to release or balance the air pressure in the chamber, the cleaning liquid in the chamber is accelerated to flow into the channel of the sprayer by suction of the larger partial air current of the air current so that the cleaning liquid is mixed with the air current and is atomized exactly and optimally to increase the flow rate of the atomized liquid largely.
According to another advantage of the present invention, the cleaning liquid in the chamber is sucked quickly by the larger partial air current flowing through the channel, and is pushed by the smaller partial air current flowing into the chamber so that the cleaning liquid is sucked exactly and completely and will not remain in the chamber.
According to a further advantage of the present invention, the flange of the sprayer is rotatable in concert with the sprayer and is movable to open, close or partially close the connection between the atomizing module and the sprayer so as to regulate the flow rate of the cleaning liquid from the chamber of the container to the sprayer.
According to a further advantage of the present invention, a user only needs to rotate the sprayer so as to regulate the flow rate of the cleaning liquid from the chamber of the container to the channel of the sprayer without needing any aid of a technician.
According to a further advantage of the present invention, the mixture proportion of the cleaning liquid and the air current can be regulated by rotation of the flange of the sprayer to regulate the temperature of the cleaning liquid so that the cleaning liquid injected from the sprayer can be controlled to have a higher temperature.
Further benefits and advantages of the present invention will become apparent after a careful reading of the detailed description with appropriate reference to the accompanying drawings.
Referring to the drawings and initially to
The container 10 has an inside provided with a chamber 11 for receiving a cleaning (or medicine) liquid 20 and has a top provided with an opening 12 for mounting the atomizing module 30. The container 10 has an outer wall provided with a recycling portion 13 for recycling the used cleaning liquid 20.
The atomizing module 30 is removably mounted on the opening 12 of the container 10 to seal the chamber 11 of the container 10 and has a first end provided with a sleeve 31 and a second end provided with an air inlet pipe 32 to deliver an air current 61 into the sleeve 31. The air inlet pipe 32 of the atomizing module 30 is directly connected to the sleeve 31 to directly deliver the air current 61 into the sleeve 31.
The atomizing module 30 is provided with at least one air hole 35 connected between the air inlet pipe 32 and the chamber 11 of the container 10 to connect the air inlet pipe 32 of the atomizing module 30 to the chamber 11 of the container 10 so as to introduce a part of the air current 61 of the air inlet pipe 32 into the chamber 11 of the container 10. The at least one air hole 35 of the atomizing module 30 is formed in a periphery of the air inlet pipe 32. The sleeve 31 and the air inlet pipe 32 of the atomizing module 30 are located at the same reference axis of the atomizing module 30.
The atomizing module 30 is further provided with a first conduit 34 connected between the sleeve 31 and the chamber 11 of the container 10 to connect the sleeve 31 of the atomizing module 30 to the chamber 11 of the container 10. The first conduit 34 of the atomizing module 30 is formed on a periphery of the sleeve 31 and has a first end connected to the sleeve 31 and a second end extended into and connected to the chamber 11 of the container 10. The air inlet pipe 32 of the atomizing module 30 is provided with a pressure release hole 33 to change the air drain rate or to control the air pressure in the chamber 11 of the container 10.
The sprayer 40 is rotatably and removably mounted in the sleeve 31 of the atomizing module 30 and has an inside provided with a channel 42. The channel 42 of the sprayer 40 is connected to the sleeve 31 of the atomizing module 30 and is directly connected to the air inlet pipe 32 of the atomizing module 30 through the sleeve 31 of the atomizing module 30. The sprayer 40 has a periphery provided with a plurality of slots 43 each connected between the channel 42 of the sprayer 40 and the sleeve 31 of the atomizing module 30.
The sprayer 40 has a distal end provided with a nozzle 41 which is connected to the channel 42 so that the channel 42 of the sprayer 40 is connected between the air inlet pipe 32 of the atomizing module 30 and the nozzle 41 of the sprayer 40. The nozzle 41 of the sprayer 40 allows insertion of a hand tool (not shown) so that the sprayer 40 can be rotated by the hand tool.
The atomized cleaning device further comprises a delivery pipe 60 connected with an air pump (not shown) and connected with the air inlet pipe 32 of the atomizing module 30 to deliver the air current 61 through the air inlet pipe 32 of the atomizing module 30 into the channel 42 of the sprayer 40, at least one O-ring 50 mounted on the sprayer 40 and pressed between the sprayer 40 and the sleeve 31 of the atomizing module 30 to interrupt a connection between the channel 42 of the sprayer 40 and the sleeve 31 of the atomizing module 30 and to connect the sleeve 31 of the atomizing module 30 to the slots 43 of the sprayer 40 only, and a guide pipe 80 connected with the first conduit 34 of the atomizing module 30 and extended to a bottom of the chamber 11 of the container 10 to suck the cleaning liquid 20.
As shown in
At this time, the air current 61 introduced into the air inlet pipe 32 of the atomizing module 30 is divided into a larger partial air current 612 and a smaller partial air current 611. In such a manner, the larger partial air current 612 of the air current 61 in the air inlet pipe 32 of the atomizing module 30 is introduced into the channel 42 of the sprayer 40 to suck, mix and pressurize the cleaning liquid 20 in the channel 42 of the sprayer 40 so that the cleaning liquid 20 is atomized and is sprayed outward from the nozzle 41 of the sprayer 40. At the same time, the smaller partial air current 611 of the air current 61 in the air inlet pipe 32 of the atomizing module 30 is introduced through the air hole 35 of the atomizing module 30 into the chamber 11 of the container 10 to release or balance the air pressure in the chamber 11 of the container 10.
Thus, when the smaller partial air current 611 is introduced through the air hole 35 into the chamber 11 to release or balance the air pressure in the chamber 11, the cleaning liquid 20 in the chamber 11 is accelerated to flow through the first conduit 34 and the slots 43 into the channel 42 by suction of the larger partial air current 612 flowing through the channel 42 so that the cleaning liquid 20 in the sprayer 40 is mixed with the larger partial air current 612 easily and quickly and is atomized exactly and optimally. In addition, the cleaning liquid 20 in the chamber 11 is sucked easily by the larger partial air current 612 flowing through the channel 42, and is pushed by the smaller partial air current 611 flowing into the chamber 11 so that the cleaning liquid 20 is sucked exactly and completely and will not remain in the chamber 11.
Referring to
When in use, the flange 44 of the sprayer 40 is rotatable in concert with the sprayer 40 and is movable to open, close or partially close a connection between the first conduit 34 of the atomizing module 30 and the sleeve 31 of the atomizing module 30 so as to regulate a flow rate of the cleaning liquid 20 from the chamber 11 of the container 10 to the channel 42 of the sprayer 40. Thus, a user can rotate the sprayer 40 to easily regulate the flow rate of the cleaning liquid 20 from the chamber 11 of the container 10 to the channel 42 of the sprayer 40 without needing aid of a professional technician.
As shown in
As shown in
Referring to
Referring to
Referring to
Thus, the air current 61 in the air inlet pipe 32 of the atomizing module 30 is introduced through the inlet 95, the duct 94 and the outlet 96 of the regulator 90 into the channel 42 and the nozzle 41 of the sprayer 40. The regulator 90 has a periphery provided with a recessed retaining shoulder 97 for mounting a gasket 55 which is mounted on the regulator 90 and is pressed between the regulator 90 and the sprayer 40. The gasket 55 is compressed by the retaining shoulder 97 of the regulator 90 via a relative rotation between the regulator 90 and the sprayer 40. Preferably, the gasket 55 is made of a resilient material.
As shown in
As shown in
Thus, the clearance between the second conic portion 42b of the sprayer 40 and the second conic section 92 of the regulator 90 is change by a first relative rotation between the regulator 90 and the sprayer 40 to provide a first-stage throttling action to regulate the flow rate of the atomized liquid from the nozzle 41 of the sprayer 40, and the clearance between the first conic portion 42a of the sprayer 40 and the first conic section 91 of the regulator 90 is change by a second relative rotation between the regulator 90 and the sprayer 40 to provide a second-stage throttling action to further regulate the flow rate of the atomized liquid from the nozzle 41 of the sprayer 40 so that the regulator 90 co-operates with the sprayer 40 to provide a two-stage throttling action.
Referring to
Referring to
Referring to
The sixth step includes forming at least one air hole 35 in the atomizing module 30, and introducing the smaller partial air current 611 of the air current 61 through the air hole 35 of the atomizing module 30 into the chamber 11 of the container 10. The seventh step includes forming a channel 42 in the sprayer 40, and introducing the larger partial air current 612 of the air current 61 into the channel 42 of the sprayer 40 as shown in
Accordingly, when the smaller partial air current 611 of the air current 61 in the air inlet pipe 32 is introduced through the air hole 35 into the chamber 11 to release or balance the air pressure in the chamber 11, the cleaning liquid 20 in the chamber 11 is accelerated to flow into the channel 42 of the sprayer 40 by suction of the larger partial air current 612 of the air current 61 so that the cleaning liquid 20 is mixed with the air current 61 and is atomized exactly and optimally to increase the flow rate of the atomized liquid largely. In addition, the cleaning liquid 20 in the chamber 11 is sucked quickly by the larger partial air current 612 flowing through the channel 42, and is pushed by the smaller partial air current 611 flowing into the chamber 11 so that the cleaning liquid 20 is sucked exactly and completely and will not remain in the chamber 11. Further, the flange 44 of the sprayer 40 is rotatable in concert with the sprayer 40 and is movable to open, close or partially close the connection between the atomizing module 30 and the sprayer 40 so as to regulate the flow rate of the cleaning liquid 20 from the chamber 11 of the container 10 to the sprayer 40. Further, a user only needs to rotate the sprayer 40 so as to regulate the flow rate of the cleaning liquid 20 from the chamber 11 of the container 10 to the channel 42 of the sprayer 40 without needing any aid of a technician. Further, the mixture proportion of the cleaning liquid 20 and the air current 61 can be regulated by rotation of the flange 44 of the sprayer 40 to regulate the temperature of the cleaning liquid 20 so that the cleaning liquid 20 injected from the sprayer 40 can be controlled to have a higher temperature.
Although the invention has been explained in relation to its preferred embodiment(s) as mentioned above, it is to be understood that many other possible modifications and variations can be made without departing from the scope of the present invention. It is, therefore, contemplated that the appended claim or claims will cover such modifications and variations that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201010145885.6 | Apr 2010 | CN | national |