The present disclosure relates generally to systems and techniques for vaporizing fluid, and more specifically pertains to an atomizer cartridge assembly thereof.
Electronic cigarettes and vaporizers can be used to produce inhalable vapor from various fluids, oils, and liquids. For example, vapor can be produced from fluids that contain nicotine and/or flavoring agents. Users can inhale such vapors produced by an electronic cigarette or vaporizer device as an alternative to smoking burned or combusted matter, which is often organic and can contain various combustion byproducts that may be associated with undesirable health effects.
As electronic cigarettes and vaporizer devices have grown in popularity, so too has the range of different vaporization fluids, flavors, etc., grown in response. In some cases, vaporization fluid can be provided separately from an electronic cigarette or vaporization device, e.g., in a ‘pod’ or cartridge form that can be detachably coupled to a user's electronic cigarette or vaporization device. In this manner, a single electronic cigarette or vaporization device can be utilized with multiple different vaporization fluids or flavors, based on a user's selection of a pod or cartridge to install on their electronic cigarette or vaporization device. Accordingly, there is a need for a vaporizer or atomizer cartridge that can easily be coupled to a user's electronic cigarette or vaporization device but contains a reduced number of separate parts and/or occupies a reduced spatial volume.
In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the appended drawings. Understand that these drawings depict only exemplary embodiments of the disclosure and are not, therefore, to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without departing from the spirit and scope of the disclosure. Additional features and advantages of the disclosure will be outlined in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. The description is not to be considered as limiting the scope of the embodiments described herein.
As illustrated, the atomizer cartridge assembly 100 includes an upper assembly 110 and a lower assembly 160, which are described in turn below. It is noted that the upper assembly 110 and the lower assembly 160 can be detachably connected or can be provided in a unitary construction. For example, in some embodiments, upper assembly 110 and lower assembly 160 can be attached via a friction fit or a press fit. In some embodiments, upper assembly 110 can be integrally formed to comprise a mouthpiece housing 112, a vapor channel 116, and a fluid reservoir 114 (wherein the fluid reservoir 114 is defined between an inner surface of mouthpiece housing 112 and an outer surface of vapor channel 116). For example, upper assembly 110 can be provided as a single piece of injection-molded plastic, wherein the physical injection mold occupies the empty volume of fluid reservoir 114 during the injection molding manufacturing process.
In some examples, one or more components of the atomizer cartridge assembly 100 (e.g., in addition to upper assembly 110) can be provided as injection-molded plastic and/or formed from other plastic material(s). For example, one or more components or portions of lower assembly 160 can be provided as injection-molded plastic or otherwise formed from plastic material(s), as will be described in greater depth below. In some embodiments, upper assembly 110 and/or lower assembly 160 can include one or more components formed from plastic material(s) such that any oils or fluids stored in fluid reservoir 114 (and later consumed using the atomizer cartridge assembly 100) do not come in to contact with any metal materials prior to consumption/vaporization by the atomizer cartridge assembly 100. For instance, a fluid or oil stored in fluid reservoir 114 (e.g., a fluid used or consumed via atomizer cartridge assembly 100) may be acidic, basic, or otherwise have chemical properties that may cause undesirable reactions (e.g., corrosion, degradation, etc.) with materials the fluid or oil contacts. In one illustrative example, one or more components of atomizer cartridge assembly 110 can be provided as plastic material(s) that are non-reactive with one or more types of oils and/or fluids that may be stored in fluid reservoir 114 and consumed using atomizer cartridge assembly 100. In some examples, any oils or fluids stored in fluid reservoir 114 do not make contact with any non-plastic materials before being provided to the lower assembly 160 for vaporization (e.g., oils or fluids stored in fluid reservoir 114 do not contact any non-plastic materials prior to being absorbed by one or more wicking materials or absorbent pads disposed about the outer surface of an atomizer located in lower assembly 160).
In some cases, the single-piece construction of upper assembly 110 can have a decreased production cost and/or an increased speed and efficiency of manufacture. Moreover, the single-piece construction offers a simpler but more robust experience for users of atomizer cartridge assembly 100, as users will no longer handle separate parts that can be damaged, lost, connected incorrectly, etc., as may be experienced with existing solutions. For example, rather than utilizing separate components to perform different tasks, in operation, the single-piece upper assembly 110 can function simultaneously as a mouthpiece for delivering vaporized fluid to a user, as a fluid reservoir for storing the vaporization fluid, and as a vapor coupling for transmitting vaporized fluid from the heating element to mouthpiece outlet.
In addition to offering improved simplicity by way of the single-piece construction of upper assembly 110, the atomizer cartridge assembly 100 can also be used in a modular fashion with different vaporizer housings, bases, electronic cigarettes, etc. For example, the lower assembly 160 can include a base connector 162 to provide a detachable coupling between the atomizer cartridge assembly 100 and one or more different vaporizer housings. As illustrated in
In some embodiments, base connector 162 can include one or more power distribution elements (e.g., positive and negative battery leads) that receive electrical power and couple the electrical power to an internal heating element disposed within lower assembly 160. Base connector 162 can receive electrical power from a source that is external to the atomizer cartridge assembly 100, such as an electronic cigarette or other vaporizer housing that is attached to atomizer cartridge assembly 100 via base connector 162 (e.g., an electronic cigarette or vaporizer housing can have an internal battery that is an external power source to atomizer cartridge assembly 100). Additionally or alternatively, base connector 162 can receive electrical power from a source that is internal to or otherwise associated with the atomizer cartridge assembly 100. For example, although not depicted in
The disclosure turns now to
Note that reference may also be made to
As mentioned previously, the atomizer cartridge assembly described herein can comprise an upper assembly that is integrally molded in a single-piece construction to comprise a mouthpiece, a fluid reservoir, and a vapor channel. For example, in the cross-sectional views of
As contemplated herein, the distal end portion of upper assembly 210 can be the bottom portion of upper assembly 210 when the upper assembly 210 is oriented as shown in the examples of
In some embodiments, a binding ring 350 can be provided in a compressive engagement about an outer surface of the approximately cylindrical lower distal end of upper assembly 310. For example, binding ring 350 can apply a radially compressive force to the outer surface of the approximately cylindrical lower distal end of upper assembly 310 when upper assembly 310 has been press-fit or otherwise installed onto lower assembly 360. Binding ring 350 can comprise a different material than the material utilized by one or more of the upper assembly 310 and the lower assembly 360. For example, in some embodiments, upper assembly 310 and/or lower assembly 360 can be injection molded and/or can be formed from one or more plastics, polymers, etc., and binding ring 350 can be formed from one or more metals. In some examples binding ring 350 can be thinner (e.g., having a smaller cross-sectional width) than the outer wall of upper assembly 310 about which binding ring 350 is installed. In some examples, and as illustrated in
In some examples, the radially compressive force applied by binding ring 350 can be a sealing force that augments or otherwise works in cooperation with a press-fit or another type of attachment between upper assembly 310 and lower assembly 360. For example, as mentioned above, upper assembly 310 and/or lower assembly 360 can be formed from one or more plastics, polymers, etc., in which case a press-fit between the two assemblies can cause plastic (e.g., permanent) deformation at or about the location of the press-fit interface. This plastic deformation can enhance the binding strength of the press-fit, such that in some embodiments, the upper assembly 310 cannot be manually separated from the lower assembly 360. However, the plastic deformation resulting from the press-fit between upper assembly 310 and lower assembly 360 can also result in cracking or other damage, which can be cosmetic and/or structural. In some cases, cracking can result from the plastic-on-plastic press-fit interface that results when upper assembly 310 and lower assembly 360 are formed from the same or like materials. For example, the press-fit can cause cracks to appear on the outer surface of the approximately cylindrical lower distal end of upper assembly 310. As such, binding ring 350 can be provided to contain and/or reinforce any cracks or other deformations that appear on upper assembly 310 when it is press-fit to lower assembly 360. In some embodiments, one or more sealing gaskets (e.g., such as the sealing gaskets 652 depicted in
In addition to forming a mouthpiece for vapor inhalation, it is further contemplated that the single-piece construction of the atomizer cartridge assembly described herein can also form an integral fluid reservoir for storing and providing a fluid, oil, or other liquid (collectively referred to herein as a “fluid”) to one or more heating elements located within the lower assembly of the atomizer cartridge. For example, returning to the cross-sectional views of
In some embodiments, fluid reservoir 314 can be at least partially open at its lower end, e.g., to permit filling of fluid reservoir 314 and/or to convey fluid from fluid reservoir 314 to a heating element located in the lower assembly 360 (e.g., such as the heating element 530 of atomizer 500 shown in
For instance, the fluid flow from reservoir 314 to atomizer 340 can be driven by gravity when the cartridge assembly 300 is in a substantially upright orientation (e.g., such as that depicted in
Accordingly, in some embodiments, a vapor inlet 318 can be provided at the open distal end of vapor channel 316 for receiving vaporized fluid from atomizer 340. The open distal end of vapor channel 316 can be the open end of vapor channel 316 that is opposite from the vapor outlet 328 (e.g., opposite from the vapor outlet 328 that is located at the proximal end of upper assembly 310). For example, vapor inlet 318 can attach to a vapor distribution opening 368 extending from the upper surface of lower assembly 360, such that vapor inlet 318 couples the vapor distribution opening 368 to the central longitudinal vapor channel 316. Vapor distribution opening 368 can be located along the central longitudinal axis of lower assembly 360, which in some cases can be the same as the central longitudinal axis of upper assembly 310 and/or the same as the central longitudinal axis about which vapor channel 316 is disposed within the upper assembly 310.
In operation, fluid from the fluid reservoir 314 can be vaporized by atomizer 340 (e.g., using a heating element such as the heating element 530 of
For example,
For example, the vapor outlet 328 is seen in the cross-sectional view of
An open distal end of fluid reservoir 314 may be coplanar with a vapor inlet 318 located at the open distal end of vapor channel 316, as illustrated in
For example, with reference to
As illustrated, the plurality of fluid transfer openings 232 can include six circular openings arranged on the upper surface of lower assembly 260, although a greater or lesser number of fluid transfer openings 232 may also be utilized without departing from the scope of the present disclosure. For example, in some embodiments the plurality of fluid transfer openings 232 can comprise five circular openings. In some examples, the plurality of fluid transfer openings 232 can include four circular openings. In some cases, the fluid transfer openings 232 can be provided as two or more slots or rectangular openings, etc. It is further noted that the plurality of fluid transfer openings 232 can be arranged symmetrically or asymmetrically on the upper surface of lower assembly 260. Similarly, one or more different shapes, sizes, and/or geometries, etc., can be utilized by one or more of the plurality of fluid transfer openings 232 without departing from the scope of the present disclosure. In some embodiments, each of the plurality of fluid transfer openings 232 can have a same diameter. In some cases, the size or diameter of the plurality of fluid transfer openings 232 can be based on characteristics of the fluid or oil that may be used (e.g., viscosity) and/or desired fluid handling and delivery with respect to the atomizer. For example, a larger diameter can be used for one or more of the fluid transfer openings 232 when a relatively high viscosity fluid will be used and/or when a relatively high fluid flow rate through the fluid transfer openings 232 is desired. Similarly, a smaller diameter can be used for one or more of the fluid transfer openings 232 when a relatively low viscosity fluid will be used and/or when a relatively low fluid flow rate through the fluid transfer openings 232 is desired.
In some embodiments, a total open surface area can be distributed across the plurality of fluid transfer openings 232, either symmetrically or asymmetrically. For example, the plurality of fluid transfer openings 232 can each have a size or surface area (e.g., based on each opening diameter) and be provided in sufficient quantity to provide a total surface contact area of a given value. For example, a total surface contact area of 12.6 mm2 can be achieved by using four fluid transfer openings 232 that are each circles having a diameter of 2 mm. The same total surface contact area of 12.6 mm2 can also be achieved by using six fluid transfer openings 232 that are each circles having a diameter of approximately 1.6 mm.
In some examples, the total surface contact area can be between 1 mm2 and 15 mm2. For example, in some embodiments a total surface contact area of 1 mm2 can be provided by using two fluid transfer openings 232 that are each circles having a diameter of 1 mm. As mentioned previously, the total surface contact area provided by the plurality of fluid transfer openings 232 and/or the quantity of the plurality of fluid transfer openings 232 can be based at least in part on a viscosity of a fluid that will be used in the atomizer assembly 200 or stored in fluid reservoir 214. For example, for a high viscosity (and/or high purity) fluid or oil, the plurality of fluid transfer openings 232 may comprise a total of four fluid transfer openings that are each circles having a diameter of 2 mm. In another example, for a lower viscosity (and/or lower purity) fluid or oil, the plurality of fluid transfer openings 232 may comprise a total of two fluid transfer openings that are each circles having a diameter of 1 mm. In some embodiments, the plurality of fluid transfer openings 232 can comprise a total of six fluid transfer openings that provide a total surface contact area of approximately 15 mm2.
In some examples, the plurality of fluid transfer openings 232 can be configured based on viscosity and/or other material properties of a fluid that will be stored in fluid reservoir 314. In some cases, the plurality of fluid transfer openings 232 can be configured based on a type of fluid that may be stored in fluid reservoir 314. For example, as illustrated in
Fluid can be conveyed from fluid reservoir 314 to an atomizer 340 via one or more of the plurality of fluid transfer openings 232. As illustrated, atomizer 340 can be contained within the lower assembly 360. In some embodiments, the atomizer 340 can be the same as or otherwise similar to the example atomizer 500 depicted in
The absorbent pads 342 can sit on or otherwise make contact with an upper surface of the atomizer 340, such that the absorbent pads 342 can convey fluid to atomizer 340 based at least in part on this contact area. In some examples, the absorbent pads 342 can store (e.g., absorb) a volume of fluid that depends at least in part on factors such as the total surface area provided by the absorbent pads 342, the total thickness of the absorbent pads 342, etc. As illustrated, the absorbent pads 342,642 can be circular or ring-shaped, with a central hole that is aligned with one or more of the central longitudinal vapor channel 316 of the upper assembly 310 and/or a central longitudinal channel of the atomizer 340.
In some embodiments, the absorbent pads 342 can comprise one or more wicking materials for conveying fluid from the fluid reservoir 314 to the atomizer 340. For example, absorbent pads 342 can be an organic material, such as cotton, cellulose, etc., although it is noted that various other wicking materials can also be utilized in the absorbent pads 342 without departing from the scope of the present disclosure. By providing the absorbent pads 342 as wicking material(s), fluid can be conveyed from fluid reservoir 314 to atomizer 340 even if (or when) gravity alone is insufficient to cause the desired fluid movement. For example, absorbent pads 342 can cause the transfer of fluid to atomizer 340 via wicking action if the atomizer assembly 300 is inverted or held at an angle, if the fluid stored in reservoir 314 is a relatively high viscosity, etc. In some cases, the absorbent pads 342 can be provided to accelerate the movement or transfer of high viscosity fluids from reservoir 314 to atomizer 340. High viscosity fluids can include but are not limited to, oils, concentrates, etc., and/or fluids with an increased viscosity due to a lower temperature.
In some examples, although not illustrated, one or more absorbent pads can additionally be provided between the atomizer 340 and the base portion 362. The one or more additional absorbent pads can be the same as or similar to the absorbent pads 342 and/or the absorbent pads 642. For example, the one or more additional absorbent pads comprise the same one or more wicking materials as the absorbent pads 342 and/or 642. In some cases, the additional absorbent pads can comprise a plurality of absorbent pads (e.g., such as the absorbent pads 342, 642) arranged in a stack or layer that at least partially occupies the volume between the atomizer 340 and the base portion 362. In some cases, the additional absorbent pads can be of a same or similar thickness to that of the absorbent pads 342,642 with a smaller length and/or width than that of the absorbent pads 342,642. For example, the additional absorbent pads can be sized to fit within the volume between atomizer 340 and base portion 362.
In some examples, atomizer 340 (and/or atomizer 500) can comprise a ceramic material. In some embodiments, the ceramic material can itself absorb and/or store fluid, such as the fluid(s) that may be contained in fluid reservoir 314. Although the ceramic material of atomizer 340 can absorb fluid directly, in some embodiments absorbent pads 342 can be provided between atomizer 340 and the fluid reservoir 314 to increase or otherwise enhance the efficacy of fluid absorption/conveyance into the ceramic material of atomizer 340. For example, the ceramic material of atomizer 340 can have a smaller total surface area for fluid absorption in comparison to that of the absorbent pads 342, in which case the use of absorbent pads 342 allows a greater volume of fluid to be conveyed into the ceramic material of atomizer 340. In some cases, the ceramic material of atomizer 340 may dry out too quickly in the absence of the absorbent pads 342, either from an evaporative drying and/or as fluid is consumed from the ceramic material of atomizer 340 and vaporized. As such, the fibrous material of the absorbent pads 342 can provide a consistent and reliable conduit for fluid to travel from the fluid reservoir 314 to the atomizer 340, whereupon the fluid can become embedded in the ceramic material of atomizer 340 until the embedded fluid is subsequently vaporized.
In some embodiments, the ceramic material of atomizer 500 can itself act as a fluid reservoir, e.g., in addition to or separate from the dedicated fluid reservoir 314 of the upper assembly 310. In some examples, the ceramic material of atomizer 500 can store a volume of fluid sufficient to ‘feed’ or otherwise maintain a steady fluid supply to a heating element 530 for one or more vaporization cycles. In other words, the ceramic material of atomizer 500 can be sized to store/absorb a volume of fluid that is sufficient for heating element 530 to produce vapor for at least one full inhalation by a user of the presently disclosed atomizer cartridge(s). Accordingly, in some embodiments it is contemplated that atomizer 500 can be provided in various geometric shapes and configurations other than the multi-diameter stepped cylindrical shape(s) illustrated herein, without departing from the scope of the present disclosure. In some examples, atomizer 500 can be provided with a flanged or plug-like cylindrical shape, without departing from the scope of the present disclosure.
In some examples, atomizer 500 can be provided with a different geometric shape, configuration, etc., having a substantially same or similar total volume (e.g., fluid absorption capacity) as the multi-diameter stepped cylindrical atomizer(s) 340, 500, 640 illustrated in
As illustrated, atomizer 500 includes an upper surface 510, which can be brought into contact with one or more absorbent pads, such as the absorbent pads 342 of
As illustrated, heating element 530 can be provided in or about the circumference of a central vapor channel 520 of the atomizer 500 (e.g., also referred to herein as “atomizer vapor channel” 520). In some embodiments, the central vapor channel 520 of atomizer 500 can be parallel to and/or aligned with the central longitudinal vapor channel 316 provided in upper assembly 310 of the atomizer cartridge assembly 300. For example, in an assembled state of atomizer cartridge assembly 300 (e.g., when upper assembly 310 is coupled to lower assembly 360), a same or similar atomizer vapor channel located in atomizer 340 can be brought into alignment with the corresponding vapor channel 316 of upper assembly 310 to thereby form a continuous longitudinal vapor channel extending along the longitudinal length of the atomizer cartridge assembly 300.
Heating element 530 can be provided as one or more resistive heating elements, e.g., which generate heat in response to the application of electrical power. In some embodiments, atomizer 500 can include electrical leads 545 for coupling electrical power to heating element 530. The electrical leads 545 can receive electrical power from one or more internal power sources and/or external power sources. For example, an internal power source can be provided by one or more batteries included in the atomizer cartridge assembly described herein (e.g., an internal battery included in atomizer cartridge assembly 300). In some examples, the electrical leads 545 can receive electrical power from an external power source, such as a battery included in an electronic cigarette body, vaporizer body, or other body components to which the cartridge assembly described herein (such as atomizer cartridge assembly 300) can be attached to for use.
For example,
In some embodiments, the atomizer support structure 646 can be received within a threaded base 662, as is also illustrated in
Returning to the example atomizer 500 depicted in
As illustrated, heating element 530 can comprise a continuous, spiral length of wire provided about or along an inner surface of the atomizer vapor channel 520. For example, in some embodiments heating element 530 can include a spiral length of wire that is at least partially embedded in the inner surface of atomizer vapor channel 520. In some cases, atomizer 500 can be provided as a ceramic material wherein heating element 530 is partially embedded in the ceramic material of the inner surface of atomizer vapor channel 520. In some embodiments, heating element 530 can be installed or otherwise integrated into the ceramic material of atomizer 500 during the manufacture of atomizer 500 and/or during the manufacture or creation of atomizer vapor channel 520.
In some embodiments, heating element 530 can make contact with the inner surface of atomizer vapor channel 520 without being embedded (either partially or wholly) in the material of the inner surface of atomizer vapor channel 520. For example, heating element 530 can be provided as a spiral length of wire having an outer diameter approximately equal to or slightly greater than an inner diameter of atomizer vapor channel 520. When the outer diameter of the heating element 530 is greater than the inner diameter of atomizer vapor channel 520, a radially compressive force can be applied to install heating element 530 into atomizer vapor channel 520, with the same radially compressive force subsequently holding the heating element 530 in place within atomizer vapor channel 520. As illustrated, heating element 530 can include a spiral length of wire running approximately perpendicular to the central longitudinal axis of atomizer 500 and atomizer vapor channel 520. When heating element 530 is provided as one or more lengths of resistive heating wires, heating element 530 can be provided to spiral in either a clockwise or counterclockwise fashion within atomizer vapor channel 520.
In some embodiments, heating element 530 can additionally (or alternatively) include one or more lengths of resistive heating wire that run substantially parallel to the central longitudinal axis of atomizer vapor channel 520, without departing from the scope of the present disclosure. In some embodiments, heating element 530 can include one or more lengths of resistive heating wire having a constant cross-sectional shape, area, diameter, etc., along its length. In some embodiments, heating element 530 can include one or more lengths of resistive heating wire having a variable cross-sectional shape, area, diameter, etc., along one or more portions of its overall length. For example, heating element 530 can be thicker or have a larger diameter towards the upper end of atomizer vapor channel 520 (e.g., towards upper surface 510) and can be thinner or have a smaller diameter towards the lower end of atomizer vapor channel 520 (e.g., towards electrical leads 545), and vice versa.
As described previously, in some examples atomizer 500 can be provided with various different geometric shapes, configurations, etc., having a substantially same or similar total volume (e.g., fluid absorption capacity) as the multi-diameter stepped cylindrical atomizer(s) 340, 500, 640 illustrated in
By providing heating element 530 at or near the center of mass of the ceramic core of atomizer 500, fluid embedded within the ceramic material can be drawn more evenly towards the inner surface of atomizer vapor channel 520 (e.g., because heating element 530 vaporizes fluid near the inner surface of atomizer vapor channel 520). In some examples, by providing heating element 530 at or near the center of mass of the ceramic core of atomizer 500, embedded or absorbed fluid within the ceramic core of atomizer 500 can be consumed (e.g., vaporized) by heating element 530 in an approximately radially symmetric fashion. The radially symmetric consumption of fluid from the ceramic core of atomizer 500 by heating element 530 can help avoid or otherwise minimize the presence of ‘dead spots.’ For example, dead spots can occur where fluid stagnates within the ceramic material of atomizer 500 rather than flowing to the inner surface of atomizer vapor channel 520 where the fluid can be consumed and vaporized by heating element 530 (e.g., the consumption of fluid from the ceramic material of atomizer 500 causes fresh fluid to be drawn into the ceramic material, whereupon the cycle of fluid consumption/vaporization by heating element 530 can repeat). In some embodiments, the ceramic core of atomizer 500, the atomizer vapor channel 520, and/or the heating element 530 can be designed to avoid stagnation spots by causing heating element 530 to consume and vaporize fluid in an approximately first-in-first-out fashion, wherein fluid is vaporized by heating element 530 in approximately the order in which the fluid was absorbed into the ceramic core of atomizer 500.
As described above, in some embodiments an atomizer support structure can be provided to receive or seat the atomizer within the atomizer cartridge assembly disclosed herein. For example,
As illustrated, air inlet plug 672 can have a maximum outer diameter that is greater than a maximum outer diameter of air inlet regulator 674. In some examples, the outer diameter of air inlet plug 672 can be selected to adapt the outer diameter of air inlet regulator 674 to the relatively larger internal diameter of threaded base 662, e.g., such that air inlet regulator 674 when installed into air inlet plug 672 forms a seal against the inner surface of threaded base 662. In some embodiments, the seal formed between the inner surface of threaded base 662 and air inlet plug 672 can form a fluid trap within threaded base 662, which can catch any excess fluid that may drip from or otherwise be exuded by the ceramic material of the atomizer 640. For example, when air inlet plug 672 and air inlet regulator 674 are installed into the threaded base 662, a fluid trap volume can be defined along the longitudinal distance running from a lower-most extent given by the flanged base of air inlet plug 672 to an upper-most extent given by the air inlet holes or openings of air inlet regulator 674.
In operation, air inlet regulator 674 can include air inlet holes or openings that permit atmospheric or environmental air (e.g., from the ambient environment surrounding atomizer cartridge assembly 600) to enter the atomizer cartridge assembly 600 and carry away vapor produced by atomizer 640. For example, when a user inhales from the atomizer cartridge assembly 600, a volume of ambient air approximately equal to the volume of the user's inhalation can enter atomizer cartridge assembly via the air inlet holes or opening of air inlet regulator 674. In some embodiments, the quantity, size and/or diameter of the air inlet holes/or openings provided on air inlet regulator 674 can be restricted such that, when a user inhales from atomizer cartridge assembly 600, a pressure differential is created or otherwise maintained between the ambient atmosphere and the internal volume of atomizer cartridge assembly 600.
In some examples, a volumetric flow rate of ambient air through the air inlet regulator 674 during use of the atomizer cartridge assembly 600 can be chosen to improve the taste or flavor of the vaporized fluid produced by atomizer cartridge assembly 600. For instance, a greater volumetric flow rate of ambient air can lower one or more of a temperature at which fluid is vaporized by atomizer 640 and/or a temperature of the vapor conveyed to a user of atomizer cartridge assembly 600. Accordingly, air inlet regulator 674 can be designed to provide a desired volumetric flow rate that is known to correspond to a desired vaporization temperature or vaporization temperature range. In some embodiments, the volumetric flow rate of ambient air through air inlet regulator 674 can be chosen to achieve a desired flavor intensity, e.g., the same amount of vaporized fluid carried in a greater volume of ambient air can result in a flavor that is milder or smoother than the same amount of vaporized fluid when carried in a smaller volume of ambient air.
Number | Date | Country | |
---|---|---|---|
Parent | 17668341 | Feb 2022 | US |
Child | 18089440 | US |