Atomizer for a personal vaporizing unit

Abstract
A personal vapor inhaling unit is disclosed. An electronic flameless vapor inhaler unit that may simulate a cigarette has a cavity that receives a cartridge in the distal end of the inhaler unit. The cartridge brings a substance to be vaporized in contact with a wick. When the unit is activated, and the user provides suction, the substance to be vaporized is drawn out of the cartridge, through the wick, and is atomized by the wick into a cavity containing a heating element. The heating element vaporizes the atomized substance. The vapors then continue to be pulled by the user through a mouthpiece and mouthpiece cover where they may be inhaled.
Description
TECHNICAL FIELD

This invention relates to personal vapor inhaling units and more particularly to a wick structure for an atomizer/vaporizer of an electronic flameless vapor inhaler unit that may simulate a cigarette or deliver nicotine and other medications to the oral mucosa, pharyngeal mucosa, tracheal, and pulmonary membranes.


BACKGROUND

An alternative to smoked tobacco products, such as cigarettes, cigars, or pipes is a personal vaporizer Inhaled doses of heated and atomized flavor, which provides a physical sensation similar to smoking. However, because a personal vaporizer is typically electrically powered, no tobacco, smoke, or combustion is usually involved in its operation. For portability, and to simulate the physical characteristics of a cigarette, cigar, or pipe, a personal vaporizer may be battery powered. In addition, a personal vaporizer may be loaded with a nicotine bearing substance and/or a medication bearing substance. The personal vaporizer may provide an inhaled dose of nicotine and/or medication by way of the heated and atomized substance. Thus, personal vaporizers may also be known as electronic cigarettes, or e-cigarettes. Personal vaporizers may be used to administer flavors, medicines, drugs, or substances that are vaporized and then inhaled.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a personal vaporizer unit or electronic cigarette (“e-Cig”).



FIG. 2 is a side view of a personal vaporizer unit.



FIG. 3 is an end view of the proximal end of a personal vaporizer unit.



FIG. 4 is an end view of the distal end of a personal vaporizer unit.



FIG. 4A is an end view of the distal end of a personal vaporizer unit having an embossed cartridge.



FIG. 5 is a figure map of FIGS. 6 and 7.



FIG. 6 is a cross-section view of the proximal portion of a personal vaporizer unit along the cut line shown in FIG. 2.



FIG. 7 is a cross-section view of the distal portion of a personal vaporizer unit along the cut line shown in FIG. 2.



FIG. 8 is an exploded side view of components of a personal vaporizer unit.



FIG. 9 is an exploded cross-section view of components of a personal vaporizer unit along the cut line shown in FIG. 2.



FIG. 10 is a perspective view of a mouthpiece cover of a personal vaporizer unit.



FIG. 11 is a distal end view of the mouthpiece cover of FIG. 10.



FIG. 12 is a cross-section view of the mouthpiece cover along the cut line shown in FIG. 11.



FIG. 13 is a perspective view of a mouthpiece of a personal vaporizer unit.



FIG. 14 is a side view of the mouthpiece of FIG. 13.



FIG. 15 is a cross-section view of the mouthpiece along the cut line shown in FIG. 14.



FIG. 16 is a perspective view of a mouthpiece insulator of a personal vaporizer unit.



FIG. 17 is a distal end view of the mouthpiece insulator of FIG. 16.



FIG. 18 is a side view of the mouthpiece insulator of FIG. 16.



FIG. 19 is a cross-section view of the mouthpiece insulator along the cut line shown in FIG. 18.



FIG. 20 is a perspective view of a main housing of a personal vaporizer unit.



FIG. 21 is a distal end view of the main housing of FIG. 20.



FIG. 22 is a proximal end view of the main housing of FIG. 20.



FIG. 23 is a side view of the main housing of FIG. 20.



FIG. 24 is a cross-section view of the main housing along the cut line shown in FIG. 23.



FIG. 25 is a perspective view of a main housing of a personal vaporizer unit according to another embodiment.



FIG. 26 is a second perspective view of the main housing of FIG. 25.



FIG. 27 is a distal end view of the main housing of FIG. 25.



FIG. 28 is a proximal end view of the main housing of FIG. 25.



FIG. 29 is a side view of the main housing of FIG. 25.



FIG. 30 is a cross-section view of the main housing along the cut line shown in FIG. 29.



FIG. 31 is a perspective view of a printed circuit board (PCB or PC-board) assembly of a personal vaporizer unit.



FIG. 32 is a distal end view of the PCB assembly of FIG. 31.



FIG. 33 is a perspective exploded view of the PCB assembly of FIG. 31.



FIG. 34 is a side exploded view of the PCB assembly of FIG. 31.



FIG. 35 is a perspective view of a proximal wick element of a personal vaporizer unit.



FIG. 35A is a perspective view of a heating element disposed through a proximal wick element of a personal vaporizer unit.



FIG. 35B is a perspective view of a heating element of a personal vaporizer unit.



FIG. 36 is a distal end view of the wick element of FIG. 35.



FIG. 37 is a cross-section view of the wick element along the cut line shown in FIG. 36.



FIG. 38 is a perspective view of a distal wick element of a personal vaporizer unit.



FIG. 39 is a distal end view of the wick element of FIG. 38.



FIG. 40 is a cross-section view of the wick element along the cut line shown in FIG. 39.



FIG. 41 is a perspective view of a distal wick element of a personal vaporizer unit according to another embodiment.



FIG. 42 is a distal end view of the wick element of FIG. 41.



FIG. 43 is a cross-section view of the wick element along the cut line shown in FIG. 42.



FIG. 44 is a perspective view of an atomizer housing of a personal vaporizer unit.



FIG. 45 is a distal end view of the atomizer housing of FIG. 44.



FIG. 46 is a side view of the atomizer housing of FIG. 44.



FIG. 47 is a top view of the atomizer housing of FIG. 44.



FIG. 48 is a cross-section view of the atomizer housing along the cut line shown in FIG. 46.



FIG. 49 is a perspective view of an atomizer housing of a personal vaporizer unit according to another embodiment.



FIG. 50 is a distal end view of the atomizer housing of FIG. 49.



FIG. 51 is a side view of the atomizer housing of FIG. 49.



FIG. 52 is a top view of the atomizer housing of FIG. 49.



FIG. 53 is a cross-section view of the atomizer housing along the cut line shown in FIG. 52.



FIG. 54 is a perspective view of an atomizer housing and wicks of a personal vaporizer unit.



FIG. 55 is an exploded view of the atomizer housing, wire guides, and wicks of FIG. 54.



FIG. 56 is a side view of the atomizer housing and wicks of FIG. 54.



FIG. 57 is a distal end view of the atomizer housing and wicks of FIG. 54.



FIG. 58 is a cross-section view of the atomizer housing and wicks along the cut line shown in FIG. 57.



FIG. 59 is a perspective view of the proximal wick and wire guides of FIGS. 54-58.



FIG. 59A is a perspective view showing a heating element disposed through the proximal wick and around the wire guides of FIGS. 54-58.



FIG. 59B is a perspective view of the heating element of a personal vaporizer unit.



FIG. 60 is a distal end view of the proximal wick element of FIGS. 54-58.



FIG. 61 is a cross-section view of the proximal wick element and wire guides along the cut line shown in FIG. 60.



FIG. 62 is a perspective view of a light pipe sleeve of a personal vaporizer unit.



FIG. 63 is an end view of the light pipe sleeve of FIG. 62.



FIG. 64 is a cross-section view of the light pipe sleeve along the cut line shown in FIG. 63.



FIG. 65 is a perspective view of a cartridge of a personal vaporizer unit.



FIG. 66 is a proximal end view of the cartridge of FIG. 65.



FIG. 67 is a side view of the cartridge of FIG. 65.



FIG. 68 is a top view of the cartridge of FIG. 65.



FIG. 69 is a cross-section view of the cartridge along the cut line shown in FIG. 66.



FIG. 70 is a side view of a battery of a personal vaporizer unit.



FIG. 71 is an end view of the battery of FIG. 70.



FIG. 72 is a perspective view of a battery support of a personal vaporizer unit.



FIG. 73 is a top perspective view of a personal vaporizer unit case.



FIG. 74 is a bottom perspective view of a personal vaporizer unit case.



FIG. 75 is a block diagram of a computer system.





DETAILED DESCRIPTION

In an embodiment, a personal vaporizer unit comprises a mouthpiece configured for contact with the mouth of a person. At least part of this mouthpiece has an antimicrobial surface. This mouthpiece may also comprise silicone rubber, thermoplastic elastomer, organosilane, silver impregnated polymer, silver impregnated thermoplastic elastomer, and/or polymer. The mouthpiece may be removed from the personal vaporizer for washing or replacement, without using a tool. The mouthpiece may be provided in different colors. Designs or other patterns may be visible on the outside of the mouthpiece.


In an embodiment, a personal vaporizer unit comprises a first conductive surface configured to contact a first body part of a person holding the personal vaporizer unit, and a second conductive surface, conductively isolated from the first conductive surface, configured to contact a second body part of the person. When the personal vaporizer unit detects a change in conductivity between the first conductive surface and the second conductive surface, the vaporizer is activated to vaporize a substance so that the vapors may be inhaled by the person holding the vaporizer unit. The first body part and the second body part may be a lip or parts of a hand(s). The two conductive surfaces may also be used to charge a battery contained in the personal vaporizer unit. The two conductive surfaces may also form, or be part of, a connector that may be used to output data stored in a memory.


In an embodiment, a personal vaporizer unit comprises a chamber configured to receive a cartridge. The cartridge may hold a substance to be vaporized. The chamber may be configured at the distal end of the personal vaporizer unit. A user may inhale the vaporized substance at the proximal end of the personal vaporizer unit. At least one space between the exterior surface of the cartridge and an interior surface of the chamber may define a passage for air to be drawn from outside the personal vaporizer unit, near the distal end, through the personal vaporizer unit to be inhaled by the user along with the vaporized substance. The personal vaporizer unit may also include a puncturing element that breaks a seal on the cartridge to allow a substance in the cartridge to be vaporized. An end surface of the cartridge may be translucent to diffuse light produced internally to the personal vaporizer unit. The translucent end may be etched or embossed with letters, symbols, or other indicia that are illuminated by the light produced internally to the personal vaporizer unit.


In an embodiment, a personal vaporizer unit comprises a first wick element and a second wick element having a porous ceramic. The first wick element is adapted to directly contact a liquid held in a reservoir. The reservoir may be contained by a cartridge that is removable from the personal vaporizer unit. A heating element is disposed through the second wick element. An air gap is defined between the first wick element and the second wick element with the heating element exposed to the air gap. Air enters the first wick element through a hole in a housing holding the first wick element.


In an embodiment, a personal vaporizer unit comprises a light source internal to an opaque cylindrical housing that approximates the appearance of a smoking article. A cylindrical light tube is disposed inside the opaque cylindrical housing to conduct light emitted by the light source to an end of the opaque cylindrical housing. This allows the light to be visible outside of the opaque cylindrical housing of the vaporizer.


In an embodiment, a personal vaporizer unit comprises a microprocessor, a memory, and a connector. The connector outputs data stored in the memory. The microprocessor may gather, and store in the memory, information including, but not limited to, the number of cycles the device has been triggered, the duration of the cycles, the number of cartridges of fluid that are delivered. The microprocessor may also gather and store times and dates associated with other information gathered and stored. The microprocessor may detect an empty cartridge by detecting a specific change in resistance between a wick and a housing that is equivalent to a “dry wick,” and thus signifies an empty cartridge.


In an embodiment, a case comprises a cradle adapted to hold a personal vaporizer unit. The personal vaporizer unit has dimensions approximating a smoking article. The case includes a battery and at least two contacts. The two contacts may form an electrical contact with the personal vaporizer unit when the personal vaporizer unit is in the cradle. The two contacts may conduct charge from the battery to the personal vaporizer unit to charge the personal vaporizer unit. The case may also download and store data retrieved from the personal vaporizer unit. The case may download and store this data via the at least two contacts. The case may send this data to a computer via wired or wireless links. The case may have more than one cradle and sets of contacts (e.g., two sets of two contacts in order to hold and charge two personal vaporizer units).



FIG. 1 is a perspective view of a personal vaporizer unit or electronic cigarette (“e-Cig”). In FIG. 1, personal vaporizer unit 100 comprises outer main shell 102, mouthpiece cover 114, mouthpiece 116, and mouthpiece insulator 112. Proximal refers to the component that is closest to the user interface (mouth/lips) and Distal is an end opposite from the user interface. The mouthpiece 116 and mouthpiece cover 114 define the proximal end of personal vaporizer unit 100. The opposite end of personal vaporizer unit 100 will be referred to as the distal end. A cartridge 150 may be inserted into the distal end of personal vaporizer unit 100. The mouthpiece cover 114 is the most proximal component and the cartridge 150 is the most distal component. Cartridge 150 may hold the substance to be vaporized by personal vaporizer unit 100. The substance after vaporizing may be inhaled by a user holding the personal vaporizer unit 100. The substance may be in the form of a liquid or gel.



FIG. 2 is a side view of a personal vaporizer unit. FIG. 2 illustrates personal vaporizer unit 100 as viewed from the side. FIG. 2 illustrates personal vaporizer unit 100 comprising outer main shell 102, mouthpiece cover 114, mouthpiece 116, and mouthpiece insulator 112. FIG. 2 also illustrates cartridge 150 inserted into the distal end of personal vaporizer unit 100.



FIG. 3 is an end view of the proximal end of a personal vaporizer unit. FIG. 3 shows the proximal end view of personal vaporizer unit 100 comprising mouthpiece cover 114. FIG. 4 is an end view of the distal end of a personal vaporizer unit. FIG. 4 shows the distal end view of personal vaporizer unit 100 comprising the visible portion of cartridge 150. FIG. 4A is an alternative end view of personal vaporizer unit 100 comprising a visible portion of cartridge 150 that has visible logos, letters, or other symbols. These visible logos, letters, or other symbols may be illuminated or backlit by a light source internal to the personal vaporizer unit 100. The light source may be activated intermittently under the control of a microprocessor or other electronics internal to personal vaporizer unit 100. The light source may be activated in such a manner as to simulate the glowing ash of a cigar or cigarette.



FIG. 5 is a figure map of FIGS. 6 and 7. FIG. 6 is a cross-section view of the proximal portion of a personal vaporizer unit along the cut line shown in FIG. 2. In FIG. 6, the proximal portion of personal vaporizer unit 100 comprises mouthpiece cover 114, mouthpiece 116, mouthpiece insulator 112, outer main shell 102, battery support 106, and battery 104. The mouthpiece cover 114 surrounds and is engaged with the proximal end of mouthpiece 116. Mouthpiece 116 and outer main shell 102 are preferably made of an electrically conductive material(s). Mouthpiece 116 is separated from outer main shell 102 by mouthpiece insulator 112. Mouthpiece 116 and outer main shell 102 are thus electrically isolated from each other by mouthpiece insulator 112.


In an embodiment, personal vaporizer unit 100 is configured such that outer main shell 102 comprises a first conductive surface configured to contact a first body part of a person holding personal vaporizer unit 100. Mouthpiece 116 comprises a second conductive surface, which is conductively isolated from the first conductive surface. This second conductive surface is configured to contact a second body part of the person. When personal vaporizer unit 100 detects a change in conductivity between the first conductive surface and the second conductive surface, a vaporizer internal to personal vaporizer unit 100 is activated to vaporize a substance in cartridge 150 so that the vapors may be inhaled by the person holding personal vaporizer unit 100. The first body part and the second body part may be a lip or parts of a hand(s). The two conductive surfaces of outer main shell 102 and mouthpiece 116, respectively, may also be used to charge battery 104 contained in the personal vaporizer unit 100. The two conductive surfaces of outer main shell 102 and mouthpiece 116, respectively, may also be used to output (or input) data stored (or to be stored) in a memory (not shown).


Battery support 106 functions to hold battery 104 in a position which is fixed relative to outer main shell 102. Battery support 106 is also configured to allow air and vaporized substance to pass from the distal end of personal vaporizer unit 100 past battery 104 along one or more passageways. After air and the vapors of the vaporized substance pass by battery 104, they may pass through openings in mouthpiece 116, mouthpiece cover 114, and mouthpiece insulator 112, to be inhaled by a user.



FIG. 7 is a cross-section view of the distal portion of a personal vaporizer unit along the cut line shown in FIG. 2. In FIG. 7, the distal end portion of personal vaporizer unit 100 comprises outer main shell 102, light pipe sleeve 140, atomizer housing 132, distal wick 134, proximal wick 136, PC-board 123, PC-board 124, spacer 128, and main housing 160. FIG. 7 also illustrates cartridge 150 inserted into the distal end of personal vaporizer unit 100. As can be seen in FIG. 7, cartridge 150 may hold a substance (e.g., a liquid or gel) in direct contact with distal wick 134. The substance may be drawn through distal wick 134 to be vaporized inside atomizer assembly. The atomizer assembly comprises atomizer housing 132, distal wick 134, proximal wick 136, and a heating element (not shown).



FIG. 8 is an exploded side view of components of a personal vaporizer unit. FIG. 9 is an exploded cross-section view of components of a personal vaporizer unit along the cut line shown in FIG. 2.


In FIGS. 8 and 9, personal vaporizer unit 100 comprises (from left to right) mouthpiece cover 114, mouthpiece 116, mouthpiece insulator 112, battery 104, battery support 106, PC-board 123, spacer 128, PC-board 124, main housing 160, proximal wick 136, distal wick 134, atomizer housing 132, light pipe sleeve 140, and cartridge 150. Mouthpiece cover 114 surrounds and covers the proximal end of mouthpiece 116. The distal end of mouthpiece 116 is inserted into mouthpiece insulator 112. Battery 104 is held in place by battery support 106. PC-board 123, spacer 128 and PC-board 124 are disposed within main housing 160. Proximal wick 136 and distal wick 134 are disposed within atomizer housing 132.


Atomizer housing 132 (and therefore proximal wick 136, distal wick 134) are disposed inside light pipe sleeve 140 and outer main shell 102. (Note: for clarity, outer main shell 102 is not shown in FIGS. 8 and 9.) Light pipe sleeve 140 is disposed within outer main shell 102. Light pipe sleeve 140 is positioned such that light emitted from a light source mounted on PC-board 124 may be conducted via light pipe sleeve 140 to a location where it is visible on the outside of personal vaporizer unit 100.


Cartridge 150 is disposed within light pipe sleeve 140. When assembled, a substance contained within cartridge 150 is held in direct contact with distal wick 134. When cartridge 150 is inserted into personal vaporizer unit 100 atomizer housing 132 or distal wick 134 may puncture a seal or cap that contains the substance to be vaporized within cartridge 150. Once punctured, the substance held within a reservoir of cartridge 150 may come in direct contact with distal wick 134.



FIG. 10 is a perspective view of a mouthpiece cover of a personal vaporizer unit. FIG. 11 is a distal end view of the mouthpiece cover of FIG. 10. FIG. 12 is a cross-section view of the mouthpiece cover along the cut line shown in FIG. 11. As can be seen in FIGS. 10-12, mouthpiece cover 114 has an opening 114-1 that allows air and the vaporized substance to be drawn through mouthpiece cover 114. Mouthpiece cover 114 is configured for contact with the mouth of a person. In an embodiment, at least part of the mouthpiece cover has an antimicrobial surface. This antimicrobial surface of mouthpiece cover 114 may comprise, but is not limited to: silicone rubber, thermoplastic elastomer, organosilane, silver impregnated polymer, silver impregnated thermoplastic elastomer, and/or polymer. Mouthpiece cover 114 is also configured to be removable from personal vaporizer unit 100 by a user without the use of tools. This allows mouthpiece cover 114 to be replaced and/or washed. In an embodiment, mouthpiece cover 114 may be held in place on personal vaporizer unit 100 by annular ridge 114-2 which interfaces with a groove on mouthpiece 116 of personal vaporizer unit 100 to secure mouthpiece cover 114 in place. In another embodiment, mouthpiece cover 114 may be held in place on personal vaporizer unit 100 by a friction fit.



FIG. 13 is a perspective view of a mouthpiece of a personal vaporizer unit. FIG. 14 is a side view of the mouthpiece of FIG. 13. FIG. 15 is a cross-section view of the mouthpiece along the cut line shown in FIG. 14. As can be seen in FIGS. 13-15, mouthpiece 116 has a passageway 116-1 that allows air and the vaporized substance to be drawn through mouthpiece 116. Mouthpiece 116 may comprise a conductive surface or material configured to contact a first body part of a person holding personal vaporizer unit 100. This first body part may be part of a hand, or at least one lip of the person holding personal vaporizer unit 100. In an embodiment, mouthpiece 116 has an annular groove 116-2 around an outside surface. This groove is configured to receive annular ridge 114-2. Thus, annular groove 116-2 helps secure mouthpiece cover 114 to personal vaporizer unit 100.



FIG. 16 is a perspective view of a mouthpiece insulator of a personal vaporizer unit. FIG. 17 is a distal end view of the mouthpiece insulator of FIG. 16. FIG. 18 is a side view of the mouthpiece insulator of FIG. 16. FIG. 19 is a cross-section view of the mouthpiece insulator along the cut line shown in FIG. 18. As discussed previously, mouthpiece insulator 112 is disposed between outer main shell 102 and mouthpiece 116. As can be seen in FIGS. 16-18, mouthpiece insulator 112 has a passageway 112-1 that allows air and the vaporized substance to be drawn through mouthpiece insulator 112. Because mouthpiece insulator 112 is disposed between outer main shell 102 and mouthpiece 116, mouthpiece insulator 112 can electrically isolate outer main shell 102 and mouthpiece 116. Thus, in an embodiment, mouthpiece insulator 112 comprises, or is made of, a non-electrically conductive material. This electrical isolation between outer main shell 102 and mouthpiece 116 allow electrical impedance changes between outer main shell 102 and mouthpiece 116 to be detected.


For example, a first conductive surface on mouthpiece 116 may be configured to contact a first body part of a person holding personal vaporizer unit 100. A second conductive surface on outer main shell 102 (which is conductively isolated from said first conductive surface by mouthpiece insulator 112) may be configured to contact a second body part of the person. Personal vaporizer unit 100 may then activate in response to detecting a change in conductivity between the first conductive surface and the second conductive surface. In an embodiment, this change in conductivity may comprise a drop in impedance between the first conductive surface and the second conductive surface. In an embodiment, the change in conductivity may comprise a change in capacitance between the first conductive surface and the second conductive surface. The first body part may be a finger. The second body part may be a lip. The second body part may be a second finger. In an embodiment, the first conductive surface and the second conductive surface may be used to pass a charging current to battery 104. The first and second conductive surfaces may also be used to transfer data to or from personal vaporizer unit 100.



FIG. 20 is a perspective view of a main housing of a personal vaporizer unit. FIG. 21 is a distal end view of the main housing of FIG. 20. FIG. 22 is a proximal end view of the main housing of FIG. 20. FIG. 23 is a side view of the main housing of FIG. 20. FIG. 24 is a cross-section view of the main housing along the cut line shown in FIG. 23. Main housing 160 is configured to hold PC-boards 123 and 124, and spacer 128. Main housing 160 is configured to fit within outer main shell 102 via a friction fit. Main housing 160 has several holes 166 that allow light generated by a light source(s) on PC-board 124 to pass. Once this light passes through holes 166, it may be coupled into light pipe sleeve 140 where it is conducted to a visible location on the outside of personal vaporizer unit 100.


Main housing 160 also has a hole 165 that allows an electrical conductor (not shown) to run from PC-board 123 or PC-board 124 through main housing 160. This electrical conductor may be, or connect to, a heating element (not shown). This heating element may help vaporize the substance to be inhaled by the user of personal vaporizer unit 100. This heating element may be controlled by circuitry on PC-board 123 or PC-board 124. This heating element may be activated in response to a change in conductivity between the first conductive surface and the second conductive surface, described previously.


The exterior of main housing 160 may also have a flat surface 164 (or other geometry) forming a galley that is configured to allow the vaporized substance and air to pass between the main housing 160 and the outer main shell 102. Once the vaporized substance and air pass by main housing 160, they may travel through passageway 112-1, passageway 116-1, and opening 114-1 to be inhaled by a user of personal vaporizer unit 100. The exterior of main housing 160 may also have one or more standoffs 167 (or other geometries) that are configured to allow air and the vaporized substance to reach the passageway formed by flat surface 164 and outer main shell 102.



FIG. 25 is a perspective view of a main housing of a personal vaporizer unit according to another embodiment. FIG. 26 is a second perspective view of the main housing of FIG. 25. FIG. 27 is a distal end view of the main housing of FIG. 25. FIG. 28 is a proximal end view of the main housing of FIG. 25. FIG. 29 is a side view of the main housing of FIG. 25. FIG. 30 is a cross-section view of the main housing along the cut line shown in FIG. 29. Main housing 260 may be used as an alternative embodiment to main housing 160.


Main housing 260 is configured to hold PC-boards 123 and 124, and spacer 128. Main housing 260 is configured to fit within outer main shell 102 via a friction fit. Main housing 260 has several holes 266 that allow light generated by a light source(s) on PC-board 124 to pass. Once this light passes through holes 266, it may be coupled into light pipe sleeve 140 where it is conducted to a visible location on the outside of personal vaporizer unit 100.


Main housing 260 also has a hole 265 that allows an electrical conductor (not shown) to run from PC-board 123 or PC-board 124 through main housing 260. This electrical conductor may be, or connect to, a heating element (not shown). This heating element may help vaporize the substance to be inhaled by the user of personal vaporizer unit 100. This heating element may be controlled by circuitry on PC-board 123 or PC-board 124. This heating element may be activated in response to a change in conductivity between the first conductive surface and the second conductive surface, described previously.


The exterior of main housing 260 may also have flat surfaces 264 (or other geometry) that form a galley that is configured to allow the vaporized substance and air to pass between the main housing 260 and the outer main shell 102. Once the vaporized substance and air pass by main housing 260, they may travel through passageway 112-1, passageway 116-1, and opening 114-1 to be inhaled by a user of personal vaporizer unit 100. The exterior of main housing 260 may also have one or more standoffs 267 (or other geometries) that are configured to allow air and the vaporized substance to reach the passageway formed by flat surfaces 264 and outer main shell 102.



FIG. 31 is a perspective view of a printed circuit board assembly of a personal vaporizer unit. FIG. 32 is a distal end view of the PCB assembly of FIG. 31. FIG. 33 is a perspective exploded view of the PCB assembly of FIG. 31. FIG. 34 is a side exploded view of the PCB assembly of FIG. 31. As can be seen in FIGS. 31-34, the PCB assembly is comprised of PC-board 123 and PC-board 124 separated by a spacer 128. PC-board 124 may have mounted upon it light emitting diodes (LEDs) 125-127 or other light sources. LEDs 125-127 are configured and positioned such that when they produce light, that light passes through holes 166 or 266 in main housings 160 and 260, respectively. This light may then be conducted by light pipe sleeve 140 to a location where it will be visible exterior to personal vaporizer unit 100.


PC-board 123 may have mounted on it a microprocessor, memory, or other circuitry (not shown) to activate or otherwise control personal vaporizer unit 100. This microprocessor may store data about the operation of personal vaporizer unit 100 in the memory. For example, the microprocessor may determine and store the number of cycles personal vaporizer unit 100 has been triggered. The microprocessor may also store a time and/or date associated with one or more of these cycles. The microprocessor may cause this data to be output via a connector. The connector may be comprised of the first and second conductive surfaces of mouthpiece 116 and/or outer main shell 102.


In an embodiment, the microprocessor may determine a duration associated with various cycles where personal vaporizer unit 100 has been triggered. These durations (or a number based on these durations, such as an average) may be stored in the memory. The microprocessor may cause these numbers to be output via the connector. The microprocessor may determine an empty cartridge condition and store a number associated with a number of times said empty cartridge condition occurs. The microprocessor, or other circuitry, may determine an empty cartridge condition based on a resistance between atomizer housing 132 or 232 and a wick 134, 234, 136, or 236. The microprocessor may also store a time and/or date associated with one or more of these empty cartridge conditions. The number of times an empty cartridge condition is detected, times, and/or dates associated with these empty cartridge conditions may be output via the connector.


Battery 104, PC-board 123, PC-board 124, and all electronics internal to personal vaporizer unit 100 may be sealed in a plastic or plastic and epoxy compartment within the device. This compartment may include main housing 160 or 260. All penetrations in this compartment may be sealed. Thus, only wires will protrude from the compartment. The compartment may be filled with epoxy after the assembly of battery 104, PC-board 123, PC-board 124, and LEDs 125-127. The compartment may be ultrasonically welded closed after assembly of battery 104, PC-board 123, PC-board 124, and LEDs 125-127. This sealed compartment is configured such that all vapor within personal vaporizer unit 100 does not come in contact with the electronics on PC-boards 123, 124.



FIG. 35 is a perspective view of a proximal wick element of a personal vaporizer unit. FIG. 35 shows a proximal wick 136, internal wire passageway 136-1 and external wire passageway 136-2. FIG. 35A is a perspective view of a heating element disposed through a proximal wick element of a personal vaporizer unit. FIG. 35B is a perspective view of a heating element of a personal vaporizer unit. FIG. 36 is a distal end view of the wick element of FIG. 35. FIG. 37 is a cross-section view of the wick element along the cut line shown in FIG. 35. Proximal wick 136 is configured to fit within atomizer housing 132. As can be seen in FIGS. 35-37, proximal wick 136 includes internal wire passageway 136-1 and external wire passageway 136-2. These wire passageways allow a conductor or a heating element 139 to be positioned through proximal wick 136 (via internal wire passageway 136-1). This conductor or heating element 139 may also be positioned in external wire passageway 136-2. Thus, as shown in FIG. 35A, a conductor or heating element 139 may be wrapped around a portion of proximal wick 136 by running the conductor or heating element 139 through internal wire passageway 136-1, around the distal end of proximal wick 136, and through external wire passageway 136-2 to return to approximately its point of origin. The heating element 139 may, when personal vaporizer unit 100 is activated, heat proximal wick 136 in order to facilitate vaporization of a substance.



FIG. 38 is a perspective view of a distal wick element of a personal vaporizer unit. FIG. 39 is a distal end view of the wick element of FIG. 38. FIG. 40 is a cross-section view of the wick element along the cut line shown in FIG. 39. Distal wick 134 is configured to fit within atomizer housing 132. As can be seen in FIGS. 38-40, distal wick 134 comprises two cylinders of different diameters. A chamfered surface transitions from the smaller diameter of the distal end of distal wick 134 to a larger diameter at the proximal end of distal wick 134. The cylinder at the distal end terminates with a flat surface end 134-1. This flat surface end 134-1 is the end of distal wick 134 and is a surface that is placed in direct contact with a substance to be vaporized when cartridge 150 is inserted into the distal end of personal vaporizer unit 100. The proximal end of distal wick 134 is typically in contact with proximal wick 136. However, at least a part of proximal wick 136 and distal wick 134 are separated by an air gap. When distal wick 134 and proximal wick 136 are used together, this air gap is formed between distal wick 134 and proximal wick 136 by standoffs 136-3 as shown in FIG. 37.



FIG. 41 is a perspective view of a distal wick element of a personal vaporizer unit. FIG. 42 is a distal end view of the wick element of FIG. 41. FIG. 43 is a cross-section view of the wick element along the cut line shown in FIG. 42. Distal wick 234 may be used as an alternative embodiment to distal wick 134. Distal wick 234 is configured to fit within atomizer housing 232. As can be seen in FIGS. 41-43, distal wick 234 comprises two cylinders of different diameters, and a cone or pointed end 234-1. A chamfered surface transitions from the smaller diameter of the distal end of distal wick 234 to a larger diameter at the proximal end of distal wick 234. The cylinder at the distal end terminates with a pointed end 234-1. This pointed end 234-1 is the end of distal wick 234 and is in direct contact with a substance to be vaporized. This pointed end 234-1 may also break a seal on cartridge 150 to allow the substance to be vaporized to come in direct contact with distal wick 234. The proximal end of distal wick 234 is typically in contact with proximal wick 136, 236. However, at least a part of proximal wick 136, 236 and distal wick 234 are separated by an air gap. When distal wick 234 and proximal wick 136, 236 are used together, this air gap is formed between distal wick 234 and proximal wick 136, 236 by standoffs 136-3, 236-3 as shown in FIGS. 37, 59.



FIG. 44 is a perspective view of an atomizer housing of a personal vaporizer unit. FIG. 45 is a distal end view of the atomizer housing of FIG. 44. FIG. 46 is a side view of the atomizer housing of FIG. 44. FIG. 47 is a top view of the atomizer housing of FIG. 44. FIG. 48 is a cross-section view of the atomizer housing along the cut line shown in FIG. 46. Atomizer housing 132 is configured to fit within outer main shell 102. As can be seen in FIGS. 44-48, atomizer housing 132 comprises roughly two cylinders of different diameters. A chamfered surface 132-3 transitions from the smaller diameter of the distal end of atomizer housing 132 to a larger diameter at the proximal end 132-4 of atomizer housing 132. The larger diameter at the proximal end 132-4 of atomizer housing 132 is configured to be press fit into light pipe sleeve 140. The cylinder at the distal end terminates with a spade shaped tip 132-2. This spade shaped tip 132-2 may break a seal on cartridge 150 to allow the substance to be vaporized to come in direct contact with distal wick 134. Other shaped tips are possible (e.g., needle or spear shaped).


Chamfered surface 132-3 has one or more holes 132-1. These holes allow air to pass, via suction, through atomizer housing 132 into distal wick 134. This suction may be supplied by the user of personal vaporizer unit 100 sucking or inhaling on mouthpiece cover 114 and/or mouthpiece 116. The air that is sucked into distal wick 134 enters distal wick 134 on or near the chamfered surface between the two cylinders of distal wick 134. The air that is sucked into distal wick 134 displaces some of the substance being vaporized that has been absorbed by distal wick 134 causing it to be atomized as it exits distal wick 134 into the air gap formed between distal wick 134 and proximal wick 136. The heating element disposed around proximal wick 136 may then vaporize at least some of the atomized substance. In an embodiment, one or more holes 132-1 may range in diameter between 0.02 and 0.0625 inches.


In an embodiment, placing holes 132-1 at the leading edge of the chamfered surface places a set volume of the substance to be vaporized in the path of incoming air. This incoming air has nowhere to go but through the large diameter (or “head”) end of the distal wick 134. When the air enters this area in distal wick 134 it displaces the substance to be vaporized that is suspended in distal wick 134 towards an air cavity between distal wick 134 and proximal wick 136. When the displaced substance to be vaporized reaches the surface of distal wick 134, it is forced out of the wick by the incoming air and the negative pressure of the cavity. This produces an atomized cloud of the substance to be vaporized. In an embodiment, the diameter of the head end of the distal wick 134 may be varied and be smaller than the diameter of the proximal wick 136. This allows for a tuned volume of air to bypass proximal wick 136 and directly enter the cavity between distal wick 134 and proximal wick 136 without first passing through proximal wick 136.



FIG. 49 is a perspective view of an atomizer housing of a personal vaporizer unit. FIG. 50 is a distal end view of the atomizer housing of FIG. 49. FIG. 51 is a side view of the atomizer housing of FIG. 49. FIG. 52 is a top view of the atomizer housing of FIG. 49. FIG. 53 is a cross-section view of the atomizer housing along the cut line shown in FIG. 52. Atomizer housing 232 is an alternative embodiment, for use with distal wick 234, to atomizer housing 132. Atomizer housing 232 is configured to fit within outer main shell 102 and light pipe sleeve 140. As can be seen in FIGS. 49-53, atomizer housing 232 comprises roughly two cylinders of different diameters. A chamfered surface 232-3 transitions from the smaller diameter of the distal end of atomizer housing 232 to a larger diameter at the proximal end 232-4 of atomizer housing 232. The larger diameter at the proximal end 232-4 of atomizer housing 232 is configured to be press fit into light pipe sleeve 140. The cylinder at the distal end terminates with an open cylinder tip 232-2. This open cylinder tip 232-2 allows the pointed end 234-1 of distal wick 234 to break a seal on cartridge 150 to allow the substance to be vaporized to come in direct contact with distal wick 234.


Chamfered surface 232-3 has one or more holes 232-1. These holes allow air to pass, via suction, through atomizer housing 232 into distal wick 234. The air that is sucked into distal wick 234 enters distal wick 234 on or near the chamfered surface between the two cylinders of distal wick 234. The air that is sucked into distal wick 234 displaces some of the substance being vaporized that has been absorbed by distal wick 234 causing it to be atomized as it exits distal wick 234 into the air gap formed between distal wick 234 and proximal wick 136. The heating element disposed around proximal wick 136 may then vaporize at least some of the atomized substance being vaporized. In an embodiment, one or more holes 232-1 may range in diameter between 0.02 and 0.0625 inches.


In an embodiment, placing holes 232-1 at the leading edge of the chamfered surface places a set volume of the substance to be vaporized in the path of incoming air. This incoming air has nowhere to go but through the head end of the distal wick 234. When the air enters this area in distal wick 234 it displaces the substance to be vaporized that is suspended in distal wick 234 towards an air cavity between distal wick 234 and proximal wick 236. When the displaced substance to be vaporized reaches the surface of distal wick 234, it is forced out of the wick by the incoming air and the negative pressure of the cavity. This produces an atomized cloud of the substance to be vaporized. In an embodiment, the diameter of the head end of distal wick 234 may be varied and be smaller than the diameter of the proximal wick 236. This allows for a tuned volume of air to bypass proximal wick 236 and directly enter the cavity between distal wick 234 and proximal wick 236 without first passing through proximal wick 236.



FIG. 54 is a perspective view of an atomizer housing and wicks of a personal vaporizer unit. FIG. 55 is an exploded view of the atomizer housing, wire guides, and wicks of FIG. 54. FIG. 56 is a side view of the atomizer housing and wicks of FIG. 54. FIG. 57 is a distal end view of the atomizer housing and wicks of FIG. 54. FIG. 58 is a cross-section view of the atomizer housing and wicks along the cut line shown in FIG. 57. The atomizer housing and wicks shown in FIGS. 54-58 is an alternative embodiment for use with proximal wick 236. The embodiment shown in FIGS. 54-58 use atomizer housing 232, distal wick 234, proximal wick 236, wire guide 237, and wire guide 238. Proximal wick 236 is configured to fit within atomizer housing 232. As can be seen in FIGS. 54-58, proximal wick 236 includes internal wire passageway 236-1. This wire passageway 236-1 allows a conductor or a heating element (not shown) to be positioned through proximal wick 236 (via internal wire passageway 236-1). The conductor or heating element may be positioned around wire guide 237 and wire guide 238. Thus, a conductor or heating element may run through wire passageway 236-1, around wire guides 237 and 238, and then back through wire passageway 236-1 to return to approximately its point of origin. The heating element may, when personal vaporizer unit 100 is activated, heat proximal wick 236 in order to facilitate vaporization of a substance.



FIG. 59 is a perspective view of the proximal wick assembly of FIGS. 54-58. FIG. 59A is a perspective view showing a heating element disposed through the proximal wick and around the wire guides of FIGS. 54-58. FIG. 59B is a perspective view of the heating element of a personal vaporizer unit. FIG. 60 is a distal end view of the proximal wick element and wire guides of FIGS. 54-58. FIG. 61 is a cross-section view of the proximal wick element and wire guides along the cut line shown in FIG. 60. As can be seen in FIG. 59A, a conductor or heating element 239 may run through internal wire passageway 236-1, around wire guides 237 and 238, and then back through internal wire passageway 236-1 to return to approximately its point of origin.


In an embodiment, distal wicks 134, 234, and proximal wicks 136, 236, may be made of, or comprise, for example a porous ceramic. Distal wicks 134, 234, and proximal wicks 136, 236, may be made of, or comprise aluminum oxide, silicon carbide, magnesia partial stabilized zirconia, yttria tetragonal zirconia polycrystal, porous metal (e.g., steel, aluminum, platinum, titanium, and the like), ceramic coated porous metal, woven metal, spun metal, metal wool (e.g., steel wool), porous polymer, porous coated polymer, porous silica (i.e., glass), and/or porous Pyrex. Distal wicks 134, 234, and proximal wicks 136, 236, may be made of or comprise other materials that can absorb a substance to be vaporized.


The conductor or heating element that is disposed through proximal wick 136 or 236 may be made of, or comprise, for example: nickel chromium, iron chromium aluminum, stainless steel, gold, platinum, tungsten molybdenum, or a piezoelectric material. The conductor or heating element that is disposed through proximal wick 136 or 236 can be made of, or comprise, other materials that become heated when an electrical current is passed through them.



FIG. 62 is a perspective view of a light pipe sleeve of a personal vaporizer unit. FIG. 63 is an end view of the light pipe sleeve of FIG. 62. FIG. 64 is a cross-section view of the light pipe sleeve along the cut line shown in FIG. 63. Light pipe sleeve 140 is configured to be disposed within outer main shell 102. Light pipe sleeve 140 is also configured to hold cartridge 150 and atomizer housing 132 or 232. As discussed previously, light pipe sleeve 140 is configured to conduct light entering the proximal end of light pipe sleeve 140 (e.g., from LEDs 125-127) to the distal end of light pipe sleeve 140. Typically, the light exiting the distal end of light pipe sleeve 140 will be visible from the exterior of personal vaporizer unit 100. The light exiting the distal end of light pipe sleeve 140 may be diffused by cartridge 150. The light exiting the distal end of light pipe sleeve 140 may illuminate characters and/or symbols drawn, printed, written, or embossed, etc., in an end of cartridge 150. In an embodiment, light exiting light pipe sleeve 140 may illuminate a logo, characters and/or symbols cut through outer main shell 102. In an embodiment, light pipe sleeve 140 is made of, or comprises, a translucent acrylic plastic.



FIG. 65 is a perspective view of a cartridge of a personal vaporizer unit. FIG. 66 is a proximal end view of the cartridge of FIG. 65. FIG. 67 is a side view of the cartridge of FIG. 65. FIG. 68 is a top view of the cartridge of FIG. 65. FIG. 69 is a cross-section view of the cartridge along the cut line shown in FIG. 66. As shown in FIGS. 65-69, cartridge 150 comprises a hollow cylinder section with at least one exterior flat surface 158. The flat surface 158 forms, when cartridge 150 is inserted into the distal end of personal vaporizer unit 100, an open space between the exterior surface of the cartridge and an interior surface of light pipe sleeve 140. This space defines a passage for air to be drawn from outside personal vaporizer unit 100, through personal vaporizer unit 100 to be inhaled by the user along with the vaporized substance. This space also helps define the volume of air drawn into personal vaporizer unit 100. By defining the volume of air typically drawn into the unit, different mixtures of vaporized substance to air may be produced.


The hollow portion of cartridge 150 is configured as a reservoir to hold the substance to be vaporized by personal vaporizer unit 100. The hollow portion of cartridge 150 holds the substance to be vaporized in direct contact with distal wick 134 or 234. This allows distal wick 134 or 234 to become saturated with the substance to be vaporized. The area of distal wick 134 or 234 that is in direct contact with the substance to be vaporized may be varied in order to deliver different doses of the substance to be vaporized. For example, cartridges 150 with differing diameter hollow portions may be used to deliver different doses of the substance to be vaporized to the user.


Cartridge 150 may be configured to confine the substance to be vaporized by a cap or seal (not shown) on the proximal end. This cap or seal may be punctured by the end of atomizer housing 132, or the pointed end 234-1 of distal wick 234.


When inserted into personal vaporizer unit 100, cartridge standoffs 157 define an air passage between the end of light pipe sleeve 140 and outer main shell 102. This air passage allows air to reach the air passage defined by flat surface 158.


The hollow portion of cartridge 150 also includes one or more channels 154. The end of these channels are exposed to air received via the air passage(s) defined by flat surface 158. These channels allow air to enter the hollow portion of cartridge 150 as the substance contained in cartridge 150 is drawn into a distal wick 134 or 234. Allowing air to enter the hollow portion of cartridge 150 as the substance contained in cartridge 150 is removed prevents a vacuum from forming inside cartridge 150. This vacuum could prevent the substance contained in cartridge 150 from being absorbed into distal wick 134 or 234.


In an embodiment, cartridge 150 may be at least partly translucent. Thus cartridge 150 may act as a light diffuser so that light emitted by one or more of LEDs 125-127 is visible external to personal vaporizer unit 100.



FIG. 70 is a side view of a battery of a personal vaporizer unit. FIG. 71 is an end view of the battery of FIG. 70. FIG. 72 is a perspective view of a battery support of a personal vaporizer unit. As can be seen in FIG. 72, battery support 106 does not form a complete cylinder that completely surrounds battery 104. This missing portion of a cylinder forms a passageway that allows air and the vaporized substance to pass by the battery from the atomizer assembly to the mouthpiece 116 so that it may be inhaled by the user.



FIG. 73 is a top perspective view of a personal vaporizer unit case. FIG. 74 is a bottom perspective view of a personal vaporizer unit case. Personal vaporizer case 500 is configured to hold one or more personal vaporizer units 100. Personal vaporizer case 500 includes a connector 510 to interface to a computer. This connector allows case 500 to transfer data from personal vaporizer unit 100 to a computer via connector 510. Case 500 may also transfer data from personal vaporizer unit 100 via a wireless interface. This wireless interface may comprise an infrared (IR) transmitter, a Bluetooth interface, an 802.11 specified interface, and/or communicate with a cellular telephone network. Data from a personal vaporizer unit 100 may be associated with an identification number stored by personal vaporizer unit 100. Data from personal vaporizer unit 100 may be transmitted via the wireless interface in association with the identification number.


Personal vaporizer case 500 includes a battery that may hold charge that is used to recharge a personal vaporizer unit 100. Recharging of personal vaporizer unit 100 may be managed by a charge controller that is part of case 500.


When case 500 is holding a personal vaporizer unit 100, at least a portion of the personal vaporizer unit 100 is visible from the outside of case 500 to allow a light emitted by personal vaporizer unit 100 to provide a visual indication of a state of personal vaporizer unit 100. This visual indication is visible outside of case 500.


Personal vaporizer unit 100 is activated by a change in impedance between two conductive surfaces. In an embodiment, these two conductive surfaces are part of outer main shell 102 and mouthpiece 116. These two conductive surfaces may also be used by case 500 to charge battery 104. These two conductive surfaces may also be used by case 500 to read data out of personal vaporizer unit 100.


In an embodiment, when a user puts personal vaporizer unit 100 in his/her mouth and provides “suction,” air is drawn into personal vaporizer unit 100 though a gap between the end of outer main shell 102 and cartridge 150. In an embodiment, this gap is established by standoffs 157. Air travels down galley(s) formed by flat surface(s) 158 and the inner surface of light pipe sleeve 140. The air then reaches a “ring” shaped galley between atomizer housing 132, cartridge 150, and light pipe sleeve 140. Air travels to distal wick 134 via one or more holes 132-1, in chamfered surface(s) 132-3. Air travels to distal wick 234 via one or more holes 232-1, in chamfered surface(s) 232-3. Air is also allowed to enter cartridge 150 via one or more channels 154. This air entering cartridge 150 via channels 154 “back fills” for the substance being vaporized which enters distal wick 134. The substance being vaporized is held in direct contact with distal wick 134 or 234 by cartridge 150. The substance being vaporized is absorbed by and may saturate distal wick 134 or 234 and proximal wick 136 or 236.


The incoming air drawn through holes 132-1 displaces from saturated distal wick 134 the substance being vaporized. The displaced substance being vaporized is pulled from distal wick element 134 into a cavity between distal wick 134 and proximal wick 136. This cavity may also contain a heating element that has been heated to between 150-200° C. The displaced substance being vaporized is pulled from distal wick element 134 in small (e.g., atomized) droplets. These atomized droplets are vaporized by the heating element.


In an embodiment, when a user puts personal vaporizer unit 100 in his/her mouth and provides “suction,” air is drawn into personal vaporizer unit 100 though a gap between the end of outer main shell 102 and cartridge 150. In an embodiment, this gap is established by standoffs 157. Air travels down galley(s) formed by flat surface(s) 158 and the inner surface of light pipe sleeve 140. The air then reaches a “ring” shaped galley between atomizer housing 232, cartridge 150, and light pipe sleeve 140. Air travels to distal wick 234 via one or more holes 232-1, in chamfered surface(s) 232-3. Air is also allowed to enter cartridge 150 via one or more channels 154. This air entering cartridge 150 via channels 154 “back fills” for the substance being vaporized which enters distal wick 234. The substance being vaporized is held in direct contact with distal wick 234 by cartridge 150. The substance being vaporized is absorbed by and may saturate distal wick 234 and proximal wick 236.


The incoming air drawn through holes 232-1 displaces from saturated distal wick 234 the substance being vaporized. The displaced substance being vaporized is pulled from distal wick 234 into a cavity between distal wick 234 and proximal wick 236. This cavity may also contain a heating element that has been heated to between 150-200° C. The displaced substance being vaporized is pulled from distal wick 234 in small (e.g., atomized) droplets. These atomized droplets are vaporized by the heating element.


In both of the previous two embodiments, the vaporized substance and air are drawn down a galley adjacent to battery 104, through mouthpiece insulator 112, mouthpiece 116, and mouthpiece cover 114. After exiting personal vaporizer unit 100, the vapors may be inhaled by a user.


The systems, controller, and functions described above may be implemented with or executed by one or more computer systems. The methods described above may be stored on a computer readable medium. Personal vaporizer unit 100 and case 500 may be, comprise, or include computers systems. FIG. 75 illustrates a block diagram of a computer system. Computer system 600 includes communication interface 620, processing system 630, storage system 640, and user interface 660. Processing system 630 is operatively coupled to storage system 640. Storage system 640 stores software 650 and data 670. Processing system 630 is operatively coupled to communication interface 620 and user interface 660. Computer system 600 may comprise a programmed general-purpose computer. Computer system 600 may include a microprocessor. Computer system 600 may comprise programmable or special purpose circuitry. Computer system 600 may be distributed among multiple devices, processors, storage, and/or interfaces that together comprise elements 620-670.


Communication interface 620 may comprise a network interface, modem, port, bus, link, transceiver, or other communication device. Communication interface 620 may be distributed among multiple communication devices. Processing system 630 may comprise a microprocessor, microcontroller, logic circuit, or other processing device. Processing system 630 may be distributed among multiple processing devices. User interface 660 may comprise a keyboard, mouse, voice recognition interface, microphone and speakers, graphical display, touch screen, or other type of user interface device. User interface 660 may be distributed among multiple interface devices. Storage system 640 may comprise a disk, tape, integrated circuit, RAM, ROM, network storage, server, or other memory function. Storage system 640 may be a computer readable medium. Storage system 640 may be distributed among multiple memory devices.


Processing system 630 retrieves and executes software 650 from storage system 640. Processing system may retrieve and store data 670. Processing system may also retrieve and store data via communication interface 620. Processing system 630 may create or modify software 650 or data 670 to achieve a tangible result. Processing system 630 may control communication interface 620 or user interface 660 to achieve a tangible result. Processing system 630 may retrieve and execute remotely stored software via communication interface 620.


Software 650 and remotely stored software may comprise an operating system, utilities, drivers, networking software, and other software typically executed by a computer system. Software 650 may comprise an application program, applet, firmware, or other form of machine-readable processing instructions typically executed by a computer system. When executed by processing system 630, software 650 or remotely stored software may direct computer system 600 to operate as described herein.


The above description and associated figures teach the best mode of the invention. The following claims specify the scope of the invention. Note that some aspects of the best mode may not fall within the scope of the invention as specified by the claims. Those skilled in the art will appreciate that the features described above can be combined in various ways to form multiple variations of the invention. As a result, the invention is not limited to the specific embodiments described above, but only by the following claims and their equivalents.

Claims
  • 1. A personal vaporizer comprising: an air channel structured to receive outside air;a battery;a removable cartridge that holds a substance to be vaporized;a first wick contacting the substance in the removable cartridge through which the substance transfers to the first wick;a second wick receiving the substance from the first wick;a heating element powered by the battery and wrapped around the second wick that heats the substance for vaporization resulting in vapor, wherein the vapor mixes with the outside air;a vaporizer housing for the heating element that contacts the second wick; anda mouthpiece through which the vapor mix passes.
  • 2. The personal vaporizer of claim 1, wherein the vaporizer housing for the heating element includes an air cavity.
  • 3. The personal vaporizer of claim 2, wherein the vaporization is located in the air cavity.
  • 4. The personal vaporizer of claim 3, wherein the vaporizer housing comprises an air hole through which air enters the air cavity.
  • 5. The personal vaporizer of claim 3, wherein the mixing of the vapor and the outside air is located in at least the air cavity.
  • 6. The personal vaporizer of claim 2, wherein the second wick is internal to the vaporizer housing.
  • 7. The personal vaporizer of claim 6, wherein the first wick is external to the vaporizer housing.
  • 8. The personal vaporizer of claim 1, wherein the first wick is in direct contact with the substance to be vaporized in the removable cartridge.
  • 9. The personal vaporizer of claim 1, wherein the vaporizer housing holds the second wick.
  • 10. The personal vaporizer of claim 1, wherein the substance comprises a liquid.
  • 11. The personal vaporizer of claim 10, wherein the first wick is porous and absorbs the liquid from the removable cartridge.
  • 12. The personal vaporizer of claim 1, wherein the air channel is part of the removable cartridge.
  • 13. A personal vaporizer unit comprising: a battery;a removable cartridge that holds a substance to be vaporized;a wick structure comprising a first portion and a second portion, wherein the first portion contacts and absorbs the substance in the removable cartridge, and the second portion receives the substance from the first portion;a heating element powered by the battery and disposed around the second portion that heats the substance for vaporization resulting in vapor;a vaporizer housing for the heating element, wherein the vaporizer housing holds the first portion of the wick, which extends from the vaporizer housing, and further wherein the vaporizer housing encloses the second portion of the wick; anda mouthpiece through which the vapor passes.
  • 14. The personal vaporizer unit of claim 13, wherein the vaporizer housing supports the first portion of the wick, which extends into the substance in the removable cartridge.
  • 15. The personal vaporizer unit of claim 13, wherein the vaporizer housing includes an air cavity and the vaporization is located in the air cavity.
  • 16. The personal vaporizer unit of claim 15, wherein the vaporizer housing comprises an air hole through which air enters the air cavity.
  • 17. The personal vaporizer unit of claim 15, further comprising: an air inlet through which outside air passes, wherein the vapor is mixed with outside air and passed through the mouthpiece.
  • 18. The personal vaporizer unit of claim 17, wherein the mixing of the vapor and the outside air is located in at least the air cavity.
  • 19. The personal vaporizer unit of claim 13, wherein the second portion is internal to the vaporizer housing.
  • 20. The personal vaporizer unit of claim 19, wherein the first portion is external to the vaporizer housing.
  • 21. The personal vaporizer unit of claim 13, wherein the first portion is in direct contact with the substance to be vaporized in the removable cartridge.
  • 22. The personal vaporizer unit of claim 13, wherein the substance comprises a liquid.
  • 23. The personal vaporizer unit of claim 22, wherein the wick structure is porous and absorbs the liquid from the removable cartridge.
  • 24. The personal vaporizer unit of claim 13, further comprising: an air inlet through which outside air passes, wherein the vapor is mixed with the outside air and passed through the mouthpiece.
  • 25. A personal vaporizer unit comprising: an air channel through which outside air passes;a battery;a removable cartridge that holds a substance to be vaporized;a vaporization housing;a porous wick structure comprising an outside wick portion and an inside wick portion, wherein the outside wick portion is outside the vaporization housing and absorbs the substance from the removable cartridge, further wherein the inside wick portion is within the vaporization housing and receives the substance from the outside wick portion;a heating element powered by the battery and wrapped around the inside wick portion that heats the substance for vaporization resulting in vapor, wherein the vapor mixes with the outside air, further wherein the vaporization housing holds the outside wick portion and encloses the inside wick portion; anda mouthpiece in airflow communication with the vaporization housing through which the vapor mix passes.
  • 26. The personal vaporizer unit of claim 25, further comprising: an air cavity in the vaporization housing for the vaporization, wherein the vaporization housing comprises an air hole through which air enters the air cavity.
  • 27. The personal vaporizer unit of claim 26, wherein the mixing of the vapor and the outside air is located in at least the air cavity.
  • 28. The personal vaporizer unit of claim 25, wherein the outside wick portion extends into direct contact with the substance to be vaporized of the removable cartridge.
  • 29. The personal vaporizer unit of claim 25, wherein the inside wick portion enclosed in the vaporization housing receives the substance from the outside wick portion.
  • 30. The personal vaporizer unit of claim 25, wherein the substance comprises a liquid that is wicked to the inside wick portion and to the outside wick portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority as a continuation to U.S. application Ser. No. 14/275,494, entitled “PERSONAL VAPORIZING INHALER WITH TRANSLUCENT WINDOW”, filed on May 12, 2014, which is a continuation application of U.S. application Ser. No. 12/780,875, entitled “PERSONAL VAPORIZING INHALER WITH INTERNAL LIGHT SOURCE,” filed May 15, 2010, now U.S. Pat. No. 8,757,147. This application is related to the following U.S. applications filed on May 15, 2010: Ser. No. 12/780,871, entitled “PERSONAL VAPORIZING INHALER WITH MOUTHPIECE COVER”, Ser. No. 12/780,872, entitled “ACTIVATION TRIGGER FOR A PERSONAL VAPORIZING INHALER”, now U.S. Pat. No. 8,746,240; Ser. No. 12/780,873, entitled “PERSONAL VAPORIZING INHALER CARTRIDGE,” now U.S. Pat. No. 9,861,772; Ser. No. 12/780,874, entitled “ATOMIZER-VAPORIZER FOR A PERSONAL VAPORIZING INHALER”, now U.S. Pat. No. 8,550,068; Ser. No. 12/780,876, entitled “DATA LOGGING PERSONAL VAPORIZING INHALER”, now U.S. Pat. No. 9,095,175; and Ser. No. 12/780,877, entitled “CHARGING CASE FOR A PERSONAL VAPORIZING INHALER,” now U.S. Pat. No. 8,314,591; wherein the entirety of each of the aforementioned applications is hereby incorporated by reference. This application is also related to the following U.S. applications: Ser. No. 14/273,612, entitled “DISTAL END INSERTED PERSONAL VAPORIZING INHALER CARTRIDGE,” filed on May 9, 2014, now U.S. Pat. No. 9,427,711; Ser. No. 14/275,454, entitled “PERSONAL VAPORIZING INHALER ASSEMBLY,” filed on May 12, 2014, now U.S. Pat. No. 9,555,203; Ser. No. 14/274,447, entitled “PERSONAL VAPORIZING INHALER WITH DATA TRANSFER,” filed on May 9, 2014; Ser. No. 14/278,087, entitled “COMMUNICATION BETWEEN PERSONAL VAPORIZING INHALER ASSEMBLIES,” filed on May 15, 2014, now U.S. Pat. No. 9,861,773; and Ser. No. 14/284,994, entitled “VAPORIZER ASSEMBLY AND CARTRIDGE,” filed on May 22, 2014, now U.S. Pat. No. 9,352,288; wherein the entirety of each of the aforementioned applications is hereby incorporated by reference.

US Referenced Citations (391)
Number Name Date Kind
438310 Edison Oct 1890 A
705919 Gill Jul 1902 A
780087 Burt Jan 1905 A
1016844 Moonelis Feb 1912 A
1084304 Vaughn Jan 1914 A
1147416 MacDonald Jul 1915 A
1347631 Jean Jul 1920 A
1446087 Griffin Feb 1923 A
1514682 Wilson Nov 1924 A
1517584 Reece Dec 1924 A
1771366 Wyss et al. Jul 1930 A
1879128 Despe Sep 1932 A
2032695 Gimera Mar 1936 A
2057353 Whittemore, Jr. Oct 1936 A
2086192 Schumaker Jul 1937 A
2104266 McCormick Jan 1938 A
2140516 Cowan Dec 1938 A
2461664 Smith Feb 1949 A
2472282 Burchett Jun 1949 A
2545851 Kardos Mar 1951 A
2959664 Fenn Nov 1960 A
3060429 Winston Oct 1962 A
3200819 Gilbery Aug 1965 A
3203025 Schreur Aug 1965 A
3234357 Seuthe Feb 1966 A
3258015 Ellis et al. Jun 1966 A
3281637 Hultquist Oct 1966 A
3292635 Kolodny Dec 1966 A
3356094 Ellis et al. Dec 1967 A
3385303 Hind May 1968 A
3428053 Schoenbaum Feb 1969 A
3431393 Katsuda Mar 1969 A
3479561 Janning Nov 1969 A
3486508 Sipos Dec 1969 A
3502588 Winberg Mar 1970 A
3516417 Moses Jun 1970 A
3614056 Thornton Oct 1971 A
3651240 Kirkpatrick Mar 1972 A
3685521 Dock Aug 1972 A
3685522 Kleinhans Aug 1972 A
3738374 Bennett Jun 1973 A
3747120 Stemme Jul 1973 A
3766000 Gibson Oct 1973 A
3844294 Webster Oct 1974 A
3860012 Selke Jan 1975 A
3878850 Gibson et al. Apr 1975 A
3931824 Miano et al. Jan 1976 A
3933643 Colvin Jan 1976 A
3934117 Schladitz Jan 1976 A
3943941 Boyd et al. Mar 1976 A
4016878 Castel et al. Apr 1977 A
4044777 Boyd et al. Aug 1977 A
4079742 Rainer et al. Jan 1978 A
4190046 Virag Feb 1980 A
4207457 Haglund Jun 1980 A
4219031 Rainer et al. Aug 1980 A
4219032 Tabatznik Aug 1980 A
4233993 Miano et al. Nov 1980 A
4270552 Jenkins Jun 1981 A
4284089 Ray Aug 1981 A
4286604 Ehretsmann et al. Sep 1981 A
4303083 Burruss, Jr. Dec 1981 A
4326544 Hardwick et al. Apr 1982 A
4340072 Bolt et al. Jul 1982 A
4347855 Lanzillotti et al. Sep 1982 A
4391285 Burnett et al. Jul 1983 A
4506682 Muller Mar 1985 A
4531178 Uke Jul 1985 A
4589428 Keritsis May 1986 A
4629665 Matsuo Dec 1986 A
4635651 Jacobs Jan 1987 A
4637407 Bonanno Jan 1987 A
4676237 Wood Jun 1987 A
4700727 Torigian Oct 1987 A
4714082 Banerjee et al. Dec 1987 A
4735217 Gerth et al. Apr 1988 A
4756318 Clearman et al. Jul 1988 A
4771295 Baker Sep 1988 A
4771795 White et al. Sep 1988 A
4771796 Myer Sep 1988 A
4793365 Sensabaugh, Jr. et al. Dec 1988 A
4797692 Ims Jan 1989 A
4800903 Ray et al. Jan 1989 A
4807809 Pryor et al. Feb 1989 A
4819665 Roberts et al. Apr 1989 A
4823817 Luke Apr 1989 A
4836225 Sudoh Jun 1989 A
4848374 Chard et al. Jul 1989 A
4874000 Tamol et al. Oct 1989 A
4878506 Pinck Nov 1989 A
4892109 Strubel Jan 1990 A
4893639 White Jan 1990 A
4907606 Lilja et al. Mar 1990 A
4917121 Riehl et al. Apr 1990 A
4917128 Clearman et al. Apr 1990 A
4920990 Lawrence May 1990 A
4922901 Brooks et al. May 1990 A
4924886 Litzinger May 1990 A
4941486 Dube Jul 1990 A
4945448 Bremenour Jul 1990 A
4945929 Egilmex Aug 1990 A
4945931 Gori Aug 1990 A
4947874 Brooks et al. Aug 1990 A
4947875 Brooks et al. Aug 1990 A
4961438 Korte Oct 1990 A
4966171 Serrano et al. Oct 1990 A
4968263 Silbernagel Nov 1990 A
4969476 Bale et al. Nov 1990 A
4972855 Kuriyama Nov 1990 A
4977908 Luke Dec 1990 A
4981522 Nichols et al. Jan 1991 A
4986286 Roberts et al. Jan 1991 A
4990939 Sekiya Feb 1991 A
4991606 Serrano et al. Feb 1991 A
5005593 Fagg Apr 1991 A
5019122 Clearman et al. May 1991 A
5020548 Farrier et al. Jun 1991 A
5025814 Raker Jun 1991 A
5033483 Clearman et al. Jul 1991 A
5040551 Schlatter et al. Aug 1991 A
5042510 Curtiss et al. Aug 1991 A
5046514 Bolt Sep 1991 A
5050621 Creighton et al. Sep 1991 A
5060667 Strubel Oct 1991 A
5060671 Counts et al. Oct 1991 A
5060676 Hearn et al. Oct 1991 A
5065776 Lawson et al. Nov 1991 A
5072744 Luke et al. Dec 1991 A
5074321 Gentry et al. Dec 1991 A
5076296 Nystrom et al. Dec 1991 A
5076297 Farrier et al. Dec 1991 A
5092353 Montoya et al. Mar 1992 A
5093894 Deevi et al. Mar 1992 A
5099861 Clearman et al. Mar 1992 A
5101839 Jakob et al. Apr 1992 A
5105835 Drewett et al. Apr 1992 A
5105836 Gentry et al. Apr 1992 A
5105837 Barnes et al. Apr 1992 A
5105838 White et al. Apr 1992 A
5115820 Hauser et al. May 1992 A
5124200 Mallonee Jun 1992 A
5129409 White Jul 1992 A
5144962 Counts et al. Sep 1992 A
5146934 Deevi et al. Sep 1992 A
5148821 Best et al. Sep 1992 A
5159940 Hayward et al. Nov 1992 A
5159942 Brinkley et al. Nov 1992 A
5177424 Connors Jan 1993 A
5178167 Riggs et al. Jan 1993 A
5183062 Clearman et al. Feb 1993 A
5203335 Clearman et al. Apr 1993 A
5211684 Shannon et al. May 1993 A
5224265 Dux Jul 1993 A
5224498 Deevi et al. Jul 1993 A
5240014 Deevi et al. Aug 1993 A
5240016 Nichols et al. Aug 1993 A
5249586 Morgan et al. Oct 1993 A
5255674 Oftedal et al. Oct 1993 A
5261424 Sprinkle et al. Nov 1993 A
5266746 Nishihara Nov 1993 A
5271419 Arzonico et al. Dec 1993 A
5282798 Banerjee et al. Feb 1994 A
5293883 Edwards Mar 1994 A
5322075 Deevi et al. Jun 1994 A
5327915 Porenski Jul 1994 A
5327917 Lekwauwa et al. Jul 1994 A
5345955 Clearman et al. Sep 1994 A
5353813 Deevi et al. Oct 1994 A
5357984 Farrier et al. Oct 1994 A
5360023 Blakely et al. Nov 1994 A
5369723 Counts et al. Nov 1994 A
5372148 McCafferty Dec 1994 A
5388574 Ingebrethsen Feb 1995 A
5388594 Counts et al. Feb 1995 A
5396911 Casey, III et al. Mar 1995 A
5408574 Deevi et al. Apr 1995 A
5468936 Deevi et al. Nov 1995 A
5497791 Bowen Mar 1996 A
5498850 Das Mar 1996 A
5505214 Collins et al. Apr 1996 A
5515842 Ramseyer et al. May 1996 A
5530225 Hajaligol Jun 1996 A
5533530 Young et al. Jul 1996 A
5551451 Riggs et al. Sep 1996 A
5564442 MacDonald et al. Oct 1996 A
5588446 Clearman et al. Dec 1996 A
5593792 Farrier et al. Jan 1997 A
5595577 Bensalem et al. Jan 1997 A
5598868 Jakob et al. Feb 1997 A
5646666 Cowger Jul 1997 A
5649554 Sprinkle et al. Jul 1997 A
5665262 Hajaligol et al. Sep 1997 A
5666977 Higgins Sep 1997 A
5666978 Counts et al. Sep 1997 A
5687746 Rose et al. Nov 1997 A
5692525 Counts Dec 1997 A
5703633 Gehrer Dec 1997 A
5715844 Young et al. Feb 1998 A
5726421 Fleischhauer et al. Mar 1998 A
5727571 Meiring et al. Mar 1998 A
5732685 Nakamura Mar 1998 A
5743251 Howell et al. Apr 1998 A
5745985 Ghosh May 1998 A
5778899 Sato et al. Jul 1998 A
5799663 Gross et al. Sep 1998 A
5819751 Barnes et al. Oct 1998 A
5819756 Mielordt Oct 1998 A
5829453 White et al. Nov 1998 A
5865185 Collins et al. Feb 1999 A
5865186 Volsey, II Feb 1999 A
5878752 Adams et al. Mar 1999 A
5880439 Deevi et al. Mar 1999 A
5894841 Voges Apr 1999 A
5915387 Baggett, Jr. et al. Jun 1999 A
5934289 Watkins et al. Aug 1999 A
5944025 Cook Aug 1999 A
5954979 Counts et al. Sep 1999 A
5967148 Hasrris et al. Oct 1999 A
5996589 St. Charles Dec 1999 A
6033623 Deevi et al. Mar 2000 A
6040560 Fleischhauer et al. Mar 2000 A
6053176 Adams et al. Apr 2000 A
6062213 Fuisz May 2000 A
6089857 Matsuura et al. Jul 2000 A
6095152 Beven et al. Aug 2000 A
6095153 Kessler et al. Aug 2000 A
6102036 Slutsky Aug 2000 A
6125853 Susa et al. Oct 2000 A
6146934 Gardner et al. Nov 2000 A
6155268 Takeuchi Dec 2000 A
6164287 White Dec 2000 A
6182670 White et al. Feb 2001 B1
6196218 Voges Mar 2001 B1
6196219 Hess et al. Mar 2001 B1
6217315 Mifune Apr 2001 B1
6232784 Dulasky May 2001 B1
6234167 Cox et al. May 2001 B1
6285017 Brickell Sep 2001 B1
6289898 Fournier et al. Sep 2001 B1
6311561 Bang Nov 2001 B1
6322268 Kaufmann Nov 2001 B1
6397852 McAdam Jun 2002 B1
6408856 McAdam Jun 2002 B1
6476151 Araki Nov 2002 B1
6501052 Cox Dec 2002 B2
6516796 Cox et al. Feb 2003 B1
6532965 Abhilimen et al. Feb 2003 B1
6537186 Veluz Mar 2003 B1
6578584 Beven et al. Jun 2003 B1
6591841 White et al. Jul 2003 B1
6598607 Adiga et al. Jul 2003 B2
6601776 Oljaca et al. Aug 2003 B1
6615840 Fournier et al. Sep 2003 B1
6620659 Emmma et al. Sep 2003 B2
6688313 Wrenn et al. Feb 2004 B2
6690121 Weindorf Feb 2004 B1
6719443 Gutstein Apr 2004 B2
6722763 Hsu Apr 2004 B1
6730832 Dominguez et al. May 2004 B1
6772756 Shayan Aug 2004 B2
6803545 Blake et al. Oct 2004 B2
6823873 Nichols et al. Nov 2004 B2
6854461 Nichols Feb 2005 B2
6854470 Pu Feb 2005 B1
6885814 Saito Apr 2005 B2
6938986 Macler Sep 2005 B2
6994096 Rostami et al. Feb 2006 B2
7117867 Cox et al. Oct 2006 B2
7284424 Kanke Oct 2007 B2
7293565 Griffin et al. Nov 2007 B2
7337782 Thompson Mar 2008 B2
7445007 Balch Nov 2008 B2
7513253 Kobayashi et al. Apr 2009 B2
7726320 Robinson et al. Jun 2010 B2
7775459 Martins, III et al. Aug 2010 B2
7832410 Hon Nov 2010 B2
7845359 Montaser Dec 2010 B2
7896006 Hamano et al. Mar 2011 B2
7997280 Rosenthal Aug 2011 B2
8079371 Robinson et al. Dec 2011 B2
8127772 Montaser Feb 2012 B2
8314591 Terry et al. Nov 2012 B2
8365742 Hon Feb 2013 B2
8402976 Fernando et al. Mar 2013 B2
8499766 Newton Aug 2013 B1
8528569 Newton Sep 2013 B1
8550069 Alelov Oct 2013 B2
8899228 Robison et al. Dec 2014 B2
20010026788 Piskorz Oct 2001 A1
20010036365 Sanda et al. Nov 2001 A1
20020146242 Vieira Oct 2002 A1
20030011579 Gong Jan 2003 A1
20030033055 McRae Feb 2003 A1
20030108342 Sherwood Jun 2003 A1
20030131859 Li et al. Jul 2003 A1
20030189826 Yoon Oct 2003 A1
20030226837 Blake et al. Dec 2003 A1
20040020508 Earl Feb 2004 A1
20040118401 Smith et al. Jun 2004 A1
20040129280 Woodson et al. Jul 2004 A1
20040149282 Hickle Aug 2004 A1
20040173229 Crooks et al. Sep 2004 A1
20040198127 Yamamoto et al. Oct 2004 A1
20040200488 Felter et al. Oct 2004 A1
20040226568 Takeuchi et al. Nov 2004 A1
20040234916 Hale Nov 2004 A1
20040261802 Griffin Dec 2004 A1
20050016549 Banerjee et al. Jan 2005 A1
20050016550 Katase Jan 2005 A1
20050066986 Nestor et al. Mar 2005 A1
20050115243 Adle Jun 2005 A1
20060016453 Kim Jan 2006 A1
20060093977 Pellizzari May 2006 A1
20060185687 Hearn et al. Aug 2006 A1
20060196518 Hon Sep 2006 A1
20070030306 Okamura Feb 2007 A1
20070062549 Holton, Jr. et al. Mar 2007 A1
20070074734 Braunshteyn et al. Apr 2007 A1
20070102013 Adams et al. May 2007 A1
20070215167 Crooks et al. Sep 2007 A1
20070267031 Hon Nov 2007 A1
20080085103 Beland et al. Apr 2008 A1
20080092912 Robinson et al. Apr 2008 A1
20080257367 Paterno et al. Oct 2008 A1
20080276947 Martzel Nov 2008 A1
20080302374 Wenger et al. Dec 2008 A1
20090095311 Han Apr 2009 A1
20090095312 Herbrich et al. Apr 2009 A1
20090126745 Hon May 2009 A1
20090188490 Han Jul 2009 A1
20090230117 Fernando et al. Sep 2009 A1
20090255534 Paterno Oct 2009 A1
20090272379 Thorens Nov 2009 A1
20090283103 Nielsen Nov 2009 A1
20090320864 Fernando et al. Dec 2009 A1
20100043809 Magnon Feb 2010 A1
20100083959 Siller Apr 2010 A1
20100200006 Robinson et al. Aug 2010 A1
20100229881 Hearn Sep 2010 A1
20100242974 Pan Sep 2010 A1
20100307518 Wang Dec 2010 A1
20100313901 Fernando et al. Dec 2010 A1
20110005535 Xiu Jan 2011 A1
20110011286 Fang Jan 2011 A1
20110036363 Urtsev et al. Feb 2011 A1
20110094523 Thorens et al. Apr 2011 A1
20110120482 Brenneise May 2011 A1
20110126848 Zuber et al. Jun 2011 A1
20110155153 Thorens et al. Jun 2011 A1
20110155718 Greim et al. Jun 2011 A1
20110168194 Hon Jul 2011 A1
20110265806 Alacon et al. Nov 2011 A1
20110266236 Clark Nov 2011 A1
20110309157 Yang et al. Dec 2011 A1
20120042885 Stone et al. Feb 2012 A1
20120060853 Robinson et al. Mar 2012 A1
20120111347 Hon May 2012 A1
20120132643 Choi et al. May 2012 A1
20120227752 Alelov Sep 2012 A1
20120231464 Yu et al. Sep 2012 A1
20120255567 Rose Oct 2012 A1
20120260927 Liu Oct 2012 A1
20120279512 Hon Nov 2012 A1
20120318882 Abelhasera Dec 2012 A1
20130037031 Worm et al. Feb 2013 A1
20130056013 Terry et al. Mar 2013 A1
20130081625 Rustad et al. Apr 2013 A1
20130081642 Safari Apr 2013 A1
20130192619 Tucker et al. Aug 2013 A1
20130255702 Griffith, Jr. et al. Oct 2013 A1
20130306074 Flick Nov 2013 A1
20130319439 Gorelick et al. Dec 2013 A1
20130340750 Thorens et al. Dec 2013 A1
20130340775 Juster et al. Dec 2013 A1
20140000638 Sebastian et al. Jan 2014 A1
20140060554 Collette et al. Mar 2014 A1
20140060555 Chang et al. Mar 2014 A1
20140096781 Sears et al. Apr 2014 A1
20140096782 Ampolini et al. Apr 2014 A1
20140109921 Chen Apr 2014 A1
20140157583 Ward et al. Jun 2014 A1
20140209105 Sears et al. Jul 2014 A1
20140253144 Novak et al. Sep 2014 A1
20140261408 DePiano et al. Sep 2014 A1
20140261486 Potter et al. Sep 2014 A1
20140261487 Chapman et al. Sep 2014 A1
20140261495 Novak et al. Sep 2014 A1
20140270727 Ampolini et al. Sep 2014 A1
20140270729 DePiano et al. Sep 2014 A1
20140270730 DePiano et al. Sep 2014 A1
20140345631 Bowen et al. Nov 2014 A1
Foreign Referenced Citations (42)
Number Date Country
276250 Jul 1965 AU
2293957 Oct 1998 CN
12333436 Nov 1999 CN
1541577 Nov 2004 CN
2719043 Aug 2005 CN
201018927 Feb 2008 CN
201067079 Jun 2008 CN
201085044 Jul 2008 CN
2704218 Aug 1978 DE
102006004484 Aug 2007 DE
0 358 114 Mar 1990 EP
0 430 559 Jun 1991 EP
0 430 566 Jun 1991 EP
0 501 419 Sep 1992 EP
0 503 767 Sep 1992 EP
0 845 220 Jun 1998 EP
0 295 122 Dec 1998 EP
1 584 910 Oct 2005 EP
1 618 803 Jan 2006 EP
1 618 803 Feb 2006 EP
1911 25575 Mar 1912 GB
191125575 Mar 1912 GB
588117 May 1947 GB
755475 Aug 1956 GB
1431045 Apr 1976 GB
2070409 Sep 1981 GB
H9-326299 Dec 1977 JP
2000041654 Feb 2000 JP
P2001-291598 Oct 2001 JP
2002-0067473 Aug 2002 KR
WO 8602528 May 1986 WO
WO 9748293 Dec 1997 WO
WO 9816125 Apr 1998 WO
WO 0028843 May 2000 WO
WO 0237990 May 2002 WO
WO 2004095955 Mar 2004 WO
WO 2004080216 Sep 2004 WO
WO 2004095955 Nov 2004 WO
WO 2005099494 Oct 2005 WO
WO 2007078273 Jul 2007 WO
WO 2007131449 Nov 2007 WO
WO 2007131450 Nov 2007 WO
Non-Patent Literature Citations (12)
Entry
Andrus et al., “Nicotine Microaerosol Inhaler”, Can Respir Journal, vol. 6, No. 6, 1999, pp. 509-512.
Avallone et al., “Mark's Standard Handbook for Mechanical Engineers,” published 1978, p. 15-16 (3 pg.).
Cengel et al., “Thermodynamics: An Engineering Approach,” (5th ed. 2006) (excerpts) (“Thermodynamics”), 9 pgs.
Dally, James W., “Packaging of Electronic Systems: A Mechanical Engineering Approach” (excerpts) (1990), 18 pgs.
Fuchs, N.A. “The Mechanics of Aerosols” (1989), 22 pgs.
Messler, Jr., Robert W., “Joining of Materials and Structures,” Elsevier Butterworth-Heinemann 2004—Excerpt, 4 pgs.
Mosdesign Semiconductor Corp. Datasheet for M1600 LED Drivers (“Mosdesign M1600 Datasheet”), 1 pg.
MPL 502 Series Specifications, Micro Pneumatic Logic, Inc., (Mar. 11, 2006), http://www.pressureswitch.com/PDFs/0502STANDARDA.pdf [https://web.archive.org/web/20060311132848/http://www.pressureswitch.com/PDFs/0502STANDARDA.pdf], 17 pgs.
MPL Pressure Switch Solutions, Micro Pneumatic Logic, Inc., (Product Brochure) (Mar. 11, 2006), http://www.pressureswitch.com/PDFs/2000_MPLBrochure.pdf [https://web.archive.org/web/20060311132419/http://www.pressureswitch.com/PDFs/2000_MPLBrochure.pdf]. 2 pgs.
Rohsenow, Warren M., “Heat, Mass, and Momentum Transfer”, copyright 1961 Prentice-Hall, 3 pgs.
Speck, James A., “Mechanical Fastening, Joining, and Assembly,” Marcel Dekker, Inc. 1997, 4 pgs.
Thermal Ink—Jet Print Cartridge Designer's Guide (2nd Edition Hewlett Packard) (“Jet Print Cartridge Designers Guide”), 12 pgs.
Related Publications (1)
Number Date Country
20180256832 A1 Sep 2018 US
Continuations (2)
Number Date Country
Parent 14275494 May 2014 US
Child 15981303 US
Parent 12780875 May 2010 US
Child 14275494 US