The present invention relates to an atomizing apparatus that atomizes a solution into a fine mist (forms a solution into a fine mist) and carries the mist to the outside.
The technique for atomizing a solution (forming a solution into a mist) with ultrasonic waves has a long history, and thus, various techniques related to atomizing apparatuses are available. For example, the technique for transferring a misted solution by air through the use of fan is available. Apparatuses including such fan are low priced and capable of easily discharging a large amount of mist to the outside.
Alternatively, in some cases, ultrasonic atomizing apparatuses are used in the production of electronic devices. In the field of manufacturing of electronic devices, the ultrasonic atomizing apparatus forms a solution into a mist using ultrasonic waves, and then, discharges the misted solution to the outside with the carrier gas. The solution (mist) carried to the outside is sprayed onto a substrate, so that a thin film for use in an electronic device is deposited onto the substrate.
The prior art documents related to the present invention include Patent Documents 1 to 5.
With the techniques according to Patent Documents 1, 2 and 3, a mist is extracted out of an ultrasonic atomizer by an air sent form a fan. With the techniques according to the Patent Documents 4 and 5, a mist is extracted out of an ultrasonic atomizer by the carrier gas.
Patent Document 1: Japanese Patent Application Laid-Open No. 60-162142 (1985)
Patent Document 2: Japanese Patent Application Laid-Open No. 11-123356 (1999)
Patent Document 3: Japanese Patent Application Laid-Open No. 2009-28582
Patent Document 4: Japanese Patent Application Laid-Open No. 2008-30026
Patent Document 5: Japanese Patent Application Laid-Open No. 2011-131140
In the field of electronic devices, the reaction between moisture in the air and mist or the intrusion of dust in the air causes problems in the film deposition. Thus, the transfer of a misted solution through the use of a fan and the film deposition processing performed with such mist are undesirable in the relevant field.
In view of the above problems, a high-purity gas (or a clean dry air cleared of dust and moisture) is used as the carrier gas for the mist in the above-mentioned ultrasonic atomizing apparatus. To deposit a film by spraying a mist onto a substrate, a larger amount of mist needs to be supplied to the substrate in terms of film deposition efficiency. Such large amount of mist can be supplied by, for example, increasing the amount of carrier gas.
In a case where the amount of the carrier gas for transporting a mist is increased, a burst of mist is sprayed onto the substrate. Consequently, in some cases, the mist adheres to the substrate less efficiently or irregularities in the film deposition are developed due to the turbulence of mist flow. The use of a large amount of high-purity gas increases cost.
Thus, the present invention has an object to provide an atomizing apparatus capable of carrying a large amount of mist (highly-concentrated mist) to the outside with a smaller amount of carrier gas.
To achieve the above-mentioned objective, the atomizing apparatus according to the present invention is an atomizing apparatus that forms a solution into a mist. The atomizing apparatus includes a container that accommodates a solution, a mist generator that forms the solution into a mist, and an inner hollow structure that is located in the container and has a hollow inside. The atomizing apparatus further includes a gas supplying unit and a connecting portion. The gas supplying unit is located in the container and supplies a gas into a gas supply space being a space enclosed by an inner surface of the container and an outer surface of the inner hollow structure. The connecting portion connects the hollow of the inner hollow structure and the gas supply space.
The atomizing apparatus according to the present invention includes the inner hollow structure located in the container. The atomizing apparatus supplies a gas into the gas supply space. The atomizing apparatus includes the connecting portion formed therein. The connecting portion connects the hollow of the inner hollow structure and the gas supply space.
Thus, the gas supplied into the gas supply space fills the gas supply space, and then, moves into the hollow of the inner hollow structure through the connecting portion. Even if the gas is output relatively slowly to the gas supply space, the gas is furiously output from the connecting portion. That is, the atomizing apparatus according to the present invention is capable of carrying a large amount of misted solution out of the atomizing apparatus with a smaller amount of gas supplied into the container.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The present invention relates to an atomizing apparatus that forms a solution into a mist.
In the present invention, the atomizing apparatus includes a container that accommodates a solution and a mist generator that forms the solution into a mist. The atomizing apparatus according to the preset invention further includes an inner hollow structure that is located in the container in such a manner that the inner hollow structure is inserted in the container and has a hollow inside. The inner hollow structure is located in the container, and accordingly, two spaces are formed in the container.
That is, the inside of the container is divided into a hollow (mist generation space) of the inner hollow structure and a space (gas supply space) enclosed by the inner surface of the container and the outer surface of the inner hollow structure. These two spaces (the mist generation space and the gas supply space) are connected through a connecting portion being a narrow passage.
The atomizing apparatus according to the present invention further includes a gas supplying unit located in the container. The gas supplying unit supplies the gas supply space with gas.
The mist atomized by the atomizing apparatus is output to the outside of the atomizing apparatus and used in other apparatuses as, for example, a material in the film deposition processing for electronic devices (such as FPDs, solar cells, LEDs, and touch panels).
The following describes the atomizing apparatus according to the present invention in detail with reference to the drawings.
As shown in
The container 1 may have any shape that has a space formed therein. In the atomizing apparatus 100 illustrated in
In this preferred embodiment, the mist generator 2 is an ultrasonic oscillator 2 that applies ultrasonic waves to the solution in the container 1 to form the solution into a mist (atomize the solution). The ultrasonic oscillator 2 is located on the bottom surface of the container 1. One ultrasonic oscillator 2 may be provided. Alternatively, two or more ultrasonic oscillators 2 may be provided. With reference to the configuration example in
The inner hollow structure 3 is the structure that has a hollow inside. The upper surface portion of the container 1 has an opening formed therein. As shown in
The inner hollow structure 3 may have any shape that has a hollow formed inside. With reference to the configuration example in
The tubular portion 3A is the duct portion having a cylindrical shape. The tubular portion 3A extends from the outside of the container 1 to the inside of the container 1 in such a manner that the tubular portion 3A is inserted from the upper surface of the container 1. To be more specific, the tubular portion 3A is divided into an upper tubular portion located outside the container 1 and a lower tubular portion located in the container 1. The upper tubular portion is fixed from the outer side of the upper surface of the container 1 and the lower tubular portion is fixed from the inner side of the upper surface of the container 1. While being fixed, the upper tubular portion and the lower tubular portion are in communication with each other through the opening provided in the upper surface of the container 1. One end of the tubular portion 3A is connected to, for example, the inside of a thin film deposition apparatus located outside the container 1. The other end of the tubular portion 3A is connected to the upper end side of the truncated cone portion 3B in the container 1.
The external appearance (the side wall surface) of the truncated cone portion 3B has a truncated cone shape. The truncated cone portion 3B has a hollow formed inside. The truncated cone portion 3B has an open upper surface and an open undersurface (or equivalently, does not have an upper surface and an undersurface that enclose the hollow formed inside). The truncated cone portion 3B is located in the container 1. As mentioned above, the upper end side of the truncated cone portion 3B is in connection (communication) with the other end of the tubular portion 3A and the lower end part side of the truncated cone portion 3B is connected to the upper end side of the cylindrical portion 3C.
The truncated cone portion 3B has a cross-sectional shape that broadens from the upper end side to the lower end side. Thus, the side wall of the truncated corn portion 3B on the upper end side has the smallest diameter (equal to the diameter of the tubular portion 3A). The side wall of the truncated corn portion 3B on the lower end side has the largest diameter (equal to the diameter of the cylindrical portion 3C). The diameter of the side wall of the truncated corn portion 3B increases smoothly from the upper end side to the lower end side.
The cylindrical portion 3C is the portion having a cylindrical shape. The cylindrical portion 3C has a height smaller than the height of the truncated corn portion 3B. As mentioned above, the upper end side of the cylindrical portion 3C is in connection (communication) with the lower end side of the truncated corn portion 3B and the lower end side of the cylindrical portion 3C faces the bottom surface of the container 1. With reference to the configuration example in
With reference to the configuration example in
The inner hollow structure 3 having the above-mentioned shape is located in the container 1 in such a manner that the inner hollow structure 3 is inserted in the container 1, and thus, the inside of the container 1 is divided into the two spaces. That is, the inside of the container 1 is partitioned into the hollow portion (the space that is enclosed by the inner side surface of the inner hollow structure 3 and is hereinafter referred to as “mist generation space 3H”) formed in the inner hollow structure 3 and the space (hereinafter referred to as “gas supply space 1H”) defined by the inner surface of the container 1 and the outer side surface of the inner hollow structure 3.
A connecting portion 5 being the clearance that connects the mist generation space 3H and the gas supply space 1H is formed. With reference to the configuration example in
The connecting portion 5 that connects the mist generation space 3H and the gas supply space 1H may have various configurations (see
With reference to the configuration example in
Although the connecting portion 5 may have any given shape and be located at any given position, the connecting portion 5 is preferably located above the liquid surface 15A of the solution 15 and is preferably located in a position closer to the liquid surface 15A.
With reference to the configuration example in
The gas supplying unit 4 is located on the upper surface of the container 1. The gas supplying unit 4 supplies a carrier gas that carries a solution formed into a mist by the ultrasonic oscillators 2 to the outside through the tubular portion 3A of the inner hollow structure 3. The carrier gas is, for example, a highly-concentrated inert gas. As shown in
The carrier gas supplied by the gas supplying unit 4 is supplied into the gas supply space 1H. The carrier gas fills the gas supply space 1H, and then, is introduced to the mist generation space 3H through the connecting portion 5. After filling the gas supply space 1H, the carrier gas is supplied into the mist generation space 3H through the connecting portion 5 that is narrow. Consequently, the gas speed of the carrier gas output from the connecting portion 5 is faster than the gas speed of the carrier gas output from the supply port 4a. In other words, even if the carrier gas is slowly output from the supply port 4a, the carrier gas bursts in the mist generation space 3H from the connecting portion 5. The following configuration is desirably applied to emphasize such flow of the carrier gas.
For example, the opening area of the opening of the connecting portion 5 is desirably smaller than the opening area of the supply port 4a of the gas supplying unit 4. The dimension between the inner wall surface of the container 1 and the outer wall surface of the inner hollow structure 3 in the gas supply space 1H around the connecting portion 5 is desirably smaller than the dimension between the inner wall surface of the container 1 and the outer wall surface of the inner hollow structure 3 in the gas supply space 1H around the gas supplying unit 4 (the supply port 4a). It is desirable that the supply port 4a of the gas supplying unit 4 does not directly face the gas supply space 1H side facing the connecting portion 5. For example, with reference to the configuration example in
The atomizing apparatus 100 according to the present embodiment includes the separator 8 located between the bottom surface of the container 1 and the lower end portion side of the inner hollow structure 3. As shown in
As shown in
As shown in
The space formed between the bottom surface of the container 1 and the bottom surface of the separator 8 is filed with an ultrasonic transmitting medium 9. The ultrasonic wave transmitting medium 9 has the function of transmitting, to the separator 8, ultrasonic oscillation generated by the ultrasonic oscillators 2 located on the bottom surface of the container 1. Thus, to transmit the oscillation energy to the separator 8, the ultrasonic wave transmitting medium 9 is accommodated in the space formed between the bottom surface of the container 1 and the bottom surface of the separator 8. To effectively transmit the ultrasonic oscillation to the separator 8, the ultrasonic wave transmitting medium 9 is preferably a liquid, such as water.
The solution 15 to be formed into a mist is accommodated on the bottom surface of the recessed portion 8A of the separator 8. The liquid surface 15A of the solution 15 is below the position in which the connecting portion 5 is located (see
With reference to the configuration example in
In a case where the solution 15 to be formed into a mist is, for example, a liquid with strong alkalinity or acidity, which would adversely affect the ultrasonic oscillators 2 located on the bottom surface of the container 1, the separator 8 and the ultrasonic wave transmitting medium 9 are desirably included as shown in
The atomizing apparatus 100 according to the present embodiment includes the liquid surface position detection sensor 10 and the solution supplying unit 11.
The solution supplying unit 11 penetrates the container 1 and the inner hollow structure 3 and includes a solution supply port located on the bottom surface side of the container 1. A tank filled with the solution 15 is provided outside the atomizing apparatus 100. The solution supplying unit 11 supplies the solution 15 from the tank to the separator 8 (or the bottom surface of the container 1 in a case where the separator 8 is not provided).
In a case where the solution 15 is formed into a mist by the ultrasonic oscillators 2, the efficiency of mist generation is maximized while the liquid surface 15A is located at a certain position (the solution 15 has a certain depth). Thus, with reference to the configuration in
The liquid surface position detection sensor 10 is the sensor capable of detecting the level position of the liquid surface of the solution 15. The liquid surface position detection sensor 10 penetrates the container 1 and the inner hollow structure 3. A part of the sensor 10 is immersed in the solution 15. The liquid surface position detection sensor 10 detects the position of the liquid surface 15A of the solution 15. When the solution 15 is formed into a mist and carried out of the atomizing apparatus 100, the liquid surface 15A of the solution 15 declines. Thus, the solution supplying unit 11 replenishes (supplies) the container 1 with the solution 15 such that the detection result obtained by the liquid surface position detection sensor 10 reaches the position for maximizing the above-mentioned efficiency of forming the solution 15 into a mist.
That is, the liquid surface position detection sensor 10 and the solution supplying unit 11 are provided, so that the liquid surface 15A of the solution 15 is kept at the level position for maximizing the efficiency of mist generation. The position of the liquid surface 15A for maximizing the efficiency of mist generation has been already found by, for example, experiments and is set, in advance, as the setting value for the atomizing apparatus 100. The atomizing apparatus 100 adjusts the supply of solution 15 from the solution supplying unit 11 on the basis of the setting value and the detection result obtained by the liquid surface position detection sensor 10.
In some cases, during the operation of atomizing the solution 15, a liquid column 6 rises from the liquid surface 15A and thus the liquid surface 15A waves, making it difficult to detect the accurate position of the liquid surface. Thus, a cover is desirably located around the liquid surface position detection sensor 10 to prevent the liquid surface 15A around the liquid surface position detection sensor 10 from waving.
The solution 15 in the container 1 is finely atomized by the ultrasonic oscillators 2, and then, a misted solution 7 fills the mist generation space 3H in the inner hollow structure 3. The misted solution 7 is carried by the carrier gas output from the connecting portion 5 through the tubular portion 3A of the inner hollow structure 3, and then, is output to the outside of the atomizing apparatus 100.
With reference to the configuration example in
Thus, the oscillation planes (piezoelectric elements) of the ultrasonic oscillators 2 are inclined (see the cross-sectional view in
The efficiency of mist generation is improved by increasing the number of ultrasonic oscillators 2. In a case where the plurality of ultrasonic oscillators 2 are located on the bottom surface of the container 1, they are desirably arranged in the following manner in order to control the decline in the efficiency of mist generation.
As mentioned above, the oscillation planes of the individual ultrasonic oscillators 2 are inclined to the liquid surface 15A of the solution 15 to prevent the liquid columns 6 from rising in the direction vertical to the liquid surface 15A. It is desirable that each of the ultrasonic oscillators 2 is not located in the lower position onto which liquid droplets from the liquid column 6 of the solution 15 formed by another one of the ultrasonic oscillators 2 fall. Thus, droplets from the individual liquid columns 6 are mainly prevented from falling onto the spots above any of the ultrasonic oscillators 2, whereby the decline in the efficiency of mist generation can be controlled.
In a case where the plurality of ultrasonic oscillators 2 are provided, the individual ultrasonic oscillators 2 are arranged, for example, as described below to control the decline in the efficiency of mist generation. That is, below the solution 15, the individual ultrasonic oscillators 2 are evenly located on the bottom surface of the container 1 in an annular shape. The diameter of the annular shape is preferably increased to a maximum extent. For example, as shown in the plan view in
The container 1 is formed of a combination of a plurality of members. Some members penetrate through the container 1 or are located in the container 1. For example, the container 1 having such configuration is sealed such that the airtightness in the container 1 is ensured.
Next, the operation of the atomizing apparatus 100 according to the present embodiment is described.
Firstly, the solution supplying unit 11 supplies the solution 15 into the separator 8 from the outside such that the detection result obtained by the liquid surface position detection sensor 10 reaches the predetermined position of the liquid surface that has been set in advance. Then, the detection result obtained by the liquid surface position detection sensor 10 reaches the predetermined position of the liquid surface. Subsequently, the atomizing apparatus 100 supplies a high-frequency power to the ultrasonic oscillators 2. This causes the oscillation planes of the ultrasonic oscillators 2 to oscillate.
The oscillation energy generated by the oscillation of the oscillation planes are propagated to the solution 15 through the ultrasonic wave transmitting medium 9 and the separator 8. Then, the oscillation energy reaches the liquid surface 15A of the solution 15. The ultrasonic waves are not easily propagated through gas. Thus, the oscillation energy that has reached the liquid surface 15A raises the liquid surface 15A of the solution 15, thereby forming the liquid columns 6. The tip portions of the liquid columns 6 are pulled and broken into fine pieces, generating a mist in the form of a large number of fine particles (see the misted solution 7 in
While the mist generation space 3H is filled with the misted solution 7, meanwhile, the gas supplying unit 4 supplies the carrier gas into the gas supply space 1H from the outside. After filling the gas supply space 1H, the carrier gas supplied from the supply port 4a moves to the mist generation space 3H through the connecting portion 5 being a narrow opening.
After filling the gas supply space 1H, the carrier gas is output to the mist generation space 3H though the connecting portion 5 that is narrow. Thus, even if the carrier gas is output relatively slowly from the supply port 4a, the carrier gas is output furiously from the connecting portion 5.
With reference to
As mentioned above, the atomizing apparatus 100 according to the present embodiment includes the inner hollow structure located in the container 1 in such a manner that the inner hollow structure is inserted in the container 1. Thus, the gas supply space 1H and the mist generation space 3H are formed in the container 1, and the gas supply space 1H and the mist generation space 3H are connected through the connecting portion 5 that is narrow.
Thus, the carrier gas supplied into the gas supply space 1H fills the gas supply space 1H, and then, moves into the mist generation space 3H through the connecting portion 5 that is narrow. Thus, even if the carrier gas is output relatively slowly from the supply port 4a, the carrier gas is output furiously from the connecting portion 5. That is, for the atomizing apparatus 100 according to the present embodiment, a large amount of the misted solution 7 (a highly-concentrated mist) can be carried out of the atomizing apparatus 100 by a smaller amount of carrier gas supplied into the container 1.
It has been impossible to output a large amount of mist to the outside with a smaller amount of carrier gas. Meanwhile, the atomizing apparatus 100 according to the present embodiment is capable of efficiently outputting the misted solution 7 out of the atomizing apparatus 100.
An experiment was carried out to verify the effects of the atomizing apparatus 100 according to the present embodiment. The results of this experiment are shown in
The atomizing apparatus 100 and the comparison target atomizing apparatus 200 have the same configuration except for the above-mentioned configuration, and operate in a similar manner.
In the experiment indicated in
As is evident from the experimental results indicated in
For the atomizing apparatus 100 according to the present embodiment, a part of the connecting portion 5 may be defined by the end portion of the inner hollow structure 3. In such configuration, the connecting portion 5 is, as shown in
With such configuration of the connecting portion 5, the carrier gas passing through the connecting portion 5 is output into the mist generation space 3H from the position further below the misted solution 7. Thus, the atomizing apparatus 100 can carry the misted solution 7 to the outside more efficiently.
For the atomizing apparatus 100 according to the present embodiment, the opening of the connecting portion 5 may have an opening area that is smaller than the opening area of the supply port 4a of the gas supplying unit 4. Alternatively, for the atomizing apparatus 100, the dimension between the inner wall surface of the container 1 and the outer wall surface of the inner hollow structure 3 in the gas supply space 1H around the connecting portion 5 may be smaller than the dimension between the inner wall surface of the container 1 and the outer wall surface of the inner hollow structure 3 in the gas supply space 1H around the gas supplying unit 4. Still alternatively, the supply port 4a of the gas supplying unit 4 may not directly face the gas supply space 1H facing the connecting portion 5. These configurations may be optionally combined.
For the atomizing apparatus 100 having the above-mentioned configuration, even if the carrier gas is slowly output from the supply port 4a, the carrier gas can be supplied into the mist generation space 3H more furiously from the connecting portion 5. That is, a larger amount of the misted solution 7 can be output to the outside with a smaller amount of carrier gas.
For the atomizing apparatus 100 according to the present embodiment, the ultrasonic oscillators 2 are located on the bottom surface of the container 1. The separator 8 may be located between the bottom surface of the container 1 and the end portion side of the inner hollow structure 3. In a case where the separator 8 is provided, the portion between the container 1 and the separator 8 is filled with the ultrasonic wave transmitting medium 9 and the solution 15 which is to be formed into a mist is supplied to the upper surface of the separator 8.
With this configuration of including the separator 8 and the ultrasonic wave transmitting medium 9, even if the solution 15 has strong acidity (or strong alkalinity), the solution 15 is prevented from being exposed directly to the ultrasonic oscillators 2, thus allowing for the efficient propagation of the oscillation energy to the solution 15 in the separator 8.
The atomizing apparatus 100 according to the present embodiment may include the plurality of ultrasonic oscillators 2 located therein. This configuration allows the solution 15 to be formed into a mist more efficiently.
An experiment was carried out to verify the effects for the case where the plurality of ultrasonic oscillators 2 are provided. The results of this experiment are shown in
In the experiment indicated in
As is evident form the experimental results indicated in
In a case where the plurality of ultrasonic oscillators 2 are located on the bottom surface of the container 1, the oscillation planes of the ultrasonic oscillators 2 are inclined to the liquid surface of the solution 15 (see
The above-mentioned configuration allows the atomizing apparatus 100 including the plurality of ultrasonic oscillators 2 to form the solution 15 into a mist more efficiently.
The atomizing apparatus 100 according to the present embodiment may include the liquid surface position detection sensor 10 and the solution supplying unit 11. The solution supplying unit 11 may supply the solution 15 into the container 1 such that the level of the liquid surface 15A detected by the liquid surface position detection sensor 10 reaches the predetermined position determined in advance (the level of the liquid surface 15A for maximizing the efficiency of mist generation).
This configuration allows the atomizing apparatus 100 according to the present embodiment to maintain the amount of the solution 15 (the level of the liquid surface 15A) accommodated in the container 1 at the position for maximizing the efficiency of mist generation. Thus, the atomizing apparatus 100 is capable of continuously generating a mist for a long period of time with the excellent efficiency of mist generation.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/071525 | 8/8/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/019468 | 2/12/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4410139 | Nishikawa | Oct 1983 | A |
4731204 | Noma | Mar 1988 | A |
4776990 | Verity | Oct 1988 | A |
5300260 | Keshet | Apr 1994 | A |
5908158 | Cheiman | Jun 1999 | A |
6098897 | Lockwood | Aug 2000 | A |
6127429 | Katusic et al. | Oct 2000 | A |
7721729 | Von Hollen | May 2010 | B2 |
20050218241 | Matsuura | Oct 2005 | A1 |
20080223953 | Tomono | Sep 2008 | A1 |
20080245362 | Moessis | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
202410908 | Sep 2012 | CN |
53-81411 | Jul 1978 | JP |
60-162142 | Aug 1985 | JP |
6-15757 | Mar 1994 | JP |
8-502687 | Mar 1996 | JP |
10-286503 | Oct 1998 | JP |
11-123356 | May 1999 | JP |
2008-30026 | Feb 2008 | JP |
2009-28582 | Feb 2009 | JP |
2010-91240 | Apr 2010 | JP |
2011-131140 | Jul 2011 | JP |
392510 | Jun 2000 | TW |
200911382 | Mar 2009 | TW |
9408727 | Apr 1994 | WO |
Entry |
---|
Office Action dated May 10, 2016 in Japanese Patent Application No. 2015-530624 (with partial English translation). |
Office Action dated Nov. 22, 2016 in Japanese Patent Application No. 2015-530624 (with partial English language translation). |
International Search Report dated Sep. 17, 2013 in PCT/JP13/71525 filed Aug. 8, 2013. |
Combined Taiwanese Office Action and Search Report dated May 19, 2015 in Taiwanese Application No. 102136727 (With partial English translation) (9 pages). |
International Preliminary Report on Patentability and Written Opinion dated Feb. 18, 2016 in PCT/JP2013/071525 (with English Translation). |
Combined Chinese Office Action and Search Report dated Jan. 19, 2017 in Patent Application No. 201380078729.4 (with partial English language translation). |
Office Action dated Jul. 18, 2017 in Chinese Patent Application No. 201380078729.4 (with English language translation). |
Office Action dated Aug. 10, 2017 in Korean Patent Application No. 10-2016-7003197 (with English language translation). |
Office Action dated Apr. 11, 2019, in German Patent Application No. 11 2013 007 315.3 (w/English-language translation), 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20160158788 A1 | Jun 2016 | US |