Atomizing bowl and electrostatic rotary sprayhead unit equipped therewith

Information

  • Patent Grant
  • 6347754
  • Patent Number
    6,347,754
  • Date Filed
    Wednesday, September 27, 2000
    24 years ago
  • Date Issued
    Tuesday, February 19, 2002
    22 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Scherbel; David A.
    • Hwu; Davis
    Agents
    • Browdy and Neimark
Abstract
The invention concerns an atomizing bowl (4) for coating product electrostatic rotary sprayhead unit (1), said bowl comprising a bell (7) for distributing the product made from a conductive material and arranged to be brought to high voltage when the sprayhead unit is in operation, so as to charge electrostatically said product by contact. The invention is characterized in that said bell is electrically connected to at least one corona discharge element (22, 25, 28) from one tapered end (22a, 25a, 25b, 28a), said tapered end being arranged in the proximity of said bowl outer surface. The bowl is electrically connected to a generator capable of detecting variations in the glow currents passing through the discharge elements (22, 25, 28) or the bowl tips.
Description




The present invention relates to an atomiization bowl and to a rotating electrostatic sprayer for atomizing, a coating product, equipped with such a bowl.




It is known to equip a rotating coating-product sprayer with a bowl or bell fast with the rotor of a turbine for drive in rotation, in order to form a cloud of atomized coating product, this cloud being entrained by an electrostatic field and possibly by a flow of air, in the direction of an object to be coated. Essentially, two types of atomization bowls exist, namely atomization bowls made of an electrically conducting material and atomization bowls made of an electrically insulating material.




Bowls made of an insulating material do not allow the coating product to be electrostatically charged, with the result that ancillary means must be provided for charging the coating product through luminous or corona discharges. The charge of the coating product obtained is less efficient, with the result that the effect of the electrostatic field on the coating particles is lesser, the yield of deposit obtained being relatively low.




Bowls made of a conducting material allow the coating product to be electrostatically charged when it flows in contact with the surfaces of the bowl which is taken to high voltage by any appropriate means. These bowls generally present the drawback of constituting high electrical capacitances, potentially dangerous for a user and capable of creating electric arcs likely to set off a fire in the explosive atmosphere of a coating booth.




Furthermore, the electrostatic coating equipment and their peripherals undergo advanced safety tests in order to be sure that they are not likely to provoke an electrical discharge of which the energy would be greater than a predetermined threshold value. Certain standards provide, for example, that the breakdown or discharge energy between a part of the sprayer taken to high voltage and a sphere of small radius disposed at a distance of the order of a centimeter, must be less than 0.24 mJ. Such a value cannot be respected with a known bowl made of electrically conducting material as the edges and plane surfaces that it comprises, in particular near the edge for discharge of the coating product, are capable of producing discharges of much higher energy.




It is a particular object of the invention to overcome these drawbacks, by proposing an atomization bowl allowing a charge of the coating product by contact and for which the discharge or “breakdown” energy is maintained at a level lower than that imposed by the most restrictive standards.




To that end, the invention relates to an atomization bowl for a rotating electrostatic coating-product sprayer, said bowl comprising an end shield for distributing the product provided to be taken to high voltage when the sprayer is operating, so as to charge the product electrostatically by contact, characterized in that the end shield is electrically connected to at least one current discharge element through corona discharge from one end in the form of a tapered point, this end in the form of a tapered point being arranged in the vicinity of an outer surface of the bowl.




Thanks to the invention, the end shield, which constitutes the central part of the bowl, allows a charge by contact of the coating product during flow. The discharge element or elements create privileged paths of corona discharges between the end shield and the outside of the bowl, with the result that no accumulation of energy is possible at a level such that the breakdown energy would exceed the admissible values.




In addition, taking the modelizatioin of an earthed object which approaches the bowl, the approach of the object leads to an increase in the corona discharge Current translated by a drift of the current consumed, this drift being able to be detected by a high voltage generator used for supplying the end shield of the bowl with high voltage. In effect, known generators, such as in particular those of Applicants' patent applcation EP-A-0 219 409, are capable of reacting to an abnornal variation in the current. In this way, the variations in current generated by the discharge element or elements when an earthed object approaches, are detected by the generator sufficiently early for the safety function thereof to cancel the electrical supply before a potentially dangerous discharge of energy is possible.




According to a first advantageous aspect of the invention, the bowl comprises a plurality of discharge elements regularly distributed around its axis of rotation. This plurality of discharge elements makes it possible, when the bowl is switched on, to obtain the desired effect with a symmetry of revolution about the axis of rotation of the bowl, including in the absence of rotation. In addition, this distribution avoids a dynamic lack of balance of the bowl, i.e. an unbalance non-admissible at the speeds of rotation in question.




According to a first, particularly advantageous embodiment of the invention, the end shield is bordered, on its outer periphery, by a substantially annular piece made of a material which is electrically more insulating than the material of the end shield and forming an atomization edge of the bowl and the current discharge element is formed by an insert made of a material which is electrically more conducting than the annular piece and disposed in this annular piece, in electrical contact with the end shield, this insert extending up to the vicinity of an outer surface of the annular piece. The annular piece located on the periphery of the end shield avoids the risks of electrical breakdown between the plane surfaces taken to high voltage and an adjacent earthed object. The inserts, which are advantageously, but not necessarily metallic, constitute particularly effective discharge elements through the insulating or semi-conducting layer made by the annular piece around the end shield.




According to another advantageous aspect of the invention, the insert is partially received in a bore made in the conducting end shield. This particularly simple construction ensures an efficient electrical contact between the end shield and the insert, while guaranteeing its positioning with respect to the other components of the bowl.




According to another advantageous aspect of the invention, and in the case of a bowl comprising a deflector of the flow of coating product disposed opposite a so-called front surface of the end shield, the deflector bears at least one discharge element extending up to an outer, so-called front surface, of the deflector. The presence of this discharge element in the deflector also makes it possible to avoid the accumulation of electrostatic charges in this deflector and in the coating product in the course of flow around this deflector. The discharge element is advantageously an insert disposed along the axis of rotation of the bowl.




According to another advantageous aspect of the invention, the insert or inserts is or are in needle-form and provided with at least one end in the form of a point, this end being flush with the outer surface of the annular piece or of the deflector. In that case, at least one insert is advantageously provided to bear a flange adapted to cooperate with an inner shoulder of a housing for receiving the insert.




According to an advantageous variant embodiment of the invention, at least one insert is provided with two ends in the form of a point, these ends being flush with two outer surfaces of the annular piece, these outer surfaces being oriented respectively towards the axis of rotation and towards the outside of the bowl. This particular arrangement makes it possible to limit the value of the discharge energy both towards the central zone of the bowl and towards the outside.




According to another advantageous aspect of the invention, the end of the insert close to the outer surface of the bowl is disposed in the vicinity of the atomization edge. This arrangement is particularly advantageous, as it is near the atomization edge that there is more risk of encountering an earthed obstacle, such as a trap door or an unclosed door on the bodywork of an automobile in the course of being coated.




According to another, particularly advantageous embodiment of the invention, the discharge element is formed by a point fashioned on the outer surface of the end shield. This aspect of the invention makes it possible to produce an entirely conducting bowl, particularly efficient for the charge of the coating product by contact, while avoiding the above-mentioned problems of discharge with potentially dangerous levels of energy. In effect, the points formed by the discharge elements are supplied with high voltage via the mass of the end shield and constitute as many privileged points of discharge through corona discharge. The point or points are advantageously formed in one piece with the end shield.




The invention also relates to an electrostatic sprayer of coating product which comprises a bowl as described hereinabove and means for electrically connecting the end shield of this bowl to a high voltage generator, this generator being adapted to detect variations in the corona discharge current transiting through the discharge element or elements of the bowl. This sprayer complies with the most demanding safety standards, which corresponds to very high operational safety.











The invention will be more readily understood on reading the following description of three embodiments of an atomization bowl and of a sprayer on which it may be mounted, in accordance with its principle, given solely by way of example and with reference to the accompanying drawings, in which:





FIG. 1

schematically shows a rotating electrostatic coating-product sprayer according to the invention.





FIG. 2

is a front view on a larger scale of the bowl used with the sprayer of FIG.


1


.





FIG. 3

is a section along line III—III in FIG.


2


.





FIG. 4

is a view on a larger scale of two details IV of FIG.


3


.





FIG. 5

is a view similar to the top part of

FIG. 4

for a bowl in accordance with a second embodiment of the invention, and





FIG. 6

is a section similar to

FIG. 3

for a bowl in accordance with a third embodiment of the invention.











Referring now to the drawings, and firstly to

FIG. 1

, a rotating electrostatic coating-product sprayer


1


is shown, which comprises a rotor


2


driven in rotation by any suitable means and in particular by an air turbine or an electric motor. The rotor


2


bears an elastic ring


3


which may be in accordance with the technical teaching of EP-A-0 697 917. The elastic ring


3


makes it possible to render an atomization bowl


4


fast with the rotor


2


. The rotor


2


is traversed by a fixed conduit


5


for conducting coating-product to the vicinity of a central orifice


6


for supplying the bowl


4


arranged in a end shield


7


extending substantially perpendicularly to the axis of rotation XX′ of the rotor


2


, the ring


3


and the bowl


4


.




The rotor


2


is made of an electrically conducting material, for example metal, and connected by any appropriate means to a high voltage generator


8


. The ring


3


and the end shield


7


are also made of electrically conducting materials, with the result that the high voltage issuing from the generator


8


is transmitted as far as the end shield


7


. The end shield


7


is therefore able to charge, electrostatically by contact, the coating product which flows on its surface when it is supplied with high voltage by the generator


8


during operation of the sprayer


1


.




The bowl


4


also comprises a deflector


9


disposed opposite the outlet orifice of the conduit


5


with respect to the end shield


7


, i.e. opposite a so-called front surface


7




a


of the end shield


7


. The deflector


9


is pierced with four conduits


10


which allows, during the bowl-cleaning phases, the flow of part of a solvent coming from conduit


5


on its outwardly directed, so-called front surface


9




a


. The deflector


9


is immobilized with respect to the end shield


7


by screws


11


traversing the end shield


7


and penetrating in rear bosses


9




b


of the deflector


9


.




A substaintially annular piece


20


, made of an electrically insulating plastics material, is disposed around an outer radial portion


7




b


of the end shield


7


and defines an edge


21


for atomization. of the of the coating product when the bowl


4


rotates. The piece


20


is advantageously glued on the end shield


7


. It will also be noted that the respective shapes of the pieces


7


and


20


contribute to an immobilization of the piece


20


on the end shield


7


by cooperation of shapes.




Metallic inserts


22


in needle form are housed in eight blind bores


23


made both in the piece


20


and in the end shield


7


. Each insert


22


comprises a first end


22




a


in the form of a point, disposed flush with the outer surface


20




a


of the piece


20


in the vicinity of the atomization edge


21


. The second end


22




b


is driven in the bottom of the bore


23


which is arranged in the part


7




b


of the end shield


7


.




In this way, the inserts


22


, which are made of metal, are permanently taken to the same electrical potential as the end shield


7


.




When an earthed object, represented by a sphere S in dot-and-dash lines in

FIG. 4

, is brought nearer the atomization edge


21


, a line of discharge L is created as shown in broken lines. The inserts


22


therefore constitute as many discharge elements through corona discharge of the bowl


4


. The line of discharge L results in a consumption of current which may be detected by the generator


8


in accordance with techniques known in particular by EP-A-0 219 409. The generator is then in a position to react to this sudden increase in current by cutting off the supply of the bowl in order to avoid the level of energy potentially attained during a discharge through spark being greater than an imposed value.




It will be understood that the fact that the bowl comprises a plurality of inserts


22


distributed about axis XX′ makes it possible to multiply the effect described hereinabove and to ensure symmetry thereof about this axis.




In addition, and as is more particularly visible in

FIGS. 3 and 4

, a second series of eight inserts


25


is disposed through the piece


20


and the outer radial part


7




b


of the end shield


7


, each insert


25


comprising a first end


25




a


in the form of a point disposed in the immediate vicinity of the outer part


20




a




1


, of the outer surface


20




a.






The points


25




a


of the inserts


25


are directed towards the rear of the bowl


4


, in the direction of the outer surface of a hood


12


of the sprayer


1


shown in dot-and-dash lines in FIG.


1


. In effect, no earthed object can be brought closer to the points


25




a


through the hood


12


which is insulating, with the result that this hood limits the potential approach zone of an earthed object.




As before, upon the approach of an earthed object, represented in dot-and-dash lines by a sphere S, a line of discharge L′ is created from the point


25




a


of the insert


25


.




Each insert


25


bears, at its second end


25




b


, a head or flange


25




c


capable of cooperating with a shoulder


26




a


of a bore


26


for receiving the insert


25


. This makes it possible to position with precision the first end


25




a


of the insert


25


with respect to the outer surface


20




a




1


of the piece


20


. A stopper


27


of glue or of resin is advantageously arranged in that part of the bore


26


opposite the point


25




a


, so that that part


20




a




2


of the outer surface


20




a


directed towards axis XX′ does not present irregularities in which the coating product might accumulate.




The relative immobilization of pieces


7


and


20


is improved by positioning the inserts


25


through two parts


20




b


and


20




c


of the piece


20


disposed on either side of the outer part


7




b


of the end shield


7


.




Returning to

FIGS. 2 and 3

, it will be noted that an insert


28


is arranged in the deflector


9


and comprises a first end


28




a


, in the form of a point, disposed flush with the front surface


9




a


of the deflector


9


. If the deflector


9


is made of electrically conducting material, the insert


28


is taken to the same electrostatic potential as the end shield


7


, with the result that it is capable of generating a line of discharge, as explained hereinbefore with reference to inserts


22


and


25


. It should be noted here that, even if it is arranged within an electrically conducting surface taken to high voltage through the bosses


9




b


, the point of the insert


28


constitutes a privileged zone of discharge with respect to the surface


9




a


of the deflector


9


.




As indicated hereinabove with reference to inserts


22


, the corona discharges generated at the points of the inserts


25


and


28


are detected by the generator


8


.




It is also possible for the deflector


9


to be made of electrically insulating material, in which case the insert


28


is taken to a floating potential. In that case, the point


28




a


also serves for the corona discharge of the electrostatic charges drained by the insert


28


on the surface of the deflector


9


.




Whatever the materials used for the deflector


9


, the insert


28


avoids the electrical capacitance of the conduit


5


, of its support and of the turbine associated with the rotor


2


, discharging through the conduits


10


for rinsing the front surface


9




a


of the deflector.




In the second embodiment of the invention shown in

FIG. 5

, elements similar to those of the embodiment of the preceding Figures bear identical references. This embodiment essentially differs from the preceding one in that the inserts


25


comprise a tapered point at each end


25




a


or


25




b


. This also makes it possible to create a line of discharge L″ towards the surface


20




a


, of the piece


20


when a sphere S, at earth potential, is approached in the direction of point


25




b


. The pointed ends


25




b


avoid the creation of electric arcs or of high-energy discharges between the front circular edge


9




c


of the deflector and an earthed object in the position of the sphere S in FIG.


5


.




In the two embodiments envisaged, the presence of the flange


25




c


and of the shoulder


26




a


guarantees that there is no risk of the inserts


25


being ejected from the bowl under the effect of the intense centrifugal forces to which they are submitted due to the high speeds of rotation of the atomization bowl which may reach, and even exceed, 80 000 revolutions per minute.




The material used for making the end shield


7


is advantageously based on aluminium, which allows it to present a good dimensional stability, which is an essential property when the bowl is rotated at high speed. The material used for the piece


20


may be a polyoxymethylene-based resin. Finally, the inserts


22


,


25


and


28


may be made of steel or aluminium.




The annular piece


20


may also be made of a semi-conducting material, as it suffices that piece


20


has a resistivity greater than that of the inserts


22


or


25


for the latter to constitute privileged paths of discharge. In accordance with another alternative and when the piece


20


is made of an electrically insulating material, the inserts


22


and


25


, and even insert


28


, may be provided to be made of a semi-conducting material.




In the third embodiment of the invention shown in

FIG. 6

, elements similar to those of the embodiment of

FIGS. 1

to


4


bear identical references increased by


50


. The bowl


54


shown in

FIG. 6

may be mounted on the sprayer schematically shown in FIG.


1


. This bowl essentially comprises an end shield


57


made of an electrically conducting material on which a deflector


59


is fixed by means of a plurality of screws


61


. This bowl essentially differs from those of the preceding embodiments in that it does not comprise an annular piece more insulating than the end shield


57


, but, on the contrary, in that the end shield


57


extends radially up to the outside so as to constitute the atomization edge


71


.


57




c


designates the outer peripheral surface of the end shield


57


. On this surface


57




c


, there are provided a plurality of spikes


75




a


integral with the end shield


57


. In the same way, a plurality of spikes


72


are provided on the atomization edge


71


. Finally, spikes


75




b


are disposed on an inner surface


57




d


of the end shield


57


directed towards the deflector


59


.




As before, the spikes


72


to


75




a


and


75




b


constitute as many privileged discharge zones through corona discharge of the electrical capacitance constituted by the end shield


57


as a whole. The variations in consumption of current induced by the corona discharges, when a line of discharge is created, particularly by the approach of an earthed object, may be detected by the generator


8


mentioned with reference to the first embodiment.




The spikes


72


,


75




a


and


75




b


present a height h with respect to the atomization edge


71


or to the surfaces


57




c


and


57




d


of the order of 1 to 2 mm, which allows them to create zones of discharge through corona discharges without presenting any danger for a user manipulating the bowl


54


.




As in the first embodiment of the invention, the deflector


59


may be equipped with an insert for discharge through corona discharge, and may even be provided, in its central part, with a point of the spike


72


type.



Claims
  • 1. Atomization bowl (4) for a rotating electrostatic coating-poduct sprayer (1), said bowl comprising an end shield (7) for distributing the product, made of an electrically conducting material and provided to be taken to high voltage when the sprayer is operating, so as to charge said product electrostatically by contact, characterized in that said end shield is bordered, on its outer periphery (7b), by a substantially annular piece (20) made of an electrically insulating material and forming an atomization edge (21), in that at least one electrically conducting insert (22, 25) for discharge of current by corona discharge from one end (22a, 25a, 25b), is disposed in said annular piece, in electrical contact with said end shield (7), and in that said end (22a, 25a, 25b) of said insert is in the form of a sharp point and extends up to the vicinity of an outer surface (20a) of said annular piece.
  • 2. Atomization bowl according to claim 1, characterized in that said insert (22, 25) is partially received in a bore (23, 26) made in said conducting end shield (7).
  • 3. Atomization bowl according to one of claim 1, comprising a deflector (9) for deflecting the flow of coating product disposed opposite a so-called front surface (7a) of said end shield (7), characterized in that said deflector bears at least one discharge element (28) extending up to a so-called front outer surface (9a) of said deflector.
  • 4. Atomization bowl according to claim 3, characterized in that said discharge element is an insert (28) disposed along the axis of rotation (XX′) of said bowl (4).
  • 5. Atomization bowl according to claim 1, characterized in that said insert or inserts (22, 25, 28) is/are in needle form and provided with at least one end (22a, 25a, 28a) in the form of a point, said end being flush with said outer surface (20a, 20a1, 20a2, 9a) of said annular piece (20) or of said deflector (9).
  • 6. Atomization bowl according to claim 5, characterized in that at least one insert (25) bears a flange (25c) adapted to cooperate with an inner shoulder (26a) of a housing (26) for receiving said insert.
  • 7. Atomization bowl according to claim 5, characterized in that at least one insert (25) is provided with two ends (25a, 25b) in the form of a point, said ends being flush with two outer surfaces (20a1, 20a2 of said annular piece (20), said outer surfaces being oriented respectively towards the axis of rotation (XX′) of the bowl (4) and towards the outside of the bowl.
  • 8. Atomization bowl according to claim 1, characterized in that the end (22a) of said insert (22) close to the outer surface (20a) of said bowl is disposed near said atomization edge (21).
  • 9. Atomization bowl according to claim 1, characterized in that it comprises a plurality of discharge elements or inserts (22, 25; 72, 75a, 75b) regularly distributed around the axis of rotation (XX′) of said bowl (4; 54).
  • 10. Rotating electrostatic coating product sprayer (1), characterized in that it comprises a bowl (4; 54) according to claim 1 and means (2, 3) for electrical connection of the end shield (7, 57) of said bowl to a high voltage generator (8), said generator being adapted to detect variations of the corona discharge current transiting via said discharge elements or inserts (22, 25; 72, 75a, 75b) of said bowl.
  • 11. Atomization bowl (54) for a rotating electrostatic coating-product sprayer (1), said bowl comprising an end shield (57) for distributing the product, made of an electrically conducting material and provided to be taken to high voltage when the sprayer is operating, so as to charge said product electrostatically by contact, characterized in that said end shield is provided, on an outer peripheral surface (57c), with an element for discharge of current by corona discharge in the form of a sharp point (75a) in one piece with said end shield, said sharp point being substantially orthogonal to said outer peripheral surface.
  • 12. Atomization bowl according to claim 11, characterized in that it comprises discharge points (75b) arranged on an inner surface (57d) of said end shield (57) directed towards a deflector (59) of said bowl (54).
  • 13. Atomization bowl according to claim 11, characterized in that it comprises points (72) provided on an atomization edge (71) of said bowl, said points having a height (h) with respect to said edge allowing them to create zones of discharge by corona discharge.
  • 14. Atomization bowl according to claim 11, characterized in that it comprises a plurality of discharge elements or inserts (22, 25; 72, 75a, 75b) regularly distributed around the axis of rotation (XX′) of said bowl (4;54).
  • 15. Rotating electrostatic coating product sprayer (1), characterized in that it comprises a bowl (4; 54) according to claim 11 and means (2, 3) for electrical connection of the end shield (7, 57) of said bowl to a high voltage generator (8), said generator being adapted to detect variations of the corona discharge current transiting via said discharge elements or inserts (22, 25; 72, 75a, 75b) of said bowl.
Priority Claims (1)
Number Date Country Kind
98 04269 Apr 1998 FR
CROSS REFERENCE TO RELATED APPLICATION

The present application is the national stage under 35 U.S.C. 371 of PCT/FR99/00752, filed Mar. 31, 1999.

PCT Information
Filing Document Filing Date Country Kind
PCT/FR99/00752 WO 00
Publishing Document Publishing Date Country Kind
WO99/49982 10/7/1999 WO A
US Referenced Citations (8)
Number Name Date Kind
2901178 Norris Aug 1959 A
4324361 Moos et al. Apr 1982 A
4519549 Yokoe et al. May 1985 A
4737897 Shipley et al. Apr 1988 A
4744513 Meisner et al. May 1988 A
4842203 Kuhn et al. Jun 1989 A
5358182 Cappeau et al. Oct 1994 A
5816508 Hollstein et al. Oct 1998 A
Foreign Referenced Citations (7)
Number Date Country
882 450 Jul 1980 BE
0 094 796 Nov 1983 EP
0 104 394 Apr 1984 EP
0 107 030 May 1984 EP
0 219 409 Apr 1987 EP
0 913 202 May 1999 EP
1 438 510 Apr 1902 FR