This application claims priority to Chinese Patent Application No. 201910308891.X, filed on Apr. 17, 2019. The disclosure of the foregoing application is incorporated herein by reference in its entirety.
The present disclosure relates to an electronic cigarette atomizing device and an electronic cigarette with this atomizing device thereof.
Electronic cigarette, also called e-cigarette, is mainly used to quit smoking and replace traditional cigarettes. It has a similar appearance and similar taste to traditional cigarettes, even has more flavors than traditional cigarettes. It can also make smoke, have taste, and feel like traditional cigarettes. Electronic cigarette is gradually replacing traditional cigarette in the market because it is free of tar, suspended particulates, and other harmful components in traditional cigarette. Small electronic cigarette is portable, so it is very popular.
However, the atomizing device in traditional small electronic cigarette is usually a cartridge pre-filled with juice, and the juice in the juice storage cavity tends to penetrate the core of atomizing core component during transportation, which leads to juice leakage.
The purpose of present disclosure is to provide an electronic cigarette atomizing device, aiming at preventing juice leakage from the electronic cigarette atomizing device during transportation.
To achieve the above purpose, the present disclosure discloses an electronic cigarette atomizing device, which include a base and an atomizing core component. The base includes a juice storage cavity for accommodating cigarette liquid and an installation cavity coupled with the juice storage cavity. The atomizing core component includes a first part, a second part, and a juice guide hole that is coupled to an inner part of the atomizing core component, and is provided on the outer wall of the atomizing core component between the first part and the second part.
In some embodiments, the atomizing core component is configured to be pre-installed on a first position on the base, and when the first part of the atomizing core component is inserted into the installation cavity, the second part of the atomizing core component protrudes outside of the base, and the juice guide hole is covered by the base.
In some embodiments, when the second part of the atomizing core component is squeezed by an external force, the atomizing core component is configured to move to a second position on the base and the juice guide hole connects with the juice storage cavity.
In some embodiments, the juice guide hole is in the juice storage cavity when the atomizing core component is in the second position.
In some embodiments, the base further includes a case with an opening and a seal seat, wherein the seal seat is configured to seal the opening and form the juice storage cavity with inner walls of the case, and the seal seat is provided with the installation cavity.
In some embodiments, the juice guide hole is covered by the seal seat when the atomizing core component is pre-installed at the first position on the base.
In some embodiments, the seal seat is a flexible sealing element. In some embodiments, when the first part of atomizing core component is inserted into the installation cavity of the seal seat, the inner wall of the installation cavity is flexible and closely matched with the outer wall of the atomizing core component.
In some embodiments, when the second part of the atomizing core component is squeezed by external force, the atomizing core component is configured to move towards the base relative to the seal seat.
In some embodiments, the base is further includes an air duct, wherein one end of the air duct protrudes outside of the atomizing device and the other end of the air duct is inserted into the juice storage cavity. In some embodiments, when the atomizing core component is pre-installed at the first position on the base, the first part of the atomizing core component can be inserted into the air duct through the installation cavity.
In some embodiments, the juice guide hole is in the juice storage cavity when the atomizing core component is in the second position.
In some embodiments, the atomizing device further includes a seal ring positioned between the first part and the air duct. The inner ring surface of the sealing ring is sleeved on the outer surface of the first part of the atomizing core component, and the outer ring surface elastically abuts against the inner tube wall of the air duct.
In some embodiments, the seal ring is pre-installed on the air duct and opening on the inner ring surface at the end of the sealing ring facing the installation cavity is gradually expanded.
In some embodiments, the atomizing device further includes a support ring that is protruding on the inner wall of air duct, wherein when the seal ring is pre-installed inside the air duct, the end away from the installation cavity elastically abuts against the support ring.
In some embodiments, a cross-section enclosed by the inner ring surface of the sealing ring is greater than a cross-section enclosed by the inner ring surface of the support ring.
In some embodiments, the atomizing device further includes a limit stop that is protruding on a peripheral surface of the first part of the atomizing core component, and the limit stop is configured to limit the position of the atomizing core component when abutting against the air duct.
In some embodiments, the limit stop is a shoulder-shaped flange or a bump extending along circumferential direction of the first part of the atomizing core component.
In some embodiments, the end of the sealing ring facing the installation cavity is protrudes out of the air duct.
In some embodiments, the atomizing device further includes a limit stop that protrudes on a peripheral surface of second part of the atomizing core component, wherein the limit stop is configured to limit the position of the atomizing core component when abutting against the seal ring.
In some embodiments, the limit stop is a shoulder-shaped convex edge or a projecting part extending along circumferential direction of the second part.
In some embodiments, the atomizing device further includes an escape hole and an air duct. In some embodiments, one end of the air duct protrudes outside of the atomizing device, and the other end of the air duct is inserted into the juice storage cavity. In some embodiments, the escape hole is on a wall of juice storage cavity that is directly opposite to the air duct.
In some embodiments, when the atomizing core component is pre-installed at the first position on the base, the first part the atomizing core component is inserted into the air duct after passing through the installation cavity, the juice storage cavity, and the escape hole.
In some embodiments, the juice guide hole is in the juice storage cavity when the atomizing core component is in the second position on the base.
In some embodiments, the atomizing device further includes a hollow seal sleeve positioned between the first part of the atomizing core component and an inner wall of the escape hole. In some embodiments, the peripheral surface of the seal sleeve is tightly fitted on the inner wall of escape hole.
In some embodiments, the atomizing device further includes a seal groove on the peripheral surface of seal sleeve along the circumferential direction. In some embodiments, the seal sleeve is pre-installed inside the escape hole and is configured to make a hole edge at both ends of the escape hole inserted into the seal groove.
In some embodiments, the hollow seal sleeve is sleeved on part of a peripheral surface of the first part of the atomizing core component, and a length of the hollow seal sleeve is greater than the depth of the escape hole so that the peripheral surface of the hollow seal sleeve can tightly abut against the inner wall of the escape hole when the atomizing core component is at the first position or the second position on the base.
In some embodiments, the juice storage cavity further includes a passing juice orifice that is coupled to the installation cavity. In some embodiments, the installation cavity and the juice storage cavity are independent cavities in the base.
In some embodiments, when the atomizing core component is pre-installed on the first position on the base, a peripheral surface of the atomizing core component is configured to block the passing juice orifice.
In some embodiments, when the atomizing core component moves from the first position on the base to the second position on the base, the juice guide hole is configured to connect with the passing juice orifice.
In some embodiments, a surface of side of the atomizing core component that is directly opposite to the passing juice orifice is configured to tightly attach to the inner wall of base where the passing juice orifice is located so that juice in the juice storage cavity is configured to pass the juice guide hole through the passing juice orifice when the juice guide hole connects with the passing juice orifice.
In some embodiments, an opening of the juice guide hole is greater than an opening of the passing juice orifice.
The present disclosure further discloses an electronic cigarette. The electronic cigarette includes an atomizing device, and the atomizing device includes a base and an atomizing core component. The base includes a juice storage cavity for accommodating cigarette liquid and an installation cavity coupled with the juice storage cavity. The atomizing core component includes a first part, a second part, and a juice guide hole that is coupled to an inner part of the atomizing core component and is provided on an outer wall of atomizing core component between the first part and the second part. The atomizing core component is configured to be pre-installed on a first position on the base, and when the first part is inserted into the installation cavity, the second part protrudes outside of the base, and the juice guide hole is covered by the base. In some embodiments, when the second part of the atomizing core component is squeezed by an external force, the atomizing core component is configured to move to a second position on the base and the juice guide hole connects with the juice storage cavity.
In the technical scheme of present disclosure, the atomizing core component in the atomizing device of electronic cigarette is pre-installed at the first position on the base, so that the juice injection hole provided on the atomizing core component can be covered and blocked by the inner wall of base and juice in the juice storage cavity cannot flow into the atomizing core component. After purchasing the electronic cigarette, users only need to press the atomizing core component from the first position of base to the second position of base, so that the juice guide hole on the atomizing core component can connect with the juice storage cavity, then the juice in the juice storage cavity may flow into the atomizing core component for operation. It may effectively prevent juice leakage from the electronic cigarette atomizing device during transportation.
For a more complete understanding of the present disclosure, or technical schemes in the prior art, drawings in the embodiments or the description of prior art will be briefly introduced. Obviously, drawings in the following description are only some embodiments of present disclosure, it will be apparent to those skilled in the art from this disclosure that other drawings may be easily obtained from these drawings without paying any creative effort.
The realization of objects, functional characteristics, and advantages of present disclosure will be further described in conjunction with the embodiments and with reference to the drawings.
Technical solutions according to embodiments of present disclosure are described clearly and completely in conjunction with the drawings in the embodiments of present disclosure hereinafter. Apparently, the described embodiments are only a few rather than all embodiments of present disclosure. Other embodiments obtained by those skilled in the art without any creative work based on embodiments of present disclosure fall within the scope of protection of present disclosure.
It should be noted that all directional indicators (such as up, down, left, right, front, back, etc.) in the embodiments of the present disclosure are only used to explain the relative position between the components in a specific posture (as shown in the drawings) and movement conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
In the description of the present application, the “first”, “second” are merely used for description, and cannot be understood to indicate or imply relative importance or implicitly indicate the number of the indicated technical features. Therefore, features with a limitation of “first” or “second” can explicitly or implicitly include one or more feature. Furthermore, technical schemes of various embodiments can be combined with each other if only it can be implemented by those of ordinary skill in the art. If a combination of the technical schemes is conflict or impracticable, the combination should be considered as not exist, and not fall in the scope of protection of the present disclosure.
In the present disclosure, unless otherwise expressly defined and limited otherwise, terms “connect,” “couple,” and “fix” should be understood broadly. For example, “fixed” may mean a fixed connection, a detachable connection, an integral connection, a mechanical connection, or an electrical connection. Additionally, “fixed” or “coupled” can be a direct connection, an indirect connection by an intermediary, or an inner connection of two elements, unless expressly defined otherwise. An ordinary skilled person in this field may construe the particular meaning of each of such terms based on the specific descriptions in the present disclosure.
The present disclosure discloses an electronic cigarette, comprising an atomizing device 1000 and a power supply unit supplying electric power to the atomizing device 1000. The atomizing device 1000 comprises a base 100 provided with a juice storage cavity 12 inside and the atomizing core component 200. The atomizing core component 200 is provided with an atomizing cavity 240 and a juice guide hole 230 that connects with the atomizing cavity 240, and a heating component are installed inside the atomizing cavity 240. In some embodiments, when the atomizing device 1000 is installed on the power supply unit, the heating component is electrically coupled to the power supply unit. The heating component heats the juice absorbed from the juice storage cavity to produce smoke under the action of electric power from the power supply unit. Refer to
Furthermore, as shown in
In some embodiments, the base 100 is not limited to the above-mentioned case 10 with the elastic sealing seat 30, so that the juice guide hole 230 can be elastically covered and sealed by the seal seat 30 when the atomizing core component 200 is pre-installed at the first position. For example, in other embodiments of present disclosure, the seal seat 30 and the case 10 both are made of hard material, and flexible sleeves are sleeved on the position where the juice guide hole 230 is provided on the atomizing core component 200. In some embodiments, when the atomizing core component 200 is inserted into the first position, the sleeve can elastically abut against the inner wall of the installation cavity 31. In some embodiments, when the atomizing core component 200 is inserted into the first position, outer surface of the atomizing core component 200 can abut against the inner wall of installation cavity 31 provided on the seal seat 30 to achieve cover and a seal. Both of these embodiments fall in the scope of protection in the present disclosure.
Specifically, as shown in
In some embodiments of the present disclosure, the installation cavity 31 and the juice storage cavity 12 are not limited by the left and right separated arrangement mentioned in above embodiments. For example, in some embodiments, the separated arrangement of the installation cavity 31 and the juice storage cavity 12 may be replaced by right and left separated arrangement, up and down separated arrangement, up and down separation, staggered separation, or the like.
Furthermore, in order to ensure the juice guide hole 230 is aligned to the passing juice orifice 171 when the atomizing core component 200 is installed on the second position of the base, cross section of the first part 210 of atomizing core component 200 is polygonal in the first embodiment of present disclosure. Juice guide hole 230 is provided on each surface of atomizing core component 200 to ensure that juice guide hole 230 is provided on the surface opposite to the partition section 17 when the atomizing core component 200 is pre-installed on the first position.
In some embodiments, it is not limited to adopt polygonal cross section of the first part 210 of atomizing core component 200. For example, a positioning part may be provided too, so that the atomizing core component 200 only can be pre-installed on the base 100 along specified direction to ensure that the alignment of the juice guide hole 230 and the passing juice orifice 171 when the atomizing core component 200 is pre-installed on the second position.
Furthermore, as shown in
Furthermore, it should be understood that, in actual application process, not limit to above embodiments, the installation cavity 31 and the juice storage cavity 12 are two independent chambers. For example, as shown in
The installation cavity 31 is provided on the seal seat 30 where directly opposites to the juice storage cavity 12, and the installation cavity 31 directly connects with the juice storage cavity 12. The case 10 is further provided with a hollow air duct 15, where one end of air duct 15 is inserted into the juice storage cavity 12, and the other end connects with outside. A hollow connecting tube 2101 is convexly provided on the first part 210 of atomizing core component 200. In some embodiments, when the atomizing core component 200 is pre-installed on the first position, the first part 210 of atomizing core component 200 can be inserted along the installation cavity 21 provided on the seal seat 30, and the end of connecting tube 2101 away from the first part 210 can be pre-inserted into the air duct 15, so that the atomizing cavity 240 in the atomizing core component 200 can connect with the air channel of air duct 15. At the same time, the juice guide hole 230 provided on the atomizing core component 200 is covered and sealed by the seal seat 30. In some embodiments, when the user applies squeezing force on the second part 220 of the atomizing core component 200 to push the atomizing core component 200 into the base 100 further until the second position, the juice guide hole 230 provided on the surface of the atomizing core component 200 can be exposed inside the juice storage cavity 12. Furthermore, the juice inside the juice storage cavity 12 may flow into the atomizing cavity 240 inside the atomizing core component 200 along the juice guide hole 230 and be atomized by heating components to generate smoke. Furthermore, the atomizing core component 200 is inserted into the juice storage cavity 12, so that the juice guide hole 230 can be directly exposed inside the juice storage cavity 12 to facilitate penetration of juice. A plurality of juice guide holes can be provided on the surface of the atomizing core component 200 to improve penetration rate further and ensure supply of juice during atomizing.
Specifically, as shown in
Furthermore, as shown in
Furthermore, as shown in
In some embodiments, the seal ring 250 is not limited to the one that pre-installed on the air duct 15 and with one gradually expanded end. For example, in some embodiments of present disclosure, the seal ring 250 may also be pre-sleeved on the peripheral surface of connecting tube 2101, and the end of connecting tube 2101 facing to the installation cavity 31 is gradually expanded to facilitate insertion.
Furthermore, as shown in
Furthermore, as shown in
Furthermore, as shown in
Furthermore, as shown in
In some embodiments, the limit stop 2102 is not limited to the one that abuts against the end surface of air duct 15 to prevent users from exerting too much force as mentioned in above embodiment. For example, as shown in
Specifically, as shown in
In some embodiments, the air duct 15 is not limited by above embodiments in the way inserted into the juice storage cavity 12. For example, as shown in
In some embodiments, when the atomizing core component 200 is pre-installed at the first position on the base 100, the connecting tube 2101 on the first part 210 is inserted into the air duct 15 after passing through the installation cavity 31, the juice storage cavity 12, and the escape hole 121 in turn. In some embodiments, when the atomizing core component 200 moves from the first position to the second position, the juice guide hole 230 is in the juice storage cavity 12 to prevent leakage of juice during transportation.
Furthermore, as shown in
Specifically, as shown in
In some embodiments, the seal sleeve 122 is not limited to the manner wherein the seal groove 1221 is pre-installed in the escape hole 121. For example, the length of seal sleeve 122 may also be set to be greater than the depth of escape hole 121. Then, the sleeve of seal sleeve 122 is on part of peripheral surface of first part 210, so that the peripheral surface of seal sleeve 122 can tightly abut against the inner hole wall of escape hole 121 when the atomizing core component 200 is at the first position and the second position on the base 100, which can effective prevent leakage of juice from the gap between the seal sleeve 122 and the escape hole 121.
Furthermore, as shown in
In some embodiments, it is not limited to the above-mentioned method of supporting and limiting the seal seat 30 by providing a step inside the case 10. For example, in some embodiments of the present disclosure, a flange (not illustrated) may be provided on the outer periphery of one end of seal seat 30, so that when the seal seat 30 is installed on the case 10, one end of the seal seat can be inserted into the case 10, and the flange provided on the other can abut against the end edge of the opening 11 of case 10 to prevent the seal seat 30 from excessively inserted into the case 10 under excessive external squeezing force.
Specifically, as shown in
Furthermore, as shown in
Specifically, as shown in
Furthermore, as shown in
Specifically, as shown in
Specifically, as shown in
In some embodiments, as shown in
Specifically, the shapes of the large diameter section 311 and the second part 220 may be adapted to be polygonal, elliptical, or slotted hole shapes. In some embodiments, in order to facilitate the disassembly of atomizing core component 200, a buckle groove is provided on one side wall of the large diameter section 311, so that the outer peripheral surface of second part 220 is exposed, or the long side of second part 220 is designed to be slightly smaller than the long axis of large diameter section 311.
And when the atomizing core component is inserted into the second position, the outer end surface of second part is lower than or aligned vertically the outer end face of seal seat, which can effectively prevent the atomizing core component from being easily pulled out.
In some embodiments, the first position is not limited to that when the second part 220 is stagger-abutted against the large diameter section 311 in above mentioned embodiment, then rotate to prevent the second part 220 from being accidentally pressed into the installation cavity 31. For example, in other embodiments of present disclosure, the atomizing device 1000 may further be provided with a protective cover 300, and the protective cover 300 may be detachably installed on the base 100. In some embodiments, when the atomizing core component 200 is pre-installed in the first position of base 100, the first part 210 is inserted into the installation cavity 31, and the second part 220 is covered by the protective cover 300 in the base 100, which can effectively prevent the second part 220 from being squeezed by mistake and pressed into the installation cavity 31. Additionally, in some embodiments, the protective cover 300 can effectively prevent juice from leaking between the small diameter section 312 and the first part 210 when the atomizing core component 200 is in the first position and is rotated to the second position.
Specifically, as shown in
Specifically, as shown in
Specifically, the outer edge surface of shoulder-shaped convex edge protrudes outside the peripheral surface of protective cover 300, so as to provide height difference between the protective cover 300 and the shoulder-shaped convex edge when the protective cover 300 is buckled on the case 10, because a step is formed. In some embodiments, when the user needs to pull out the protective cover 300, the step shows certain limit to the user's finger, which is convenient for the user to apply a force.
Specifically, as shown in
In some embodiments, the clamp part 14 is not limited to be provided on the outer peripheral surface of the case 10 in above mentioned embodiment. For example, in some embodiments, clamp part 14 may also be provided in the cavity inside the protective cover 300, the manner of interference clamping with the outer surface of case 10.
Specifically, both the cover body and the case 10 are made of light-transmitting materials, which is effective for the user to observe the remaining amount of juice stored in the case 10 to avoid low juice level and paste core.
Further, the power supply device is provided with a receiving cavity corresponding to the atomizing device 1000, when the atomizing device 1000 is inserted into the receiving cavity, the end of base 100 provided with the atomizing core component 200 is inserted into the receiving cavity, and the stop part 13 is abutted against the outer cavity edge of receiving cavity upon contact to effectively prevent the atomizing core component 200 from being excessively inserted into the power supply device, resulting in excessive squeezing of the output pin inside the power supply device which can lead to damage. At the same time, the clamp part 14 protruding from the outer peripheral surface of case 10 is interference-fitted with the inner surface of receiving cavity, so as to partially fix the case 10 in the receiving cavity.
Specifically, the stop part 13 and corresponding case 10 are made of light-transmitting materials. Therefore, when the atomizing device 1000 is partially inserted into the receiving cavity, the stop part 13 is accommodated in the receiving cavity to form a window for the user to observe the remaining juice level inside the case 10, to further prevent the case 10 of the atomizing device 1000 from being inserted into the power supply device during use, resulting in the user being unable to observe the remaining juice level inside the case 10.
Specifically, as shown in
Specifically, if the atomizing device 1000 is applied to a disposable electronic cigarette, capacity of the built-in battery in the power supply device is slightly greater than the amount of electricity required by atomization of pre-stored juice using the atomizing device 1000. For example, 5% or 10% greater than required amount of electricity to prevent power loss during transportation and sale cycle. In this embodiment, the juice stop plug 50 includes a plug head 51 and a plug body 52 that are sequentially inserted into the juice injection hole 16. For example, when the juice stop plug 50 is inserted into the juice injection hole 16 with interference, the outer end surface of plug body 52 is lower than the surface of outer edge of juice injection hole 16 or aligned vertically with the surface of outer edge of juice injection hole 16, so that the juice stop plug 50 is completely accommodated in the juice injection hole 16. Therefore, it is difficult to pull out the juice stop plug again to inject juice and form the closed-type disposable atomizing device 1000. It can effectively prevent the user from refilling juice after the pre-stored juice in the juice storage cavity 12 is used up while the battery still has a certain amount of residual power, resulting in the waste of juice.
Specifically, as shown in
Specifically, as shown in
Some embodiments are not limited to the above-described embodiment in which the plug head 51 is smaller and the plug body 52 is larger. For example, in other embodiments of present disclosure, the opening 11 of juice injection hole 16 facing outside can also be designed to be gradually expanded, so as to facilitate the way of inserting the juice stop plug 50. In some embodiments, an inner diameter of the juice injection hole 16 can be designed to gradually increase from the inside to the outside.
Specifically, the cross sections of juice stop plug 50 and the juice injection hole 16 are central symmetry, for example, any one of circular, oval, rectangular, oblong hole, etc., so that the juice stop plug 50 can be inserted along different directions and different angles, further facilitating installation by user. In some embodiments, the juice injection hole 16 has a round hole shape.
Furthermore, as shown in
Specifically, as shown in
Specifically, as shown in
Specifically, in some embodiments of the present disclosure, a sealing seat 30 is installed at the bottom of case 10, and the atomizing core component 200 is inserted from the seal seat 30 at the bottom of case 10 and is coupled to the air duct 15 at the top of the case 10. In some embodiments, a vent hole is formed on the side of the air duct 15 connecting with the outside of the device, for a user to smoke.
To facilitate juice injection, the juice injection holes 16 is set to two, so that the juice can be injected into one of the injection holes 16 during the juice injection process, and the other juice injection hole 16 exhaust. Furthermore, the juice injection hole 16 is provided on the top of case 10 to facilitate juice injection.
At the same time, the atomizing device 1000 further includes the seals 40, and the seals 40 is made of silicone material. The seals 40 includes an installation seat 55 and two juice stop plugs 50 convexly provided on the surface of the seals 40. The vent hole is in the middle of two juice injection holes 16 and is lower than the plane set by the two juice injection holes 16 to form a stepped groove. In some embodiments, when the seals 40 is set on the base 100, the two-juice stop plugs 50 are inserted into the two juice injection holes 16 to block the two juice injection holes 16. The installation seat 55 is inserted into the stepped groove and is provided with an air passage 551 connecting with outside of the device, and the air passage 551 guides the airflow of the vent hole to the outside for the user to smoke. At this point, the vent hole is provided at the lower end of juice injection hole 16 and between the two juice injection holes 16, so that the seals 40 not only seal the juice injection hole 16, but also achieve positioning by inserted into the stepped groove to prevent deformation and surrounds the vent hole to guide the airflow. Due to the fast heat dissipation of silicone, the airflow can be cooled when passing through the air passage 551 to avoid hot in mouth.
Furthermore, an air guide edge 20 of case 10 is further convexly provided on the outer edge of vent hole. In some embodiments, when the installation seat 55 is inserted into the stepped groove, the air guide edge 20 can be inserted into the air passage 551, and the air channel in the air guide edge 20 can connect the air path of the air duct 15 and the air passage 551.
Furthermore, an accommodation slot 19 is further provided on the case 10, the two juice injection holes 16 are provided on the surface of the accommodation slot 19 facing the slot opening, and the seals 40 is accommodated in the accommodation slot 19 when installed in the case 10. It effectively prevents the seals 40 from completely protruding out of the case 10 and occupying large space.
The present disclosure also discloses an electronic cigarette. The electronic cigarette includes a power supply device for the electronic cigarette and an atomizing device 1000 for the electronic cigarette. The specific structure of atomizing device 1000 for the electronic cigarette refers to above mentioned embodiment. The electronic cigarette adopts all the technical schemes of all above embodiments, therefore have at least all the beneficial effects brought by the technical schemes of the above embodiments, which will not be repeated here.
The above only describes preferred embodiments of present disclosure and is not intended to limit the patent scope of present disclosure. Any equivalent structural transformation made by using contents of the description and drawings of the present disclosure, or directly or indirectly used in other relevant technical fields under the inventive concept of the present disclosure shall be included within the protection scope of patent of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201910308891.X | Apr 2019 | CN | national |