Prosthetic heart valves, including those for insertion into atrioventricular valves (tricuspid and mitral valves) are susceptible to various problems, including problems with insufficient articulation and sealing of the valve within the native valve annulus, pulmonary edema due to poor atrial drainage, perivalvular leaking around the install prosthetic valve, lack of a good fit for the prosthetic valve within the native valve annulus, atrial tissue erosion, excess wear on the Nitinol structures, interference with the aorta at the anterior side of the mitral annulus, lack of customization, and thrombus formation, to name a few. Accordingly, there is a need for a prosthetic heart valve that can address some or all of these problems.
Moreover, there are a variety of different delivery approaches for delivering and deploying a prosthetic heart valve into atrioventricular valves and depending on the delivery approach the desired features and structure of a prosthetic heart valve can vary. For example, in transvascular delivery of a prosthetic heart valve it is desirable to have a prosthetic heart valve that can have an expanded configuration for implantation within the heart and a collapsed or compressed configuration that has a sufficiently small outer perimeter or diameter to allow the prosthetic heart valve to be placed in a relatively small delivery catheter or sheath. In such embodiments of a prosthetic heart valve, it is also desirable for features of the prosthetic heart valve, such as those described above, to be maintained.
In some embodiments, a prosthetic heart valve can include an outer frame coupled to an inner frame such that the outer frame can be moved between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame. The inner frame and the outer frame define between them an annular space. In some embodiments, a pocket closure bounds the annular space to form a pocket in which thrombus can form and be retained. The pocket closure can include a stretchable pocket covering that can move from a first position in which the pocket covering has a first length when the outer frame is in the first position relative to the inner frame and a second position in which the pocket covering has a second length greater than the first length when the outer frame is in the second position relative to the inner frame.
Prosthetic heart valves are described herein that include an outer frame coupled to an inner frame. The outer frame and the inner frame define between them an annular space, and a pocket closure bounds the annular space to form a pocket in which thrombus can form and be retained. In some embodiments, a prosthetic heart valve includes an outer frame coupled to an inner frame such that the outer frame can be moved between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame. In such an embodiment, the pocket closure can include a stretchable pocket covering that can move from a first position in which the pocket covering has a first length when the outer frame is in the first position relative to the inner frame and a second position in which the pocket covering has a second length greater than the first length when the outer frame is in the second position relative to the inner frame.
In some embodiments, prosthetic heart valves described herein can be configured to be moved to an inverted configuration for delivery of the prosthetic valve to within a heart of a patient. For example, in some embodiments, a prosthetic valve includes an outer frame that can be inverted relative to an inner frame when the prosthetic valve is in a biased expanded configuration. The prosthetic mitral valve can be formed with, for example, a shape-memory material. After inverting the outer frame, the prosthetic valve can be inserted into a lumen of a delivery sheath such that the prosthetic valve is moved to a collapsed configuration.
The delivery sheath can be used to deliver an inverted prosthetic valve as described herein to within a patient's heart using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., prosthetic mitral valve) where the inverted prosthetic valve would enter the heart through the atrium of the heart. For example, the prosthetic valves described herein can be delivered using a transfemoral delivery approach as described in International Application No. PCT/US15/14572 (the '572 PCT application) incorporated by reference above or via a transatrial approach, such as described in U.S. Provisional Patent Application Ser. No. 62/220,704, entitled “Apparatus and Methods for Transatrial Delivery of Prosthetic Mitral Valve,” filed Sep. 18, 2015 (“the '704 provisional application”), and described in U.S. patent application Ser. No. 15/265,221 filed Sep. 14, 2016 (the '221 application”), the entire disclosures of which are incorporated herein by reference in their entirety. In another example, an inverted valve as described herein could be delivered via a transjugular approach, via the right atrium and through the atrial septum and into the left atrium, as described in the '221 application. The prosthetic valves described herein can also be delivered apically if desired. After the delivery sheath has been disposed within the left atrium of the heart, the prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic valve assumes its biased expanded configuration. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart.
A schematic representation of a prosthetic heart valve 100 is shown in
Although not separately shown in the schematic illustration of outer frame assembly 110 in
Outer frame 120 can provide several functions for prosthetic heart valve 100, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 140, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 100 and the native heart valve apparatus.
Outer frame 120 is preferably formed so that it can be deformed (compressed and/or expanded) and, when released, return to its original (undeformed) shape. To achieve this, outer frame 120 is preferably formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may be used.
Outer frame 120 is preferably formed from a laser cut, thin-walled tube of Nitinol®. The laser cuts form regular cutouts in the thin Nitinol® tube. The tube can be expanded radially, placed on a mold or mandrel of the desired shape, heated to the martensitic temperature, and quenched. The treatment of the frame in this manner will form an open lattice frame structure, and may have a flared end or cuff at the atrium end portion 116 of outer frame 120. Outer frame 120 thus has shape memory properties and will readily revert to the memory shape at the calibrated temperature. Alternatively, outer frame 120 may be constructed from braided wire or other suitable material.
Inner valve assembly 140 is shown schematically in more detail in
As shown in
At the lower, or ventricle end, leaflets 170 may have a smaller outer perimeter than outer covering 160. Thus, the free lower edges of the leaflets 170, between commissure posts 152 (each portion of leaflets 170 between adjacent commissure posts being referred to as a “belly” of leaflets 170) are spaced radially from the lower edge of outer covering 160. This radial spacing facilitates movement of the leaflets from the open position in
The outer covering and the inner covering of outer frame assembly 110, outer covering 160 and leaflets 170 may be formed of any suitable material, or combination of materials. In some embodiments, the outer covering and the inner covering of outer frame assembly 110, outer covering 160 and leaflets 170 may be formed of a tissue. In some embodiments, the tissue is optionally a biological tissue, such as a chemically stabilized tissue from a heart valve of an animal, such as a pig, or pericardial tissue of an animal, such as cow (bovine pericardium) or sheep (ovine pericardium) or pig (porcine pericardium) or horse (equine pericardium). Examples of suitable tissue include that used in the products Duraguard®, Peri-Guard®, and Vascu-Guard®, all products currently used in surgical procedures, and which are marketed as being harvested generally from cattle less than 30 months old. Alternatively, valve leaflets 170 may optionally be made from pericardial tissue or small intestine submucosal tissue.
Synthetic materials, such as polyurethane or polytetrafluoroethylene, may also be used for valve leaflets 170. Where a thin, durable synthetic material is contemplated, e.g. for the outer covering or the inner covering of outer frame assembly 110, synthetic polymer materials such as, for example, expanded polytetrafluoroethylene or polyester may optionally be used. Other suitable materials may optionally include thermoplastic polycarbonate urethane, polyether urethane, segmented polyether urethane, silicone polyether urethane, silicone-polycarbonate urethane, and ultra-high molecular weight polyethylene. Additional biocompatible polymers may optionally include polyolefins, elastomers, polyethylene-glycols, polyethersulphones, polysulphones, polyvinylpyrrolidones, polyvinylchlorides, other fluoropolymers, silicone polyesters, siloxane polymers and/or oligomers, and/or polylactones, and block co-polymers using the same.
In another embodiment, valve leaflets 170 may optionally have a surface that has been treated with (or reacted with) an anti-coagulant, such as, without limitation, immobilized heparin. Such currently available heparinized polymers are known and available to a person of ordinary skill in the art.
As shown in
A tapered annular space or pocket 185 (also referred to herein as “atrial pocket”) is thus formed between the outer surface of inner valve assembly 140 and the inner surface of outer frame assembly 110, open to the atrium end of valve assembly 100. When valve assembly 100 is disposed in the annulus of a native heart valve, blood from the atrium can move in and out of pocket 185. The blood can clot, forming thrombus. To enhance clotting, ingrowth of tissue into the surfaces of valve 100, and produce other benefits, the pocket can be covered, or enclosed, by a pocket closure 180 (also referred to as an “atrial pocket closure”).
Pocket closure 180 can be formed at least in part of any suitable material that is sufficiently porous to allow blood, including particularly red blood cells, to enter pocket 185, but is not so porous as to allow undesirably large thrombi to leave the pocket 185. For example, pocket closure 180 may be formed at least in part from a woven or knit polyester fabric with apertures less than 160μ, and preferably between 90μ and 120μ. In some embodiments, the pocket closure 180 can be formed at least in part from a braided Nitinol material that has a desired porosity. In some embodiments, the pocket closure 180 can be formed at least in part from a braided tubular Nitinol material. It is not necessary for the entirety of pocket closure 180 to be formed of the same material, with the same porosity. For example, some portions of pocket closure 180 may be formed of a less porous, or blood impermeable, material and other portions formed of material of the porosity range noted above. It is also contemplated that a portion of the outer frame assembly 110 or the inner valve assembly 140 may be formed with an aperture that communicates with pocket 180, covered by a closure formed of material having the desired porosity, thus providing another path by which blood may enter, but thrombi are prevented from leaving, atrial pocket 185.
The outer surface of inner valve assembly 110, and/or the inner surface of outer frame assembly 140, need not by circular in cross-section as shown schematically in
Pocket closure 180 serves to trap and/or slow the flow of blood within pocket 185, which can increase formation and retention of thrombus in pocket 185. It also promotes active in-growth of native tissue into the several coverings of prosthetic heart valve 100, further stabilizing valve 100 in the native heart valve. The material forming the outer covering of inner valve assembly 140 can also be hardened or stiffened, providing better support for leaflets 170. Also, a mass of thrombus filling pocket 185 can serve as potting for inner valve assembly 140, further stabilizing the valve assembly. Greater stability for inner valve assembly 140 can provide more reliable coaption of valve leaflets 170, and thus more effective performance. The mass of thrombus can also stabilize the outer frame assembly 110 after it has been installed in, and flexibly conformed to, the native valve apparatus. This can provide a more effective seal between prosthetic heart valve 100 and the native valve apparatus, and reduce perivalvular leakage.
As shown, outer frame assembly 210 includes an outer frame 220, covered on all or a portion of its outer face with an outer covering 230, and covered on all or a portion of its inner face by an inner covering 232. Outer frame 220 can provide several functions for prosthetic heart valve 200, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 240, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 200 and the native heart valve apparatus.
Outer frame 220 has a biased expanded configuration and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original unconstrained shape. To achieve this, outer frame 220 can be formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used.
As best shown in
Inner valve assembly 240 includes an inner frame 250, an outer covering 260, and leaflets 270. As shown, the inner valve assembly 240 includes an upper portion having a periphery formed with multiple arches. The inner frame 250 includes six axial posts or frame members that support outer covering 260 and leaflets 270. Leaflets 270 are attached along three of the posts, shown as commissure posts 252 (best illustrated in
Although inner valve assembly 240 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 270 are movable between an open configuration and a closed configuration in which the leaflets 270 coapt, or meet in a sealing abutment.
Outer covering 230 of the outer frame assembly 210 and inner covering 232 of outer frame assembly 210, outer covering 260 of the inner valve assembly 240 and leaflets 270 of the inner valve assembly 240 may be formed of any suitable material, or combination of materials, such as those discussed above for valve 100. In this embodiment, the inner covering 232 of the outer frame assembly 210, the outer covering 260 of the inner valve assembly 240, and the leaflets 270 of the inner valve assembly 240 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 230 of the outer frame assembly 210 is formed, at least in part, of polyester.
Prosthetic valve 200 also defines a tapered annular space or pocket (not shown) formed between the outer surface of inner valve assembly 240 and the inner surface of outer frame assembly 210, open to the atrium end of valve assembly 200. As shown, a pocket closure or covering 280 (the pocket being disposed below pocket closure 280 in the top view of
As discussed above, pocket closure 280 can be formed at least in part of any suitable material that is sufficiently porous to allow blood, including particularly red blood cells, to enter the pocket, but is not so porous as to allow undesirably large thrombi to leave the pocket. In this embodiment, pocket closure 280 is formed entirely of knit polyester (i.e., PET warp knit fabric) having apertures of about 90-120 microns. In some embodiments, a pocket closure can include apertures less than about 160 microns.
As previously described, in some embodiments, a prosthetic heart valve, such as a prosthetic mitral valve, can be configured to be moved to an inverted configuration for delivery of the prosthetic valve to within a heart of a patient. For example, the outer frame can be moved or inverted relative to the inner frame of the valve. After inverting the outer frame, the prosthetic valve can be inserted into a lumen of a delivery sheath such that the prosthetic valve is moved to a collapsed configuration for delivery of the valve o the heart.
The outer frame 320 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape. For example, the outer frame 320 can be formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The inner frame 350 can be formed from a laser-cut tube of Nitinol®. The inner frame 350 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape. Further details regarding the inner frame 350 and the outer frame 320 are described below and with respect to valve 200 and
The valve 300 can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach, as described in the '572 PCT application, or a transatrial approach, as described in the '704 provisional application and the '221 application, or a transjugular approach as described, for example, in the '221 application. As described above, in some situations, such as when delivering a prosthetic valve to the heart via a transfemoral, transjugular or transatrial approach, because of the smaller size of the lumen of the delivery sheath, the size of the prosthetic valve during delivery should be sized accordingly. Thus, it is desirable to have a prosthetic valve that can be reconfigured between a biased expanded configuration for implantation in the heart (e.g., within a native mitral annulus) and a delivery configuration that has a smaller outer perimeter or profile to allow for delivery within the lumen of the delivery sheath. The prosthetic valve 300 and the embodiments of a prosthetic valve described herein can be constructed and formed to achieve these desired functions and characteristics.
More specifically, the valve 300 can have a biased expanded configuration (as shown in
To enable the valve 300 to be moved to the inverted configuration, the outer frame 320 can be coupled to the inner frame 350 in such a manner to allow the outer frame 320 to move relative to the inner frame 350. More specifically, the coupling joints 346 can couple the outer frame 320 to the inner frame 350 in such a manner to allow the outer frame 320 to be moved relative to the inner frame 350. For example, in some embodiments, the coupling joints 346 can be configured to allow the outer frame 320 to rotate about the coupling joint 346 relative to the inner frame 350. In some embodiments, coupling joints can provide a pivotal coupling between the outer frame 320 and the inner frame 350. In some embodiments, the coupling joints can provide a flexible attachment between the outer frame 320 and the inner frame 350. The coupling joints 346 can be a variety of different types and configurations as described herein with reference to the various embodiments of a prosthetic valve. For example, the coupling joints 146 can include a living hinge, a flexible member, sutures, a suture wrapped through an opening, a pin or tab inserted through an opening or any combinations thereof.
To move the valve 300 from the expanded configuration (
When in the inverted configuration, an overall length of the valve 300 is increased, but a length of the inner frame 350 and a length of the outer frame 320 remains the same (or substantially the same). For example, as shown in
With the valve 300 in the inverted configuration, the valve 300 can be placed within a lumen of the delivery sheath 326 for delivery of the valve 300 to the left atrium of the heart, as shown in
Thus, by disposing the outer frame 320 in the inverted configuration, the valve 300 can be collapsed into a smaller overall diameter, i.e. placed in a smaller diameter delivery sheath 326, than would be possible if the valve 300 were merely collapsed radially. This is because when the valve is in the biased expanded configuration, the inner frame 350 is nested within an interior of the outer frame 320, and thus the outer frame 320 must be collapsed around the inner frame 350. In some embodiments, the inner frame 350 and the outer frame are disposed concentrically. Whereas in the inverted configuration, the inner frame 350 and the outer frame 320 are arranged axially with respect to each other (i.e., the inner frame is not nested within the outer frame 350), such that the outer frame 320 can be collapsed without needing to accommodate all of the structure of the inner frame 350 inside it. In other words, with the inner frame 350 disposed mostly inside or nested within the outer frame 320, the layers or bulk of the frame structures cannot be compressed to as small a diameter. In addition, if the frames are nested, the structure is less flexible, and therefore, more force is needed to bend the valve, e.g. to pass through tortuous vasculature or to make tight turn in the left atrium after passing through the atrial septum to be properly oriented for insertion into the mitral valve annulus.
The outer frame 420 and the inner frame 450 can be coupled together at multiple coupling joints 446 disposed about a perimeter of the inner frame 450 and a perimeter of the outer frame 420 as described above for valve 300. The coupling joints 446 can allow the outer frame 420 to be moved relative to the inner frame 450 as described above for valve 300. For example, the outer frame 420 can be moved between a first position (
As described above for valves 100 and 200, a tapered annular space or pocket 485 (also referred to as “atrial pocket”) is formed between an outer surface of the inner valve assembly and an inner surface of the outer frame assembly, open to an atrium end of valve 400. When valve 400 is disposed in the annulus of a native heart valve, blood from the atrium can move in and out of pocket 485. The blood can clot, forming thrombus. To enhance clotting, ingrowth of tissue into the surfaces of valve 400, and produce other benefits, the pocket 485 can be covered, or enclosed, by a pocket closure 480 (also referred to as an “atrial pocket closure”). The pocket closure 480 is coupled about a perimeter of the inner frame 450 and a perimeter of the outer frame 420 so as to close-out the pocket 485 at the atrial end of the valve 400. As shown in
As described above, pocket closure 480 can be formed at least in part of any suitable material that is sufficiently porous to allow blood, including particularly red blood cells, to enter the pocket 485, but is not so porous as to allow undesirably large thrombi to leave the pocket 485. For example, pocket closure 480 may be formed at least in part from a material with apertures less than 160μ, and preferably between 90μ and 120μ. In this embodiment, the pocket closure 480 can be formed at least in part from a braided Nitinol material (or a braided tubular Nitinol material) that has the desired porosity. The braided Nitinol material also provides a desired stretchability, flexibility or deformability to accommodate movement of the outer frame 420 between the first positon relative to the inner frame 450 and the second inverted position relative to the inner frame 450. For example, the braided Nitinol material can have shape memory properties that allow the pocket closure 480 to be deformed and/or stretched and then revert back to an original shape or configuration when released.
As shown in
As with the previous embodiments, the outer frame 520 and the inner frame 550 can be coupled together at multiple coupling joints 546 disposed about a perimeter of the inner frame 550 and a perimeter of the outer frame 520 as described above for valve 300. The coupling joints 546 can allow the outer frame 520 to be moved relative to the inner frame 550 as described above for valve 300. For example, the outer frame 520 can be moved between a first position (
As described above for valves 100 and 200, a tapered annular space or pocket 585 (also referred to as “atrial pocket”) is formed between an outer surface of the inner valve assembly and an inner surface of the outer frame assembly, open to an atrium end of valve 500. When valve 500 is disposed in the annulus of a native heart valve, blood from the atrium can move in and out of pocket 585. The blood can clot, forming thrombus. To enhance clotting, ingrowth of tissue into the surfaces of valve 500, and produce other benefits, the pocket 585 can be covered, or enclosed, by a pocket closure 580 (also referred to as an “atrial pocket closure”).
In this embodiment, the pocket closure 580 includes a first portion 584 coupled to a second portion 586. As shown in the detail view of
As described above, pocket closure 580 can be formed at least in part of any suitable material that is sufficiently porous to allow blood, including particularly red blood cells, to enter the pocket 585, but is not so porous as to allow undesirably large thrombi to leave the pocket 585. For example, pocket closure 580 may be formed at least in part from a material with apertures less than 160μ, and preferably between 90μ and 120μ. In this embodiment, the first portion 584 of pocket closure 580 can be formed at least in part from a woven or knit polyester fabric with apertures less than 160μ, and preferably between 90μ and 120μ. The second portion 586 of pocket closure 580 can be formed with a tubular braided Nitinol material as described above for valve 400 that can provide a desired stretchability or flexibility or deformability to accommodate the outer frame 520 moving between the first positon relative to the inner frame 550 and the second inverted position relative to the inner frame 550.
As shown in
In some embodiments of a prosthetic heart valve, an additional material layer can be attached to the inner frame in addition to the outer covering described above for previous embodiments (e.g., outer covering 160). The additional material layer can be attached to an inner face or an outer face of the inner frame of the valve. For example, the additional material layer can be attached to an inner face of the inner frame and outside of the leaflets of the valve. In other words, the outer covering can be disposed between the leaflets and the additional material layer, with all three components (leaflets, outer covering and additional material layer) disposed on an inner side of the inner frame of the valve. The additional material layer may be desirable to prevent possible billowing of the belly area of the leaflet. Such billowing can occur, for example, when backpressure that can cause the leaflets to close also applies pressure to the belly area of the leaflets, potentially causing them to bulge out into the pocket area towards the outer frame. The additional material layer can be composed of a variety of different materials.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation, and as such, various changes in form and/or detail may be made. Any portion of the apparatus and/or methods described herein may be combined in any suitable combination, unless explicitly expressed otherwise. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.
Where methods described above indicate certain events occurring in certain order, the ordering of certain events and/or flow patterns may be modified. Additionally, certain events may be performed concurrently in parallel processes when possible, as well as performed sequentially.
This application is a continuation of U.S. patent application Ser. No. 15/992,910, filed May 30, 2018, which is a continuation of International Application No. PCT/US2016/068680, filed on Dec. 27, 2016, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/271,606, entitled “Atrial Pocket Closures for Prosthetic Heart Valves,” filed Dec. 28, 2015, each of the disclosures of which is incorporated herein by reference in its entirety. This application is related to International Application No. PCT/US14/44047, filed Jun. 25, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 14/155,535, filed Jan. 15, 2014, and claims priority to and the benefit of U.S. Provisional Application No. 61/839,237, filed Jun. 25, 2013 and U.S. Provisional Application No. 61/840,313, filed Jun. 27, 2013. The disclosures of the foregoing applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2697008 | Ross | Dec 1954 | A |
3409013 | Berry | Nov 1968 | A |
3472230 | Fogarty et al. | Oct 1969 | A |
3476101 | Ross | Nov 1969 | A |
3548417 | Kischer | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4003382 | Dyke | Jan 1977 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4073438 | Meyer | Feb 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4470157 | Love | Sep 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4585705 | Broderick et al. | Apr 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4638886 | Marietta | Jan 1987 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4824180 | Levrai | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4830117 | Capasso | May 1989 | A |
4851001 | Faheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4923013 | De Gennaro | May 1990 | A |
4960424 | Grooters | Oct 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
4996873 | Takeuchi | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Monso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5201880 | Wright et al. | Apr 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336616 | Livesey et al. | Aug 1994 | A |
5344442 | Deac | Sep 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5364407 | Poll | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5415667 | Frater | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554184 | Machiraju | Sep 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5607462 | Imran | Mar 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5662704 | Gross | Sep 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5697905 | d'Ambrosio | Dec 1997 | A |
5702368 | Stevens et al. | Dec 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5741333 | Frid | Apr 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5792179 | Sideris | Aug 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5833673 | Ockuly et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968052 | Sullivan, III et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5993481 | Marcade et al. | Nov 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6063112 | Sgro | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6099508 | Bousquet | Aug 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6261222 | Schweich, Jr. et al. | Jul 2001 | B1 |
6264602 | Mortier et al. | Jul 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6402679 | Mortier et al. | Jun 2002 | B1 |
6402680 | Mortier et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6537198 | Vidlund et al. | Mar 2003 | B1 |
6540782 | Snyders | Apr 2003 | B1 |
6569196 | Vesely | May 2003 | B1 |
6575252 | Reed | Jun 2003 | B2 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll et al. | Aug 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6622730 | Ekvall et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6648077 | Hoffman | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6669724 | Park et al. | Dec 2003 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6740105 | Yodat et al. | May 2004 | B2 |
6746401 | Panescu | Jun 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6854668 | Wancho et al. | Feb 2005 | B2 |
6855144 | Lesh | Feb 2005 | B2 |
6858001 | Aboul-Hosn | Feb 2005 | B1 |
6890353 | Cohn et al. | May 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6908424 | Mortier et al. | Jun 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6945996 | Sedransk | Sep 2005 | B2 |
6955175 | Stevens et al. | Oct 2005 | B2 |
6974476 | McGuckin, Jr. et al. | Dec 2005 | B2 |
6976543 | Fischer | Dec 2005 | B1 |
6997950 | Chawla | Feb 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7044905 | Vidlund et al. | May 2006 | B2 |
7060021 | Wilk | Jun 2006 | B1 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7108717 | Freidberg | Sep 2006 | B2 |
7112219 | Vidlund et al. | Sep 2006 | B2 |
7115141 | Menz et al. | Oct 2006 | B2 |
7141064 | Scott et al. | Nov 2006 | B2 |
7175656 | Khairkhahan | Feb 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7247134 | Vidlund et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7275604 | Wall | Oct 2007 | B1 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7331991 | Kheradvar et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7374571 | Pease et al. | May 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7416554 | Lam et al. | Aug 2008 | B2 |
7422072 | Dade | Sep 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7470285 | Nugent et al. | Dec 2008 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7503931 | Kowalsky et al. | Mar 2009 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7513908 | Lattouf | Apr 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7534260 | Lattouf | May 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7591847 | Navia et al. | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7632304 | Park | Dec 2009 | B2 |
7632308 | Loulmet | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7674222 | Nikolic et al. | Mar 2010 | B2 |
7674286 | Altieri et al. | Mar 2010 | B2 |
7695510 | Bloom et al. | Apr 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7766961 | Patel et al. | Aug 2010 | B2 |
7789909 | Andersen et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7803184 | McGuckin, Jr. et al. | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7806928 | Rowe et al. | Oct 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7854762 | Speziali et al. | Dec 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7896915 | Guyenot et al. | Mar 2011 | B2 |
7901454 | Kapadia et al. | Mar 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7931630 | Nishtala et al. | Apr 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7955247 | Levine et al. | Jun 2011 | B2 |
7955385 | Crittenden | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7988727 | Santamore et al. | Aug 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8007992 | Tian et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8043368 | Crabtree | Oct 2011 | B2 |
8052749 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8052751 | Aklog et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8062359 | Marquez et al. | Nov 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8109996 | Stacchino et al. | Feb 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8152821 | Gambale et al. | Apr 2012 | B2 |
8157810 | Case et al. | Apr 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8167934 | Styrc et al. | May 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8206439 | Gomez Duran | Jun 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8226711 | Mortier et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8241274 | Keogh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8308796 | Lashinski et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
8353955 | Styrc et al. | Jan 2013 | B2 |
RE44075 | Williamson et al. | Mar 2013 | E |
8449599 | Chau et al. | May 2013 | B2 |
8454656 | Tuval | Jun 2013 | B2 |
8470028 | Thornton et al. | Jun 2013 | B2 |
8480730 | Maurer et al. | Jul 2013 | B2 |
8486138 | Vesely | Jul 2013 | B2 |
8506623 | Wilson et al. | Aug 2013 | B2 |
8506624 | Vidlund et al. | Aug 2013 | B2 |
8578705 | Sindano et al. | Nov 2013 | B2 |
8579913 | Nielsen | Nov 2013 | B2 |
8591573 | Barone | Nov 2013 | B2 |
8591576 | Hasenkam et al. | Nov 2013 | B2 |
8597347 | Maurer et al. | Dec 2013 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8900214 | Nance et al. | Dec 2014 | B2 |
8900295 | Migliazza et al. | Dec 2014 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8932342 | McHugo et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8945208 | Jimenez et al. | Feb 2015 | B2 |
8956407 | Macoviak et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8986376 | Solem | Mar 2015 | B2 |
9011522 | Annest | Apr 2015 | B2 |
9023099 | Duffy et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9034033 | McLean et al. | May 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9039759 | Alkhatib et al. | May 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9095433 | Lutter et al. | Aug 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9149357 | Seguin | Oct 2015 | B2 |
9161837 | Kapadia | Oct 2015 | B2 |
9168137 | Subramanian et al. | Oct 2015 | B2 |
9232995 | Kovalsky | Jan 2016 | B2 |
9232998 | Wilson et al. | Jan 2016 | B2 |
9232999 | Maurer et al. | Jan 2016 | B2 |
9241702 | Maisano et al. | Jan 2016 | B2 |
9254192 | Lutter et al. | Feb 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9289291 | Gorman, III | Mar 2016 | B2 |
9289295 | Aklog et al. | Mar 2016 | B2 |
9289297 | Wilson et al. | Mar 2016 | B2 |
9301836 | Buchbinder | Apr 2016 | B2 |
9345573 | Nyuli et al. | May 2016 | B2 |
9480557 | Pellegrini et al. | Nov 2016 | B2 |
9480559 | Vidlund | Nov 2016 | B2 |
9526611 | Tegels et al. | Dec 2016 | B2 |
9532870 | Cooper | Jan 2017 | B2 |
9597181 | Christianson | Mar 2017 | B2 |
9610159 | Christianson et al. | Apr 2017 | B2 |
9675454 | Vidlund et al. | Jun 2017 | B2 |
9730792 | Lutter et al. | Aug 2017 | B2 |
9974647 | Ganesan | May 2018 | B2 |
10390952 | Hariton et al. | Aug 2019 | B2 |
10610358 | Vidlund | Apr 2020 | B2 |
11298117 | Hariton | Apr 2022 | B2 |
11298227 | Vidlund | Apr 2022 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010025171 | Mortier et al. | Sep 2001 | A1 |
20020010427 | Scarfone et al. | Jan 2002 | A1 |
20020116054 | Lundell et al. | Aug 2002 | A1 |
20020139056 | Finnell | Oct 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020161377 | Rabkin | Oct 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20030010509 | Hoffman | Jan 2003 | A1 |
20030036698 | Kohler et al. | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030078652 | Sutherland | Apr 2003 | A1 |
20030100939 | Yodat et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030130731 | Vidlund et al. | Jul 2003 | A1 |
20030149476 | Damm et al. | Aug 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040064014 | Melvin et al. | Apr 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040097865 | Anderson et al. | May 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040147958 | Lam et al. | Jul 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040162610 | Liska et al. | Aug 2004 | A1 |
20040163828 | Silverstein et al. | Aug 2004 | A1 |
20040181239 | Dorn et al. | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050004652 | van der Burg et al. | Jan 2005 | A1 |
20050004666 | Altieri et al. | Jan 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050080402 | Santamore et al. | Apr 2005 | A1 |
20050096498 | Houser et al. | May 2005 | A1 |
20050107661 | Lau et al. | May 2005 | A1 |
20050113798 | Slater et al. | May 2005 | A1 |
20050113810 | Houser et al. | May 2005 | A1 |
20050113811 | Houser et al. | May 2005 | A1 |
20050119519 | Girard et al. | Jun 2005 | A9 |
20050121206 | Dolan | Jun 2005 | A1 |
20050125012 | Houser et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050148815 | Mortier et al. | Jul 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203615 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060025784 | Starksen et al. | Feb 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060042803 | Gallaher | Mar 2006 | A1 |
20060047338 | Jenson et al. | Mar 2006 | A1 |
20060052868 | Mortier et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060094983 | Burbank et al. | May 2006 | A1 |
20060129025 | Levine et al. | Jun 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060161040 | McCarthy et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060167541 | Lattouf | Jul 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060247491 | Vidlund et al. | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070005231 | Seguchi | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070027535 | Purdy et al. | Feb 2007 | A1 |
20070038291 | Case et al. | Feb 2007 | A1 |
20070050020 | Spence | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070073387 | Forster et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070083076 | Lichtenstein | Apr 2007 | A1 |
20070083259 | Bloom et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100439 | Cangialosi et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070161846 | Nikolic et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070168024 | Khairkhahan | Jul 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070185571 | Kapadia et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070215362 | Rodgers | Sep 2007 | A1 |
20070221388 | Johnson | Sep 2007 | A1 |
20070233239 | Navia et al. | Oct 2007 | A1 |
20070239265 | Birdsall | Oct 2007 | A1 |
20070256843 | Pahila | Nov 2007 | A1 |
20070265658 | Nelson et al. | Nov 2007 | A1 |
20070267202 | Mariller | Nov 2007 | A1 |
20070270932 | Headley et al. | Nov 2007 | A1 |
20070270943 | Solem et al. | Nov 2007 | A1 |
20070293944 | Spenser et al. | Dec 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071362 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071368 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082163 | Woo | Apr 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080091264 | Machold et al. | Apr 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080147179 | Cai et al. | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080183203 | Fitzgerald et al. | Jul 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere | Aug 2008 | A1 |
20080221672 | Lamphere | Sep 2008 | A1 |
20080243150 | Starksen et al. | Oct 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080288060 | Kaye et al. | Nov 2008 | A1 |
20080293996 | Evans et al. | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090048668 | Wilson et al. | Feb 2009 | A1 |
20090054968 | Bonhoeffer et al. | Feb 2009 | A1 |
20090054974 | McGuckin, Jr. et al. | Feb 2009 | A1 |
20090062908 | Bonhoeffer et al. | Mar 2009 | A1 |
20090076598 | Salahieh et al. | Mar 2009 | A1 |
20090082619 | De Marchena | Mar 2009 | A1 |
20090088836 | Bishop et al. | Apr 2009 | A1 |
20090099410 | De Marchena | Apr 2009 | A1 |
20090112309 | Jaramillo et al. | Apr 2009 | A1 |
20090131849 | Maurer et al. | May 2009 | A1 |
20090132035 | Roth et al. | May 2009 | A1 |
20090137861 | Goldberg et al. | May 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090171432 | Von Segesser et al. | Jul 2009 | A1 |
20090171447 | Von Segesser et al. | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192601 | Rafiee et al. | Jul 2009 | A1 |
20090210052 | Forster et al. | Aug 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090222076 | Figulla et al. | Sep 2009 | A1 |
20090224529 | Gill | Sep 2009 | A1 |
20090234318 | Loulmet et al. | Sep 2009 | A1 |
20090234435 | Johnson et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20090248149 | Gabbay | Oct 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20090326575 | Galdonik et al. | Dec 2009 | A1 |
20100016958 | St. Goar et al. | Jan 2010 | A1 |
20100021382 | Dorshow et al. | Jan 2010 | A1 |
20100023117 | Yoganathan et al. | Jan 2010 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100179641 | Ryan et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100185278 | Schankereli | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100192402 | Yamaguchi et al. | Aug 2010 | A1 |
20100204781 | Mkhatib | Aug 2010 | A1 |
20100210899 | Schankereli | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249489 | Jarvik | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100298755 | McNamara | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110015616 | Straubinger et al. | Jan 2011 | A1 |
20110015728 | Jimenez et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110066233 | Thornton et al. | Mar 2011 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110137408 | Bergheim | Jun 2011 | A1 |
20110224655 | Asirvatham et al. | Sep 2011 | A1 |
20110224678 | Gabbay | Sep 2011 | A1 |
20110224728 | Martin et al. | Sep 2011 | A1 |
20110224784 | Quinn | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110251682 | Murray, III et al. | Oct 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20110288637 | De Marchena | Nov 2011 | A1 |
20110319988 | Schankereli et al. | Dec 2011 | A1 |
20110319989 | Lane et al. | Dec 2011 | A1 |
20120010694 | Lutter et al. | Jan 2012 | A1 |
20120016468 | Robin et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120035703 | Lutter et al. | Feb 2012 | A1 |
20120035713 | Lutter et al. | Feb 2012 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120059487 | Cunanan et al. | Mar 2012 | A1 |
20120089171 | Hastings et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120116351 | Chomas et al. | May 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120165930 | Gifford, III et al. | Jun 2012 | A1 |
20120179244 | Schankereli et al. | Jul 2012 | A1 |
20120203336 | Annest | Aug 2012 | A1 |
20120215303 | Quadri | Aug 2012 | A1 |
20120283824 | Lutter et al. | Nov 2012 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130172978 | Vidlund et al. | Jul 2013 | A1 |
20130184811 | Rowe | Jul 2013 | A1 |
20130190860 | Sundt, III | Jul 2013 | A1 |
20130190861 | Chau | Jul 2013 | A1 |
20130197622 | Mitra et al. | Aug 2013 | A1 |
20130204357 | Thill et al. | Aug 2013 | A1 |
20130226288 | Goldwasser et al. | Aug 2013 | A1 |
20130231735 | Deem et al. | Sep 2013 | A1 |
20130274874 | Hammer | Oct 2013 | A1 |
20130282101 | Eidenschink et al. | Oct 2013 | A1 |
20130304200 | McLean | Nov 2013 | A1 |
20130310928 | Morriss | Nov 2013 | A1 |
20130317603 | McLean et al. | Nov 2013 | A1 |
20130325041 | Annest et al. | Dec 2013 | A1 |
20130325110 | Khalil et al. | Dec 2013 | A1 |
20130338752 | Geusen et al. | Dec 2013 | A1 |
20140081323 | Hawkins | Mar 2014 | A1 |
20140094918 | Vishnubholta et al. | Apr 2014 | A1 |
20140142691 | Pouletty | May 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140222142 | Kovalsky | Aug 2014 | A1 |
20140243966 | Garde et al. | Aug 2014 | A1 |
20140249622 | Carmi | Sep 2014 | A1 |
20140277419 | Garde et al. | Sep 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140296970 | Ekvall et al. | Oct 2014 | A1 |
20140296971 | Tegels et al. | Oct 2014 | A1 |
20140296972 | Tegels et al. | Oct 2014 | A1 |
20140296975 | Tegels et al. | Oct 2014 | A1 |
20140303718 | Tegels et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140316516 | Vidlund et al. | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324161 | Tegels et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140364944 | Lutter et al. | Dec 2014 | A1 |
20140379076 | Vidlund et al. | Dec 2014 | A1 |
20150005874 | Vidlund et al. | Jan 2015 | A1 |
20150011821 | Gorman et al. | Jan 2015 | A1 |
20150025553 | Del Nido et al. | Jan 2015 | A1 |
20150057705 | Vidlund | Feb 2015 | A1 |
20150073542 | Heldman | Mar 2015 | A1 |
20150073545 | Braido | Mar 2015 | A1 |
20150094802 | Buchbinder | Apr 2015 | A1 |
20150105856 | Rowe et al. | Apr 2015 | A1 |
20150119936 | Gilmore et al. | Apr 2015 | A1 |
20150119978 | Tegels et al. | Apr 2015 | A1 |
20150127096 | Rowe et al. | May 2015 | A1 |
20150142100 | Morriss | May 2015 | A1 |
20150142101 | Coleman et al. | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150142104 | Braido | May 2015 | A1 |
20150173897 | Raanani | Jun 2015 | A1 |
20150196393 | Vidlund et al. | Jul 2015 | A1 |
20150196688 | James | Jul 2015 | A1 |
20150202044 | Chau et al. | Jul 2015 | A1 |
20150216653 | Freudenthal | Aug 2015 | A1 |
20150216660 | Pintor | Aug 2015 | A1 |
20150223820 | Olson | Aug 2015 | A1 |
20150238729 | Jenson et al. | Aug 2015 | A1 |
20150272731 | Racchini et al. | Oct 2015 | A1 |
20150305860 | Wang et al. | Oct 2015 | A1 |
20150305864 | Quadri | Oct 2015 | A1 |
20150305868 | Lutter et al. | Oct 2015 | A1 |
20150327995 | Morin et al. | Nov 2015 | A1 |
20150328001 | McLean | Nov 2015 | A1 |
20150335424 | McLean | Nov 2015 | A1 |
20150335429 | Morriss et al. | Nov 2015 | A1 |
20150342717 | O'Donnell et al. | Dec 2015 | A1 |
20150351903 | Morriss | Dec 2015 | A1 |
20150351904 | Cooper | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20160008131 | Christianson et al. | Jan 2016 | A1 |
20160067042 | Murad et al. | Mar 2016 | A1 |
20160074160 | Christianson et al. | Mar 2016 | A1 |
20160095700 | Righini | Apr 2016 | A1 |
20160106537 | Christianson | Apr 2016 | A1 |
20160113764 | Sheahan | Apr 2016 | A1 |
20160113766 | Ganesan | Apr 2016 | A1 |
20160143736 | Vidlund | May 2016 | A1 |
20160151155 | Lutter et al. | Jun 2016 | A1 |
20160206280 | Vidlund et al. | Jul 2016 | A1 |
20160242902 | Morriss | Aug 2016 | A1 |
20160262879 | Meiri et al. | Sep 2016 | A1 |
20160317290 | Chau | Nov 2016 | A1 |
20160324635 | Vidlund et al. | Nov 2016 | A1 |
20160331527 | Vidlund et al. | Nov 2016 | A1 |
20160346086 | Solem | Dec 2016 | A1 |
20160367365 | Conklin | Dec 2016 | A1 |
20160367367 | Maisano et al. | Dec 2016 | A1 |
20160367368 | Vidlund et al. | Dec 2016 | A1 |
20170056166 | Ratz | Mar 2017 | A1 |
20170071733 | Ghione | Mar 2017 | A1 |
20170079790 | Vidlund et al. | Mar 2017 | A1 |
20170100248 | Tegels et al. | Apr 2017 | A1 |
20170128208 | Christianson et al. | May 2017 | A1 |
20170181854 | Christianson et al. | Jun 2017 | A1 |
20170196688 | Christianson et al. | Jul 2017 | A1 |
20170216026 | Quill | Aug 2017 | A1 |
20170252153 | Chau et al. | Sep 2017 | A1 |
20170266001 | Vidlund et al. | Sep 2017 | A1 |
20170312077 | Vidlund et al. | Nov 2017 | A1 |
20170333187 | Hariton et al. | Nov 2017 | A1 |
20180014930 | Hariton | Jan 2018 | A1 |
20180021129 | Peterson | Jan 2018 | A1 |
20180116798 | Perszyk | May 2018 | A1 |
20180153687 | Hariton | Jun 2018 | A1 |
20180206983 | Noe | Jul 2018 | A1 |
20180271651 | Christianson | Sep 2018 | A1 |
20180271653 | Vidlund et al. | Sep 2018 | A1 |
20180296341 | Noe | Oct 2018 | A1 |
20180325664 | Gonda | Nov 2018 | A1 |
20190038404 | Iamberger et al. | Feb 2019 | A1 |
20190038405 | Iamberger | Feb 2019 | A1 |
20190224008 | Bressloff et al. | Jul 2019 | A1 |
20190321171 | Morriss | Oct 2019 | A1 |
20190321178 | Tegels | Oct 2019 | A1 |
20190343627 | Hariton et al. | Nov 2019 | A1 |
20200188100 | Vidlund | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
1486161 | Mar 2004 | CN |
1961845 | May 2007 | CN |
2902226 | May 2007 | CN |
101146484 | Mar 2008 | CN |
101180010 | May 2008 | CN |
101984938 | Mar 2011 | CN |
102869317 | Jan 2013 | CN |
102869318 | Jan 2013 | CN |
102869321 | Jan 2013 | CN |
103220993 | Jul 2013 | CN |
103974674 | Aug 2014 | CN |
102639179 | Oct 2014 | CN |
104188737 | Dec 2014 | CN |
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
102006052564 | Dec 2007 | DE |
102006052710 | May 2008 | DE |
102007043831 | Apr 2009 | DE |
0103546 | Mar 1984 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1469797 | Nov 2005 | EP |
2111800 | Oct 2009 | EP |
2193762 | Jun 2010 | EP |
2278944 | Feb 2011 | EP |
2747707 | Jul 2014 | EP |
2918248 | Sep 2015 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2003505146 | Feb 2003 | JP |
2009514628 | Apr 2009 | JP |
1017275 | Aug 2002 | NL |
1271508 | Nov 1986 | SU |
9217118 | Oct 1992 | WO |
9301768 | Feb 1993 | WO |
9829057 | Jul 1998 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
2000018333 | Apr 2000 | WO |
2000030550 | Jun 2000 | WO |
2000041652 | Jul 2000 | WO |
2000047139 | Aug 2000 | WO |
2001035878 | May 2001 | WO |
200149213 | Jul 2001 | WO |
01 54625 | Aug 2001 | WO |
2001054624 | Aug 2001 | WO |
2001056512 | Aug 2001 | WO |
2001061289 | Aug 2001 | WO |
2001076510 | Oct 2001 | WO |
2001082840 | Nov 2001 | WO |
2002004757 | Jan 2002 | WO |
2002022054 | Mar 2002 | WO |
2002028321 | Apr 2002 | WO |
2002036048 | May 2002 | WO |
2002041789 | May 2002 | WO |
2002043620 | Jun 2002 | WO |
2002049540 | Jun 2002 | WO |
2002076348 | Oct 2002 | WO |
2003003943 | Jan 2003 | WO |
2003030776 | Apr 2003 | WO |
03047468 | Jun 2003 | WO |
2003049619 | Jun 2003 | WO |
2004019825 | Mar 2004 | WO |
2005102181 | Nov 2005 | WO |
2006014233 | Feb 2006 | WO |
2006034008 | Mar 2006 | WO |
2006070372 | Jul 2006 | WO |
2006113906 | Oct 2006 | WO |
2006127756 | Nov 2006 | WO |
2007081412 | Jul 2007 | WO |
2008005405 | Jan 2008 | WO |
2008035337 | Mar 2008 | WO |
2008091515 | Jul 2008 | WO |
2008125906 | Oct 2008 | WO |
2008147964 | Dec 2008 | WO |
2009024859 | Feb 2009 | WO |
2009026563 | Feb 2009 | WO |
2009045338 | Apr 2009 | WO |
2009132187 | Oct 2009 | WO |
2010090878 | Aug 2010 | WO |
2010098857 | Sep 2010 | WO |
2010121076 | Oct 2010 | WO |
2011017440 | Feb 2011 | WO |
2011022658 | Feb 2011 | WO |
2011069048 | Jun 2011 | WO |
2011072084 | Jun 2011 | WO |
2011106735 | Sep 2011 | WO |
2011109813 | Sep 2011 | WO |
2011159342 | Dec 2011 | WO |
2011163275 | Dec 2011 | WO |
2012027487 | Mar 2012 | WO |
2012036742 | Mar 2012 | WO |
2012095116 | Jul 2012 | WO |
2012177942 | Dec 2012 | WO |
2013045262 | Apr 2013 | WO |
2013059747 | Apr 2013 | WO |
2013096411 | Jun 2013 | WO |
2013175468 | Nov 2013 | WO |
2014121280 | Aug 2014 | WO |
2014144937 | Sep 2014 | WO |
2014162306 | Oct 2014 | WO |
2014189974 | Nov 2014 | WO |
2014194178 | Dec 2014 | WO |
2014210124 | Dec 2014 | WO |
2015051430 | Apr 2015 | WO |
2015058039 | Apr 2015 | WO |
2015063580 | May 2015 | WO |
2015065646 | May 2015 | WO |
2015120122 | Aug 2015 | WO |
2015138306 | Sep 2015 | WO |
2016112085 | Jul 2016 | WO |
2016126942 | Aug 2016 | WO |
2016168609 | Oct 2016 | WO |
2016196933 | Dec 2016 | WO |
Entry |
---|
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn) |
Chinese Search Report for Appl. No. 201680072656.1 dated Dec. 26, 2019, 2 pages. |
Chinese Search Report for Application No. 201680072656.1 dated Nov. 18, 2020,1 page. |
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53. |
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311. |
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314. |
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346. |
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106. |
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62. |
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365. |
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration In Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477. |
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages. |
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415. |
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012. |
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670. |
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages. |
G. M. Bernacca, et al., “Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, Issue 3, vol. 34, pp. 371-379. |
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages. |
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages. |
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages. |
H. R. Andersen et al., “Transluminal Implantation of Artificial Heart Valves. Description of a New Expandable Aortic Valve and Initial Results with Implantation by Catheter Technique in Closed Chest Pigs,” European Heart Journal, 1992, Issue 5, vol. 13, pp. 704-708. |
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402. |
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150. |
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . ,>, published Jan. 3, 1991, retrieved from the Internet on Feb. 5, 2016, 3 pages. |
L. L. Knudsen et al., “Catheter-Implanted Prosthetic Heart Valves. Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta in Isolated Vessels and Closed Chest Pigs,” International Journal ofArtificial Organs, 1993, Issue 5, vol. 16, pp. 253-262. |
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360. |
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page. |
Lutter, Georg, et al., Mitral valved stent implantation, European Journal of Cardio-Thoracic Surgery, 2010, vol. 38, pp. 350-355. |
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198. |
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./ Oct. 1996, 42(5):M381-M385. |
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312. |
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Radiology, 1992; 183:151-154. |
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203. |
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196(11): 173-174. |
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367. |
Reul, H. et al., “The Geometry of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191. |
Robert C. Ashton Jr., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and In Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, Issue/vol. 112, pp. 979-983. |
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vase Interv Radiol., Jul. 2003, 4:841-853. |
Ross, D. N., “Aortic Valve Surgery,” Guys Hospital, London, 1968, pp. 192-197. |
Rousseau, E. P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562. |
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309. |
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology, 1990; 176:535-538. |
Serruys, P.W. et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989. |
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815. |
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440. |
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187. |
Watt, A.H. et al., “Intravenous Adenosine in the Treatment of the Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230. |
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850. |
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, 1986, pp. 415-424, Butterworths 1986. |
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society. |
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/068680, dated Jun. 16, 2017, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20200188100 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62271606 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15992910 | May 2018 | US |
Child | 16797033 | US | |
Parent | PCT/US2016/068680 | Dec 2016 | US |
Child | 15992910 | US |