Information
-
Patent Grant
-
6474946
-
Patent Number
6,474,946
-
Date Filed
Monday, February 26, 200123 years ago
-
Date Issued
Tuesday, November 5, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Look; Edward K.
- White; Dwayne J.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 416 97 R
- 416 96 R
- 416 95
- 416 219 R
- 416 223 A
- 416 241 B
- 415 114
- 415 115
-
International Classifications
-
Abstract
The present invention relates to an improved attachment air inlet configuration for a turbine blade. It defines several modifications that reduce attachment rib concentrated stresses in highly loaded, single crystal turbine blades that cause cracking in conventional blade inlet configurations. It desensitizes rib concentrated stresses to variations in secondary crystal orientation, permitting highly loaded single crystal blades to have random secondary crystal orientation for lower cost, or seed with any secondary orientation needed to solve other blade or manufacturing problems.
Description
BACKGROUND OF THE INVENTION
The present invention relates to an improved attachment air inlet configuration for highly loaded single crystal turbine blades.
High turbine blades in modern turbojet engines are usually made of cast alloys of nickel which are specially formulated to be solidified as a single crystal. These alloys have a crystal structure which has very directional properties. The modulus of elasticity can vary more than 2 to 1 depending on the direction. The highest is across the corners of the crystallographic cube, the lowest is parallel to the edges of the crystallographic cube. Other properties such as Poisson's ratio vary dramatically as well.
These blades require considerable cooling air to survive because the gaspath temperatures are well above the melting point of the blade material. Cooling air must be supplied through the attachment area which is typically a firtree shape to retain the blade within the disk broach slots which have a mating firtree shape. As the size and weight of the airfoil increases, the crushing load of the retention forces apply high compressive forces across the air passages which must be resisted by compressive stress in the ribs which separate the individual air passages.
The highly directional properties of the single crystal alloy cause very high concentrated stresses in the ribs between the air passages. The concentrated stress at a point in a part made of a single crystal alloy may be described as follows:
Concentrated stress at a point=[P/A +/− Mc/I] *Kt*kc where:
[P/A +/− Mc/I]=nominal section stresses at a point;
Kt=local stress multiplier due to local geometry for equiax materials; and
Kc=local stress multiplier due to overall part geometry and crystallographic orientation relative to that geometry.
Conventional flow passages and rib geometry produce very high concentrated stresses in modern blades which have both high radial loads and high crushing loads on the attachment. These high stresses cause plastic compressive redistribution of stress which results in tensile stresses on parts of the compressive ribs and rib cracking. Conventional attachments prove to be very sensitive to Kc effects.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide an improved attachment air inlet configuration having an attachment area with a core/rib configuration which reduces the concentrated stresses while maintaining required flow and pressure loss parameters in cooling passages.
It is a further object of the present invention to provide an improved attachment air inlet configuration which solves the rib stress problem without increasing the overall size and weight of the attachment and the supporting disk.
The foregoing objects are achieved by the attachment air inlet configuration of the present invention.
In accordance with the present invention, an attachment air inlet configuration for a turbine blade comprises an attachment having a root portion with a center plane and a plurality of inlets in the root portion of the attachment communicating with at least two flow passageways in the blade. Each of the inlets communicates with a feed cavity and receives a cooling fluid such as cooling air. Each of the inlets has a non-circular shape with a major axis, which major axis is substantially normal to a central axis of the root portion center plane.
Other details of the attachment air inlet configuration of the present invention, as well as other objects and advantages attendant thereto, are set forth in the following detailed description and the accompanying drawings in which like reference numerals depict like elements.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
shows a conventional attachment air inlet configuration in partial section;
FIG. 2
shows a bottom view of the attachment and air inlet configuration of
FIG. 1
;
FIG. 3
is a sectional view taken along lines
3
—
3
in
FIG. 2
,
FIG. 4
is a side view of an attachment air inlet configuration in accordance with the present invention in partial cross section;
FIG. 5
is a bottom view of the attachment and air inlet configuration of
FIG. 4
; and
FIG. 6
is a sectional view taken along lines
6
—
6
in FIG.
5
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
Referring now to the drawings,
FIGS. 1-3
show a conventional attachment air inlet configuration for a blade
8
having a firtree shaped attachment area
16
for joining the blade
8
to a disk structure (not shown). As shown in
FIGS. 1 and 3
, the attachment area
16
has a minimum neck section
14
and a core section
15
which includes a plurality of ribs
10
defining air inlets
18
for supplying cooling air to passageways in the blade
8
. As can be seen from
FIG. 1
, the ribs
10
have a substantially uniform thickness in the regions above and below the minimum neck section
14
. In this type of attachment air inlet configuration, the ribs
10
are highly stressed in compression in the region
12
below the minimum neck section
14
of the firtree shaped attachment area
16
. This is where the concentrated stresses are highest due to both the local geometry effects (Kt) and where the directional stiffness effects (Kc) are most pronounced. As can be seen from
FIG. 2
, the air inlets
18
in this configuration have an elongated shape with a major axis which lies along the central axis
20
of the blade root center plane.
Referring now to
FIGS. 4-6
, the attachment air inlet configuration
39
of the present invention alters the core configuration in the lowest firtree area
32
, below the minimum section
34
of the firtree
36
. The attachment air inlet configuration of the present invention provides an increased number of ribs
38
in the core section for defining an increased number of air inlets
39
. As can be seen from
FIG. 5
, the air inlets
39
each have an elliptical shape with the major axis of each air inlet
39
being normal to the blade root center plane
41
. Each of the inlets
39
is in communication with, and receives a cooling fluid, such as air, from an inlet plenum
47
. The total thickness and cross sectional area of all of the ribs
38
, above the minimum section
34
, remains unchanged to preserve the flow area for the cooling air.
In the present invention, more rib cross sectional area below the minimum neck section
34
has been provided by making each of the ribs
38
longer near the blade root center plane
41
and by providing each of the ribs
38
in a region below the minimum neck section with a variable thickness greater than the thickness in the region above the minimum neck section. One of the ribs
38
is a main rib which divides the core section into two flow passages
52
and
54
. The other ribs
38
are equally spaced in the two flow passages
52
and
54
and form a series of inlet channels
56
. This produces a series of core sections at the minimum neck section
34
which are close to an aspect ratio of 1. This also allows the development of inlet channels
56
below the minimum neck section
34
which comprise an array of nearly elliptical sections whose major axis is normal to the blade root center plane.
The increased length of the ribs
38
tends to decrease the flow area in the inlet plenum
47
below the blade attachment. To address this, the attachment
36
in the present invention is provided with a rounded lower surface
46
to provide additional area at the side corners
60
to compensate for the flow area which has been lost as a result of the increased length of the ribs
38
near the center plane
41
.
In order to define the transition surfaces of the core air passages between the bottom of the blade root
57
and the minimum neck section
34
, two profiles were generated for each surface. One profile was on the blade root center plane
41
and the other was on a plane normal to the blade root center plane, through the center of the elliptical section. The top of each profile is determined by the minimum neck section
34
. Several additional sections were constructed parallel to and below the minimum neck section to conform to the vertical profiles. Each was defined, as being almost elliptical with consideration to the draft needs for ceramic core production. Finally, 3D surfaces were generated (from the sections and profiles) to define the transition region of the core air passages. This produced smooth transition surfaces, such that the flow area is gradually reduced from the large ellipses at the cooling air inlet
39
to the existing flow area at the minimum area neck section
34
. In other words, each of the inlet channels has a first flow area at the minimum neck section and a larger variable flow area beneath the minimum neck section.
By providing the attachment air inlet configuration of the present invention, the entry loss for the cooling air flow is reduced by providing a larger flow area and greater lip perimeter at the point where the flow turns to enter the core area at the bottom
57
of the attachment. This reduction in entry loss compensates for the higher internal flow loss caused by the increase in wetted perimeter of the flow cavities due to the greater number of smaller flow passages.
Blades made of a single crystal structure typically orient one of the low modulus directions radially in order to reduce the vibration frequency of the blade in first bending mode. The parts may be seeded during the casting process to define the secondary crystallographic orientation (rotation of the crystal around the primary orientation direction), but this increases the cost.
Stress in the blade attachment is influenced by the secondary orientation of the crystal (Kc effect). Traditional core/rib configurations, such as shown in
FIGS. 1-3
, are highly influenced by the Kt and Kc effects and, in large very high loaded attachments, the blade would have to be seeded to minimize the compressive stress and to prevent rib cracking. The optimum rib geometry would depend on the secondary orientation chosen. This is because the Kc term in the stress equation in large measure is the result of the load path changing as the secondary orientation is changed.
The configuration described herein has been shown by 3D stress analysis to be relatively insensitive to secondary orientation. This benefit can be taken in either of two ways: (a) allow random secondary orientation and effect a cost savings; and (b) use secondary crystal orientation to solve other stress or manufacturing problems.
The attachment air inlet configuration of the present invention minimizes the maximum compressive stress in the attachment due to the combined effects of Kt (local geometry) and Kc (overall geometry and directionally variable modulus) in the compressive ribs of a blade attachment. The configuration of the present invention provides an efficient (minimum weight) solution to the combined problems of cooling flow pressure drop, highly concentrated compressive stress and tensile cracking of the compressive ribs due to plastic redistribution of the single crystal material along the cubic and octahedral shear planes of the material. The rib geometry in the configuration of the present invention is relatively insensitive to secondary crystal orientation which allows the part to use random secondary crystal orientation (minimize cost) or specify a crystal orientation to solve problems in other areas of the blade.
While it is preferred to have only one main rib which forms two flow passageways in the blade, it is possible to form more than two flow passageways with the ribs
38
if desired.
It is apparent that there has been provided in accordance with the present invention an attachment air inlet configuration for highly loaded single crystal turbine blades which fully satisfies the objects, means and advantages set forth hereinbefore. While the present invention has been described in the context of specific embodiments thereof, it should be apparent that other modifications, alternatives, and variations will become apparent to those skilled in the art having read the foregoing description. Therefore, it is intended to embrace those modifications, alternatives, and variations as fall within the broad scope of the appended claims.
Claims
- 1. An attachment air inlet configuration for a turbine blade comprising:an attachment having a root portion with a center plane; a plurality of inlets in said root portion of said attachment communicating with at least two flow passageways in said blade; each of said inlets having a non-circular shape with a major axis; and said major axis being substantially normal to said root portion center plane.
- 2. An attachment air inlet configuration according to claim 1, wherein said attachment has a firtree configuration with a minimum neck section and wherein said blade has a plurality of ribs extending along an axis substantially perpendicular to said root portion center plane to define a plurality of inlet channels communicating with said inlets.
- 3. An attachment air inlet configuration according to claim 2, wherein each of said inlet channels has an elliptical shape.
- 4. An attachment air inlet configuration according to claim 2, wherein each of said inlet channels has a first flow area at said minimum neck section and a variable flow area larger than said first flow area beneath said minimum neck section.
- 5. An attachment air inlet configuration according to claim 2, wherein said attachment has a rounded lower surface.
- 6. An attachment air inlet configuration according to claim 2, further comprising each of said ribs having a first thickness in a region above the minimum neck section and a variable thickness greater than said first thickness in a region below said minimum neck section.
- 7. An attachment air inlet configuration according to claim 6, wherein said plurality of ribs include a central rib which forms two flow passageways in said blade and each of said inlet channels communicates with one of said flow passageways.
- 8. An attachment air inlet configuration according to claim 6, wherein each of said ribs occupies a first area in the region above said minimum neck section and a second area larger than said first area in the region below said minimum neck section.
- 9. An attachment air inlet configuration according to claim 8, further comprising each of said inlet channels having a curved transition section extending between a respective one of said inlets and said minimum neck section.
- 10. An attachment air inlet configuration according to claim 1, wherein said blade is a single crystal turbine blade.
- 11. An attachment air inlet configuration according to claim 10, wherein said single crystal turbine blade has a random secondary crystal orientation.
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
3574482 |
Savage et al. |
Apr 1971 |
A |
4073599 |
Allen et al. |
Feb 1978 |
A |
5601399 |
Okpara et al. |
Feb 1997 |
A |
5843586 |
Schaeffer et al. |
Dec 1998 |
A |
5975851 |
Liang |
Nov 1999 |
A |
Foreign Referenced Citations (1)
Number |
Date |
Country |
2224082 |
Apr 1990 |
GB |