The present disclosure relates to an attachment comb for a hair cutting appliance. The present disclosure further relates to a hair cutting appliance that can be fitted with an attachment comb. More particularly, the present disclosure relates to a hair cutting appliance that is operable in a hair trimming mode and in a shaving mode.
WO 2013/150412 A1 discloses a hair cutting appliance and a corresponding blade set of a hair cutting appliance. The blade set comprises a stationary blade and a movable blade, wherein the movable blade can be reciprocatingly driven with respect to the stationary blade for cutting hair. The blade set is particularly suited for enabling both trimming and shaving operations.
For the purpose of cutting body hair, there exist basically two customarily distinguished types of electrically powered appliances: the razor, and the hair trimmer or clipper. Generally, the razor is used for shaving, i.e. slicing body hairs at the level of the skin so as to obtain a smooth skin without stubbles. The hair trimmer is typically used to sever the hairs at a chosen distance from the skin, i.e. for cutting the hairs to a desired length. The difference in application is reflected in the different structure and architectures of the cutting blade arrangement implemented on either appliance.
An electric razor typically includes a foil, i.e. an ultra-thin perforated screen, and a cutter blade that is movable along the inside of and with respect to the foil. During use, the outside of the foil is placed and pushed against the skin, such that any hairs that penetrate the foil are cut off by the cutter blade that moves with respect to the inside thereof, and fall into hollow hair collection portions inside the razor.
An electric hair trimmer, on the other hand, typically includes generally two cutter blades having a toothed edge, one placed on top of the other such that the respective toothed edges overlap. In operation, the cutter blades reciprocate relative to each other, cutting off any hairs that are trapped between their teeth in a scissor action. The precise level above the skin at which the hairs are cut off is normally determined by means of an additional attachable part, called a (spacer) guard or comb.
Furthermore, combined devices are known that are basically adapted to both shaving and trimming purposes. However, these devices merely include two separate and distinct cutting sections, namely a shaving section comprising a setup that matches the concept of powered razors as set out above, and a trimming section comprising a setup that, on the other hand, matches the concept of hair trimmers.
Common electric razors are not particularly suited for cutting hair to a desired variable length above the skin, i.e., for precise trimming operations. This can be explained, at least in part, by the fact that they do not include mechanisms for spacing the foil and, consequently, the cutter blade from the skin. But even if they did, e.g. by adding attachment spacer parts, such as spacing combs, the configuration of the foil, which typically involves a large number of small perforations, would diminish the efficient capture of all but the shortest and stiffest of hairs.
Similarly, common hair trimmers are not particularly suited for shaving, primarily because the separate cutter blades require a certain rigidity, and therefore thickness, to perform the scissor action without deforming. It is the minimum required blade thickness of a skin-facing blade thereof that prevents hair from being cut off close to the skin. Consequently, a user desiring to both shave and trim his/her body hair may need to purchase and apply two separate appliances.
Furthermore, combined shaving and trimming devices show several drawbacks since they basically require two cutting blade sets and respective drive mechanisms. Consequently, these devices are heavier and more susceptible to wear than standard type single-purpose hair cutting appliances, and also require costly manufacturing and assembling processes. Similarly, operating these combined devices is often experienced to be rather uncomfortable and complex. Even in case a conventional combined shaving and trimming device comprising two separate cutting sections is utilized, handling the device and switching between different operation modes may be considered as being time-consuming and not very user-friendly. Since the cutting sections are typically provided at different locations of the device, guidance accuracy (and therefore also cutting accuracy) may be reduced, as the user needs to get used to two distinct dominant holding positions during operation.
The above WO 2013/150412 A1 tackles some of these issues by providing a blade set comprising a stationary blade that houses the movable blade such that a first portion of the stationary blade is arranged at the side of the movable blade facing the skin, when used for shaving, and that a second portion of the stationary blade is arranged at the side of the movable blade facing away from the skin when in use. Furthermore, at a toothed cutting edge, the first portion and the second portion of the stationary blade are connected, thereby forming a plurality of stationary teeth that cover respective teeth of the movable blade. Consequently, the movable blade is guarded by the stationary blade.
This arrangement is advantageous insofar as the stationary blade may provide the blade set with increased strength and stiffness since the stationary blade is also present at the side of the movable blade facing away from the skin. This may generally enable a reduction of the thickness of the first portion of the stationary blade at the skin-facing side of the movable blade. Consequently, since in this way the movable blade may come closer to the skin during operation, the above blade set is well-suited for hair shaving operations. Aside from that, the blade set is also particularly suited for hair trimming operations since the configuration of the cutting edge, including respective teeth alternating with slots, also allows longer hairs to enter the slots and, consequently, to be cut by the relative cutting motion between the movable blade and the stationary blade.
However, there is still a need for improvement in hair cutting appliances. This may particularly involve user comfort related aspects and performance related aspects. Particularly with hair cutting appliances comprising blade sets that are pivotably attached to the housing, operating the appliance in different distinct operation modes may pose several challenges. Particularly reliably spacing the blade set of such an appliance from a user's skin may be difficult.
It is an object of the present disclosure to provide an attachment comb arranged for trimming operations that can be easily attached to and detached from a hair cutting appliance. More preferably, the present disclosure may address at least some drawbacks inherent in known prior art hair cutting appliances as discussed above, for instance. It is further preferred to provide a hair cutting appliance arranged to be selectively operated in a shaving mode and in a trimming mode. It is particularly preferred that the attachment comb enhances the trimming performance of the hair cutting appliance.
In a first aspect of the present disclosure a hair cutting appliance arranged to be moved through hair in a moving direction to cut hair is presented, said hair cutting appliance comprising a blade set, particularly a pivotably mounted blade set, and an attachment comb, said attachment comb comprising:
This aspect is based on the insight that the attachment comb may serve several purposes. On the one hand side, the attachment comb may space the blade set from the skin so as to define the length of the (remaining) hair. On the other hand, the attachment comb may activate the trimming mode at the device by bringing the blade set into a desired orientation, e.g. a trimming orientation. It is preferred that the blade set is locked in the trimming mode, i.e. that the blade set cannot be pivoted with respect to the housing of the appliance. It goes without saying that the blade set as such is still operable in the locking orientation, i.e. a movable cutter blade of the blade set may be moved with respect to a stationary blade of the blade set. It is further preferred that the attachment comb may actuate or induce the locking orientation upon being mounted to the hair cutting appliance.
In the shaving mode, when the attachment comb is detached from the hair cutting appliance, the blade set may be pivoted with respect to the housing, thereby providing a contour-following capability. As a result of the removal of the attachment comb, the blade set may be released from its relatively fixed orientation in the locking configuration. Consequently, the blade set again may be pivoted or swiveled with respect to the housing portion in the shaving mode.
It is worth mentioning in the context that the attachment comb preferably may be mounted to hair cutting appliances that comprise blade sets that are arranges as dual-purpose or multi-purpose blade sets. Consequently, the same blade set may be utilized for trimming and for shaving.
In one embodiment, the orientation determining portion is arranged to block a swiveling mechanism that couples the blade set and the housing portion of the hair cutting appliance. Blocking the swiveling mechanism may involve blocking the blade set attached thereto. In the alternative, or in addition, blocking the swiveling mechanism may involve blocking an element of the swiveling mechanism to which the blade set is attached, for instance a bar of a four-bar linkage mechanism.
In one embodiment, the mounting portion further comprises at least one retaining element, particularly at least one resilient snap-on hook, wherein the at least one retaining element is arranged to engage a mounting contour at the housing portion, and wherein the at least one retaining element biases against the mounting contour when mounted to the hair cutting appliance. Preferably, the at least one retaining element can be actuated without the need of directly operating the retaining element, i.e. without the need of directly pushing of pulling the retaining element. Consequently, the at least one retaining element may be arranged as a mediately actuable or, rather, a self-actuable retaining element.
In one embodiment, the at least one retaining element is a pretensioned mounting element, particularly a flexible resilient mounting element or a spring-pretensioned mounting element. Consequently, a locking force may be generated. As a result, the attachment comb may be urged or biased into the desired position with respect to the hair cutting appliance and its blade set.
In one embodiment, the at least one retaining element is rotatably attached to or integrally formed at the supporting frame, and wherein the supporting frame contacts the at least one retaining element and the orientation determining portion. Hence, the at least one retaining element may apply a locking force to the frame and, consequently, to the orientation determining portion that may contact the blade set.
In one embodiment, the at least one retaining element is arranged to apply an alignment force to the housing portion when mounted to the hair cutting appliance, wherein the alignment force urges the orientation determining portion into engagement with the blade set, and wherein the blade set is urged into the locking orientation.
In one embodiment, the at least one retaining element comprises a sliding surface arranged to cooperate with a sliding ramp surface associated with mounting contour, wherein the sliding surface and the sliding ramp surface deflect the at least one retaining element upon mounting the attachment comb such that a retaining surface of the retaining element engages an engagement surface associated with the mounting contour. This may have the advantage that the retaining element may automatically engage the mounting contour in the course of mounting the attachment comb.
In one embodiment, the attachment comb further comprises a handling tab, particularly a disengagement handling tab actuable by a user, wherein the at least one retaining element is disengaged from the mounting contour upon applying a disengagement force to the handling tab.
Disengaging the retaining element may involve deflecting or flexing the retaining element such that the retaining surface may be released from the engagement surface. Preferably, disengaging may involve pivoting the retaining element such that the retaining surface may overcome an apex point between the engagement surface and the sliding ramp surface of the mounting contour.
In one alternative embodiment, the handling tab is coupled to the at least one retaining element, and wherein the handling tab is selectively actuable to disengage the least one retaining element from the housing portion. In accordance with this embodiment, the user may directly actuate the retaining element to disengage or engage the retaining element.
In one embodiment, the orientation determining portion swivels the blade set against a swivel limit stop member associated with the housing portion. As a result, the blade set may be kept with relatively high accuracy in the desired locking orientation.
In an alternative embodiment, the orientation determining portion swivels the blade set against a blade set orientation biasing force applied by a biasing element associated with the housing portion. By way of example, the swiveling mechanism may be provided with the biasing element. Generally, the biasing element may urge the swiveling mechanism and, consequently, the blade set into a neutral position. As a result of the attachment of the attachment comb, the orientation determining portion may bias the blade set against the biasing force applied by the biasing element into the desired locking orientation.
In one embodiment, the attachment comb is arranged as a hair trimming comb, wherein the orientation determining portion is arranged to induce a trimming orientation of the blade set when the attachment comb is mounted to the hair cutting appliance, wherein the trimming orientation particularly involves a defined angular orientation of the blade set with respect to the housing portion. The attachment comb may comprise a plurality of comb teeth that may space the blade set from the skin when in operation.
In one embodiment, the attachment comb further comprises an insertion portion adjacent to the orientation determining portion, wherein the insertion portion is configured to facilitate imposing or putting the attachment comb on the blade set in a mounting direction. Consequently, assembly faults may be avoided. The mounting process can be further simplified.
In one embodiment, the mounting direction is adapted to a standard orientation of the blade set with respect to the housing portion. As indicated above, the blade set may assume a standard or neutral orientation when no external load is applied thereto. It is therefore particularly beneficial to adapt the insertion portion to the standard orientation of the blade set.
Mounting the attachment comb may involve approaching the blade set in the mounting direction and, having contacted the blade set with the orientation determining portion, swivel the attachment comb about laterally extending axis that may be basically parallel to the pivot axis or virtual pivot axis of the blade set.
In one embodiment, the mounting portion further comprises at least one side clip element, particularly a first side clip element and a second side clip element opposite to the first side clip element, wherein the at least one side clip element is configured to engage the housing portion upon swiveling the attachment comb into a mounting orientation, thereby urging the blade set into the locking orientation.
In a related embodiment, the mounting portion comprises a first side clip element and a second side clip element, wherein the first side clip element and the second side clip element are arranged to embrace the housing portion when the attachment comb is mounted to the hair cutting appliance, wherein the first side clip element and the second side clip element exert opposite retaining forces, wherein the preferably opposite retaining forces are preferably perpendicular to an alignment force applicable by a retaining element. However, several embodiments can be envisaged that may be implemented without side clip elements.
In one embodiment of the hair cutting appliance, the appliance is operable to shave hair in a shaving mode, wherein the blade set is configured to swivel in the shaving mode, wherein an actual orientation of the blade set is adaptable to a working surface, particularly to a user's skin, and wherein the appliance, being equipped with the attachment comb, is operable to trim hair in a trimming mode, wherein the blade set is urged into the locking orientation by means of the attachment comb in the trimming mode.
In a further aspect of the present disclosure a releasable attachment comb for a blade set of a hair cutting appliance, particularly for a pivotably supported blade set, is presented.
These and other aspects of the disclosure will be apparent from and elucidated with reference to the embodiments described hereinafter. In the following drawings
The cutting appliance 10 may further comprise a cutting head 18. At the cutting head 18, a blade set 20 may be attached to the hair cutting appliance 10. The blade set 20 may be driven by the motor 14 via the drive mechanism or drivetrain 16 to enable a cutting motion. The cutting motion may generally be regarded as a relative motion between a stationary blade and a movable blade which will be further described and discussed hereinafter. Generally, a user may grasp, hold and manually guide the cutting appliance 10 through hair in a moving direction 28 to cut hair. The cutting appliance 10 may be generally regarded as a hand-guided and hand-operated electrically powered device. Furthermore, the cutting head 18 or, more particularly, the blade set 20 can be connected to the housing portion 12 of the cutting appliance 10 in a pivotable manner, refer to the curved double-arrow indicated by reference numeral 26 in
When being guided moved through hair, the cutting appliance 10 including the blade set 20 is typically moved along a common moving direction which is indicated by the reference numeral 28 in
For ease of reference, coordinate systems are indicated in several drawings herein. By way of example, a Cartesian coordinate system X-Y-Z is indicated in
The stationary blade 22 may be arranged as a guard for the moveable blade 24. It is particular preferred that the stationary blade 22 comprises a first wall portion and a second wall portion which are at least partially spaced from each other such that a guide slot for the moveable blade 24 is defined therebetween. Hence, the stationary blade 22 may also cover the moveable blade 24 at the at least one toothed leading edge 30a, 30b. The blade set 20 may be attached to a swiveling mechanism 40. The swiveling mechanism 40 may form a part of the cutting head 18 that is interposed between the blade set 20 and the housing portion 12. The swiveling mechanism 40 may define a pivot or, rather, a virtual pivot for the blade set 20, refer to the curved double-arrow 26 in
The swiveling mechanism 40 may further comprise a limit stop 42 to define a maximum swiveling angle of the blade set 20 with respect to the housing portion 12. At least one contact surface 44 may be associated with the blade set 20. Consequently, when the blade set 20 is pivoted about the pivot axis or the virtual pivot axis, the contact surface 44 may contact the limit stop 42 and therefore limit the pivoting motion. The cutting head 18 may be regarded as a replaceable cutting head. The cutting head 18 may comprise an attachment interface 46 which is arranged to engage a respective receiving interface at the housing portion 12 of the hair cutting appliance 10. Particularly, the cutting head 18 may be arranged as a plug-in cutting head 18. As already indicated above, the blade set 20, particularly the moveable cutter blade 24 thereof, may be coupled to the drive shaft 48. The drive shaft 48 may comprise an eccentric portion that may revolve about a longitudinal axis of the drive shaft 48. Consequently, an eccentric cutting mechanism may be provided for reciprocatingly driving the moveable cutter blade 24 with respect to the stationary blade 22.
Being fitted with the swiveling mechanism 40 illustrated in
With reference to
The attachment comb 50 may further comprise an orientation determining portion 62. The orientation determining portion 62 may be arranged to define the locking orientation or trimming orientation of the blade set 20 when the attachment comb 50 is attached to the housing portion 12 and the blade set 20 in a predefined manner. By way of example, the orientation determining portion 62 may comprise a receiving seat 64 which may be arranged to contact the top surface 32 (refer to
As can be best seen from the perspective view of
As can be further seen from
Mounting the mounting portion 60 to the housing portion 12 may include a snap-on mounting of the mounting portion 60. To this end, at least in some embodiments, the mounting portion 60 may comprise at least one side clip 72, particularly a pair of side clips that are arranged in an opposite manner with respect to each other. The side clips 72 may engage opposite lateral sides of the housing portion 12. The side clips 72 may pull the locking engagement element 56 in contact with the mounting contour 90 at the housing portion 12. Consequently, the attachment comb 50 may be releasably attached to the housing portion 12 in a predefined snap-on manner. Attaching the attachment comb 50 in a predefined orientation may include bringing the blade set 20 into its locking orientation.
With further reference to
The attachment comb 50′ may further comprise a mounting portion 60 comprising a retaining element 80, particularly a retaining hook. The retaining element 80 may also be referred to, at least in some embodiments, as a resilient retaining element 80. The retaining element 80 may be integrally formed with or mounted at the supporting frame 52′. It is particularly preferred that the retaining element 80 is a deflectable retaining element which may be operated or actuated for selectively locking or disengaging the attachment comb 50′. A deflecting operating motion of the retaining element 80 in indicated in
As can be best seen from
As can be best seen from
Generally, the at least one receiving seat 64 may be arranged as a tab or tooth extending from the supporting frame 52′. As can be best seen from
The attachment comb 50′ may further comprise a handling tab 84, particularly a disengagement handling tab 84. Generally, the handling tab may also be referred to as handle. The handling tab 84 may be arranged at a bottom portion 83 of the supporting frame 52′. The handling tab 84 may be actuated or operated by the user to disengage or release the attachment comb 50′ from the hair cutting appliance 10.
With further reference to
As can be best seen from
As can be best seen from
Further reference is made to
As can be further seen in
As already mentioned above, the attachment comb 50′ may be further provided with a handle or handling tab 84 which may be integrally formed with and extend from the supporting frame 52′. The user may actuate the handling tab 84 to disengage the attachment comb 50′. A respective actuation direction is indicated in
With particular reference to
Basically, the blade set 20 and the at least one receiving seat 64 may be put into alignment upon mounting the attachment comb 50′. As already mentioned in connection with the embodiment illustrated in
In this way, the retaining element 80 may contact the mounting contour 90 at the housing portion 12. This may involve a sliding contact (also a combined sliding and rolling contact) of the slide surface 98 with the slide ramp surface 92, refer also to
With further reference to
With further reference to
Generally, the back side of the housing of the hair cutting appliance 10 may be regarded as the side from which the top surface 32 of the blade set 20 is turned away in the mounted state of the attachment comb 50. Generally, the front side of the housing of the hair cutting appliance 10 may be regarded as the side to which the top surface 32 of the blade set 20 is turned in the mounted state of the attachment comb 50.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single element or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
14165286 | Apr 2014 | EP | regional |
This application is a Continuation of U.S. patent application Ser. No. 15/302,381 filed on Oct. 6, 2016, which is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2015/057996 filed on Apr. 14, 2015, which claims the benefit of European Application No. 14165286.7 filed on Apr. 18, 2014. These applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1359031 | Coffman | Nov 1920 | A |
2067075 | Clark | Jan 1937 | A |
4164036 | Wax | Aug 1979 | A |
4557050 | Haraguchi | Dec 1985 | A |
4581822 | Fujimura | Apr 1986 | A |
4614036 | Haraguchi | Sep 1986 | A |
D355506 | Rizzuto, Jr. | Feb 1995 | S |
6276060 | Faulstich | Aug 2001 | B1 |
6301786 | Oswald | Oct 2001 | B1 |
D463623 | Kling | Sep 2002 | S |
6505404 | Ullmann | Jan 2003 | B2 |
8191262 | Palmer | Jun 2012 | B2 |
8458914 | Voorhorst | Jun 2013 | B2 |
10730197 | Laccarino | Aug 2020 | B2 |
20020092178 | Fung | Jul 2002 | A1 |
20040006873 | Cutting | Jan 2004 | A1 |
20080047145 | Dietzel | Feb 2008 | A1 |
20080313909 | Haczek | Dec 2008 | A1 |
20110308087 | Rehbein | Dec 2011 | A1 |
20120240414 | Wevers | Sep 2012 | A1 |
20170028574 | Iaccarino | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
353651 | Apr 1961 | CH |
201889807 | Jul 2011 | CN |
202318376 | Jul 2012 | CN |
1740354 | Jan 2007 | EP |
2055449 | May 2009 | EP |
2145740 | Jan 2010 | EP |
2145740 | Jan 2010 | EP |
54143372 | Nov 1979 | JP |
2009081301 | Jul 2009 | WO |
2010112135 | Oct 2010 | WO |
2013150412 | Oct 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20200331156 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15302381 | US | |
Child | 16916256 | US |