This application is a National Stage Application filed under 35 U.S.C.§ 371 of PCT/EP02/05168, filed on May 10, 2002, which claims priority of EP Application No. EP01113073.9, filed May 29, 2001.
The invention relates to an attachment device for mechanically and electrically connecting a sun visor to a motor vehicle. More particularly, to an attachment device having a receiving housing mounted on the motor vehicle and a sun visor foot connectable with the sun visor, wherein the receiving housing and the sun visor foot each comprise contacts for producing an electrical connection.
As part of a progressive increase in the number of electronic components in a motor vehicle, sun visors are more frequently being manufactured with electronic components. Not only are the sun visors being used as a support for additional operating and display elements (e.g., video displays), but the functioning of the sun visor itself is also being controlled by electronic components. For example, the position of the sun visor may be set by sensors, actuators and control electronics in response to a measured glare.
Because of these developments, when the sun visor is attached to the motor vehicle during manufacture, electrical contact between connections provided on the motor vehicle and connections extending out of the sun visor need to be provided in addition to mechanical coupling and fixing. Common attachment devices provided for the electrical connection of the motor vehicle to the sun visor have a loosely suspended plug-in connector for producing an electrical coupling in addition to mechanical attachment of the sun visor. Moreover, an arrangement for attaching a vehicle sun visor to a bodywork component is known from European patent EP 0 808 251 B1, wherein electrical contact is produced between electrical connectors arranged on a mounting clip and associated electrical connectors on a plastic insert.
A disadvantage of these attachment devices is that producing the electrical contact requires an additional, often relatively time-consuming, mounting step and additional components.
It is therefore desirable to provide an attachment device for a sun visor of a motor vehicle wherein electrical contact is effectuated in the same working step as the mechanical coupling so that the sun visor is attached in a particularly simple, economic manner with as few mounting steps as possible.
This object is achieved by an attachment device for the sun visor of a motor vehicle having a receiving housing mounted on the motor vehicle and a sun visor foot connectable with the sun visor, wherein the receiving housing and the sun visor foot each comprise contacts for producing an electrical connection. The electrical contact of the receiving housing has a first contact point and the electrical contact of the sun visor foot has a second contact point whereby the first contact point and the second contact point are in electrical contact with when the sun visor foot is mounted in the receiving housing.
The invention is explained in more detail below with reference to the attached drawings, wherein:
Preferred configurations of the invention are described in more detail below. Similar or matching details of the attachment device according to the invention are provided with the same reference numerals in the Figures.
The metal sheet 104 will now be described in greater detail. Shown in
The receiving housing 106 will now be described in greater detail. As shown in
Shown in
The contact zones 158 of the conductive tracks 111 are preferably gold-plated to ensure particularly good electrical crossover to the compression spring contact 112. The connection zone 160 is tinned, as is conventional for the contact pins of a plug-in connector. The area 164 is preferably completely tinned.
In
Shown in
The compression spring contact 112 is shown in various views in
A portion of the stamping strip from which the compression spring contacts 112 are made is shown in
The contact housing 114, holds and insulates the compression spring contacts 112 in a six pole embodiment. Although a six pole embodiment is illustrated, an embodiment with any number of poles is possible.
The mounting procedure of the sun visor foot 108 to the receiving housing 106 will now be described in greater detail. Shown in
In swivelling the sun visor foot 108 into the receiving housing 106, the compression spring contacts 112 are received into the corresponding receptacles 142 in the contact housing 114. In the mounted state, the ends of the contact zones 144 of the compression spring contacts 112 project out of the contact housing 114 and are pressed against the conductive tracks 111 of the stamped grid 110 and fixed by axial pressure. Connecting cables (not shown) extend out of the sun visor and may be connected to the connection zone 146 of the compression spring contacts 112. During this process, the electrical contact between the stamped grid 110 and the compression spring contacts 112 is closed in a self-adjusting manner. The sun visor foot 108 is mechanically fixed to the releasing housing 106 via a screw (not shown) that extends through the bores 122 provided in the metal sheet 104 and the releasing housing 106. As shown in
In the attachment device 100, the receiving housing 106 mechanically fixes and electrically contacts the sun visor foot 108. In the mounted state, compression spring contacts 112 of the sun visor foot 108 contact free contact surfaces on a stamped grid 110. The stamped grid 110 is embedded in the receiving housing 106 by injection moulding. An arm of the sun visor (not shown) is mechanically fixed in a receptacle 109 having electrical connections (not shown) extending therefrom. Thus, an attachment device for a sun visor of a motor vehicle is provided wherein electrical contact is effectuated in the same working step as the mechanical coupling so that the sun visor is attached in a particularly simple and economical manner with as few mounting steps as possible.
The foregoing illustrates some of the possibilities for practicing the invention. Many other embodiments are possible within the scope and spirit of the invention. It is, therefore, intended that the foregoing description be regarded as illustrative rather than limiting, and that the scope of the invention is given by the appended claims together with their full range of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
01113073 | May 2001 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/05168 | 5/10/2002 | WO | 00 | 7/27/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/096689 | 12/5/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5320399 | White et al. | Jun 1994 | A |
5365416 | Peterson | Nov 1994 | A |
5848902 | Yamaguchi et al. | Dec 1998 | A |
6083059 | Kuan | Jul 2000 | A |
6113253 | Yoshii et al. | Sep 2000 | A |
6135610 | Beck et al. | Oct 2000 | A |
6319014 | Gunay et al. | Nov 2001 | B1 |
6354843 | Kato | Mar 2002 | B1 |
6488328 | Quapil | Dec 2002 | B2 |
6524140 | Takagi et al. | Feb 2003 | B2 |
6676129 | Wilson | Jan 2004 | B2 |
6855010 | Yen | Feb 2005 | B1 |
20010012734 | Nishimatsu | Aug 2001 | A1 |
20020033614 | Quapil | Mar 2002 | A1 |
20020123271 | Henry et al. | Sep 2002 | A1 |
20020142669 | Phillips | Oct 2002 | A1 |
20050101195 | Zhu et al. | May 2005 | A1 |
20050104409 | Garcia | May 2005 | A1 |
20050237756 | Ogawa | Oct 2005 | A1 |
20060079136 | Wei | Apr 2006 | A1 |
20060148328 | Le Gallic | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
1 089 389 | Apr 2001 | EP |
2782954 | Mar 2000 | FR |
WO 8911171 | Nov 1989 | WO |
Number | Date | Country | |
---|---|---|---|
20060216956 A1 | Sep 2006 | US |