The present invention relates to an attachment for a handheld appliance, in particular a hair care appliance such as a hot air styling device or hair dryer.
In a conventional hot air styling device or hair dryer, the form and velocity of the emitted airflow may be modified by a removable nozzle or attachment. Depending on the style desired, the airflow may or may not be heated. A concentrator is a known attachment which focuses and flattens the emitted airflow, allowing the airflow to be directed to a specific area of the user's hair. Certain hair types, such as textured hair, benefit from arranging the user's hair with a comb or pic during the drying process, in order to avoid tangling of hair tresses. It is desirable to provide an attachment suitable for improving the ease and speed with which textured hair may be dried or styled.
In a first aspect, the present invention provides an attachment for a hair styling apparatus, the attachment comprising an air inlet for receiving airflow from the hair styling apparatus, an elongate slot-shaped air outlet, a duct for conveying air from the air inlet to the air outlet, a bar mounted within the duct and along the length of the air outlet and a series of comb teeth mounted on the bar.
The attachment may be especially beneficial for users with textured hair and the attachment may also be referred to as a pic or textured hair comb.
Preferably, the bar is adapted to flex torsionally. Further, the bar is preferably adapted to flex in a plane orthogonal to the length of the air outlet. It is preferred that each tooth in the series of comb teeth has a first end positioned within the duct and a second end disposed beyond the air outlet in a downstream direction, and the bar is adapted to enable each tooth to describe a spherical sector about an axis of the first end of the tooth.
Advantageously, the second end of each tooth may move, in use, to describe a circle of approximately 5 mm radius, and the second end of each tooth gently conforms to the shape of the user's head, and resiliently returns to an aligned arrangement when not in use.
In a preferred embodiment, the bar comprises a securing means at each end for mounting the bar within the duct. Preferably, the securing means provides a fixed join or a pivoted join. It is preferred that the bar is formed of a flexible material, such as a nylon material.
In a preferred embodiment, the bar and the series of comb teeth are formed as a single entity.
In a second aspect, the present invention provides an attachment for a hair styling apparatus, the attachment comprising an air inlet for receiving airflow from the hair styling apparatus, an elongate slot-shaped air outlet, a duct for conveying air from the air inlet to the air outlet, a series of comb teeth mounted across the air outlet, each tooth having a first end located substantially at the air outlet and a second end disposed beyond the air outlet in a downstream direction, wherein at least one tooth comprises a planar, triangular form, oriented substantially orthogonally to the length of the air outlet.
Advantageously, the attachment functions as a drying and detangling tool and the emitted airflow experienced by the user is generally uniform in temperature and velocity. The attachment improves the ease and speed with which textured hair may be dried or styled.
Preferably, the first end of the at least one tooth has a semi-circular profile. It is also preferred that the second end of the at least one tooth forms an apex. The apex may comprise a rod form and may further comprise a spherical form at a terminal end of the tooth. Preferably, each tooth has a width in the range of 0.5 mm to 2 mm. In a preferred embodiment, each tooth in the series of comb teeth is regularly spaced. Further, it is preferred that each tooth in the series of comb teeth is spaced from adjacent teeth by a distance in the range of 2 mm to 8 mm.
The first end of the outermost teeth in the series of comb teeth may be angled towards a longitudinal axis of the attachment. Further, the second end of the outermost teeth in the series of comb teeth may be angled towards a longitudinal axis of the attachment. Preferably, the series of comb teeth is formed of a flexing material.
Preferably, the attachment further comprises a series of vanes within the duct oriented substantially orthogonally to the length of the air outlet, and a downstream end of at least one vane of the series of vanes comprises an inverted semi-circular profile adapted to fit around the first end of an aligned tooth. It is also preferred that the first end of the aligned tooth is freely moveable within the inverted semi-circular profile of the at least one vane.
Advantageously, each tooth within the series of teeth has a limited range of movement, thereby enabling the series of teeth to conform to the shape of the user's scalp, in use.
In a third aspect, the present invention provides an attachment for a hair dryer, wherein the hair dryer comprises a body having an outer wall, an inner bore and a duct therebetween, and an airflow outlet at a front face of the body; the attachment comprising an air inlet for receiving airflow from the hair dryer, an air outlet, a duct for conveying air from the air inlet to the air outlet, and a stabilizing member for positioning within the inner bore of the hair dryer.
Preferably, the air inlet is located between the stabilizing member and the duct of the attachment. Further, the stabilizing member is preferably generally cylindrical. It is preferred that the stabilizing member has a diameter in the range from 25 mm to 50 mm, and more preferably in the range from 32 mm to 38 mm.
In a preferred embodiment, the stabilizing member has a first end distal to the air inlet and a second end proximal to the air inlet, and the second end has a diameter in the range from 35 mm to 37 mm. Preferably, the stabilizing member tapers from the second end to the first end. It is preferred that the stabilizing member has a friction fit with the inner bore of the hair dryer.
The diameter of the cylindrical stabilizing member may increase gradually from the first end to the second end in order to achieve a flush fit between the stabilizing member and the inner bore of the hair dryer along the length of the stabilizing member.
The attachment may comprise a seal disposed between the stabilizing member and the inner bore of the hair dryer, and said seal may be an elastic o-ring attached to the stabilizing member.
Preferably, the air inlet is a slot, and further, may be an annular slot. The attachment preferably comprises a ring of magnet material adjacent to and extending around the air inlet. Furthermore, the length of the stabilizing member is preferably in the range from 10 mm to 120 mm.
Airflow emitted from the air outlet of the hairdryer may have a temperature range up to around 130° C.
In a fourth aspect, the present invention provides an attachment for a hair styling apparatus, the attachment comprising an air inlet for receiving airflow from the hair styling apparatus, an elongate slot-shaped air outlet, a duct for conveying air from the air inlet to the air outlet, an airflow guiding entity located at least partially within the duct, said airflow guiding entity having a plurality of vanes orientated substantially orthogonally to the length of the air outlet, and a series of comb teeth mounted across the air outlet, each tooth having a first end located at the air outlet and a second end disposed beyond the air outlet in a downstream direction.
Preferably, at least one of the vanes substantially abuts a first end of a tooth. Further, it is preferred that each vane comprises a downstream terminal edge having an inverted semi-circular form.
In a preferred embodiment, the airflow guiding entity is a bung comprising a substantially circular first end and a domed second end. It is also preferred that the vanes are connected to an outer surface of the bung and extend from the circular first end to the domed second end and protrude beyond the second end. The air inlet may comprises at least one slot, and more preferably, the air inlet comprises an annular slot located around the first end of the bung.
In a further preferred embodiment, the air inlet is located at one end of the duct, and the air outlet extends along the length of the duct. The airflow guiding entity may be a series of vanes, each spanning the duct in proximity to the air outlet. Advantage is found in utilizing one or more vanes within the duct in order to direct the inlet airflow smoothly, through approximately 90 degrees, towards the air outlet. Preferably, the cross-sectional area of the duct decreases in size from the air inlet along the length of the air outlet. Further, the attachment preferably comprises a contoured duct wall extending between the air inlet and the air outlet.
Advantageously, turbulent airflow is minimized within the attachment and consequently the audible volume of the hot air styling device with attachment is minimized in use.
Features described above in connection with the first aspect of the invention are equally applicable to the further aspects of the invention, and vice versa.
Preferred features of the present invention will now be described by way of example only with reference to the accompanying drawings, in which:
A stabilizing cylindrical member 24 extends about a longitudinal axis, x, of the attachment 10 at the upstream side of the air inlet 12. The distal end of the cylindrical member 24 comprises an elastic O-ring 26.
A flange 48 is located at the first end of the bung which cooperates with the second end 50 of the cylindrical member 24. A pair of snap-fit arms 52 are located towards the first end of the bung on opposing sides of the circular opening 44, on the transverse plane, y, of the attachment 10. These snap-fit arms 52 engage with an annular magnet 14 which is illustrated in
The sleeve 18 is an annulus having a rounded rectangular cross-section, which is adapted at a first end to accommodate the bung 16. The first end 22 of the sleeve 18 also comprises an end wall 54 extending transverse to the longitudinal axis of the attachment 10 and defining a shoulder 56 of the sleeve 18. There may be a discontinuity between the side wall of the sleeve 18 and the end wall 54, forming a port 53 through which ambient air may transfer.
As shown in
The cylindrical member 24 has four walls 64 located radially within the cylinder, extending from an axial fixing member 66 to an inner surface 68 of the cylinder. As shown in
The hair-engaging member 28 comprises a plurality of teeth 20 connected to a bar 30. In the embodiment illustrated in
With reference to
During assembly of the components of the attachment 10, the sleeve 18 is moved to surround the junction between the hair-engaging member 28 and the bung 16. The lugs 36 at the first end of the hair engaging member 28 align with the apertures 58 in the second end of the sleeve 18. A pin 41 is inserted through each aperture 58 and into a receiving aperture 40 in each lug 36, respectively. The cylindrical stabilizing section 24 is connected to the bung 16 via the flange 48 at the first end of the bung 16. Optionally, a screw connection between the axial fixing member 66 of the cylindrical section and an axial protrusion (not shown) within the bung 16, may be used reinforce this connection. The annular magnet 14, which is preferably partly encased by plastic 15, is moved along the cylindrical section 24 towards the bung 16, and secured in position by the snap-fit arms 52.
With reference to
In use, the textured hair pic 10 is attached to the airflow outlet end of a hair dryer 72. An example of a hair dryer to which the pic may be attached is illustrated in
Airflow emitted from the hair dryer 72 passes through the annular air inlet 12 of the attachment and passes over the surface of the bung 16, guided by the vanes 42, and bounded by the sleeve 18. The airflow continues past the first end of the hair-engaging section 28, and through the air outlet 22, as defined by the second end of the sleeve 18. Guided by the plurality of teeth, the airflow continues towards the second end of the hair-engaging section 28. As a heated air flow passes through the attachment 10, the temperature of the components will rise. To avoid contact with the warmest parts of the attachment, the user may position their fingers at the short sides of the sleeve 18. Further, the sleeve may comprise a double wall with a gap between, thereby creating an insulating effect.
The user may move the attachment 10 through their hair, and the teeth 20 may be in contact with the user's scalp. The flexing bar 30 allows the teeth 20 to move and thereby conform to the shape of the user's head. Further, each tooth 20 is comprised of a flexing material. The user's movement of the attachment 10 through the hair may be irregular and the arrangement of the hair may be non-uniform, and thus individual teeth may be urged in different directions or rotations. The flexing bar 30 enables such movement of the teeth 20 to a limited extent. The greatest movement of the teeth 20 occurs at the terminal end of each tooth. When movement of a terminal end of a tooth is in alignment with the z-axis, as shown in
Each of the components of the attachment 10 is formed from a plastics material. In particular, the hair-engaging member comprises glass filled nylon or super-tough nylon.
A protective cap 82 can be positioned over the hair-engaging portion 28 when the attachment 10 is not in use. The protective cap 82, illustrated in
When the attachment 10 has been in use with a high temperature airflow and significant stresses inflicted on the teeth 20, it is possible that the teeth may deform as a consequence of the properties of the plastics material from which the teeth are comprised. After use, the protective cap 82 can be slid over the hair-engaging section 28, in the direction of the arrow in
An alternative pic attachment, for use with a hot air styling device, is shown in
The air inlet 102 is in fluid communication with a duct 108. The duct 108 has an air outlet 110 which is elongate in shape. An external surface of the attachment 100 is in the form of a sleeve 112 extending partially about the duct 108. The air outlet 110 may extend beyond the top opening of the sleeve 112.
Whilst the embodiment illustrated in
The embodiment illustrated in
The four further vanes 120, 122, 124, 126 are split vanes, each comprising a major section and a minor section. Each vane has slightly differing dimensions and proportions. A downstream end of the major section of each split vane is a narrow tail which terminates normal to, and in close proximity to, the air outlet. The downstream ends of the major section of each split vane are positioned at approximately regular intervals of 14 mm-15 mm.
With reference to
A hair-engaging section 128, similar to the hair-engaging section previously described and as illustrated in
In use, the attachment illustrated in
At the upstream end of the duct 108, the contoured wall 116 functions to direct the airflow towards the air outlet with a minimum of turbulence and low velocity flow. The airflow velocity of the airflow proximal to the airflow inlet is adequate to ensure a required level of attachment of the airflow to the unbroken vane. Split vanes function to improve attachment of the airflow to the vane as the incident airflow velocity is reduced. The airflow exiting the outlet 110 is straight, even flow with an outlet airflow velocity lower than the inlet airflow velocity. Furthermore, the outlet airflow has a relatively slow velocity decay and leaves the duct 108 uniformly at right-angles to the direction of the incident airflow into the attachment 100. In an exemplary embodiment, the velocity of the airflow exiting the duct is around 30 m/s-35 m/s. The outlet airflow is guided by the teeth, thereby continuing the emitted straight, even flow towards the user's hair. In use, the movement of the teeth 138 in this alternative attachment is similar to the movement of the teeth in the hairdryer attachment, as described previously.
The cross-sectional area of the duct 108 tapers gradually towards the distal end of the attachment 100. The function of this reduction in cross-sectional area is to ensure a constant pressure of airflow exiting the attachment along the entire length of the air outlet and to prevent turbulent flow. Specifically, the reduction in cross-sectional area is proportional to falling mass flow rate of the airflow within the duct. The mass flow falls as airflow exits the duct via the air outlet from the upstream end of the attachment to the downstream end of the attachment. Consequently, the reduction in cross-sectional area of the duct 108 results in a constant outlet airflow velocity along the length of the air outlet. It is also observed that attachment of airflow to vanes 118, 120, 122, 124, 126 is improved as a consequence of the reduction in cross-sectional area of the duct. Also, a balanced distribution of airflow is achieved at the air outlet.
The inlet airflow may be heated before entering the attachment 100 and consequently the duct may become hot during use. The sleeve 112 functions as a cool wall to minimize the temperature of the outermost surface of the attachment, as the air-filled chamber 114 insulates the sleeve from the duct.
A protective cap, as illustrated in
With reference to the embodiment illustrated in
In a further embodiment of the alternative attachment 100, as shown in
In a preferred embodiment, the depth, d, (shown in
The attachments 10, 100 may be fabricated from any suitable heat resistant material, and in a preferred embodiment, are fabricated from glass-filled nylon. The highest preferred operating temperature of such attachments connected to a hot air styling device or hairdryer is approximately 130 degrees centigrade.
The complete attachments are secured together at multiple points within each attachment using one or more of glue, screws, ultrasonic welding and push-fit fixings.
In an alternative embodiment, a tooth may comprise one or more apertures, curved edges, or a non-uniform blade width. Further, the series of teeth may comprise more than one tooth design.
In an alternative embodiment, it may be desirable to produce a reduced exit airflow velocity from an attachment whilst utilizing a similar hot air styling device or hairdryer to provide the input airflow. This may be achieved by increasing the overall dimensions of the attachments.
It will also be apparent to the skilled person that utility is found in the attachments alone. Specifically, the attachments described herein may be used without airflow and a user would benefit significantly from the flexing bar and consequently mobile teeth.
The invention is not limited to the detailed description given above. Variations will be apparent to the person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
1812550.0 | Aug 2018 | GB | national |
1812551.8 | Aug 2018 | GB | national |
1812552.6 | Aug 2018 | GB | national |
This application is a national stage application under 35 USC 371 of International Application No. PCT/GB2019/051635, filed Jun. 13, 2019, which claims the priority of GB Application Nos. 1812550.0, 1812551.8, and 1812552.6, all filed Aug. 1, 2018, the entire contents of each of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2019/051635 | 6/13/2019 | WO | 00 |