The subject matter disclosed herein relates generally to vertical column or pile installation. More particularly, the subject matter relates to an attachment for a skid steer loader for installation of vertical columns or piles, and a method of use thereof.
Vertical piles or columns are often installed into the ground as supports for various structures including but not limited to solar arrays. These vertical piles must be installed at precise locations in the ground in order to properly construct the solar array foundations. These vertical piles are typically installed with heavy machinery which drives the piles into the ground. These machines must be moved into and remain in the exact location that the pile should be driven into the ground. Alternately, large holes must be dug by excavating equipment in order to ensure that the piles are in the proper location before back filling or cementing. For this reason, it is often a difficult, time consuming, and costly process for installing vertical piles into the ground.
Thus, an attachment for a skid steer loader for installation of vertical columns or piles, and a method of use thereof, would be well received in the art.
According to a first described aspect an attachment for a loader vehicle comprises: a left loader arm; a right loader arm; a boom arm operatively attached to the left loader arm and the right loader arm, wherein the boom arm extends in the same or substantially the same direction that both the left loader arm and the right loader arm extends, wherein the boom arm is positioned between the left loader arm and the right loader arm, and wherein the boom arm includes a rotating mechanism at a first end for attaching and rotating a vertical column for installation in the ground; a first hydraulic cylinder attaching the left loader arm with the boom arm; and a second hydraulic cylinder attaching the right loader arm with the boom arm; wherein the first and second hydraulic cylinders are configured to exact rotation on the boom arm, and wherein the first and second hydraulic cylinders extend at least substantially perpendicular to the plane of rotation of the boom arm.
According to a second described aspect, an attachment for a loader vehicle comprises: a left loader arm; a right loader arm; a first hydraulic cylinder extending substantially vertically from the left arm; a second hydraulic cylinder extending substantially vertically from the right arm; a base portion attached to the left arm and the right arm; and a boom arm attached to the first and second hydraulic cylinders at a first location along a length of the boom arm and attached to the base portion at a second location along the length, wherein the boom arm extends in the same or substantially the same direction that the left and right loader arms extend, wherein the boom arm is positioned between the left loader arm and the right loader arm, and wherein the first and second hydraulic cylinders exact the rotation about the second location, wherein the boom arm includes a rotating mechanism at a first end for attaching and rotating a vertical column for installation in the ground.
According to a third described aspect a loader vehicle comprises: a left loader arm and a right loader arm configured to be raised and lowered; a boom arm operatively attached to the left loader arm and the right loader arm, wherein the boom arm extends in the same or substantially the same direction that both the left loader arm and the right loader arm extends, wherein the boom arm is positioned between the left loader arm and the right loader arm, and wherein the boom arm includes a rotating mechanism at a first end for attaching and rotating a vertical column for installation in the ground; a first hydraulic cylinder attaching the left loader arm with the boom arm; and a second hydraulic cylinder attaching the right loader arm with the boom arm; wherein the first and second hydraulic cylinders are configured to exact rotation on the boom arm, and wherein the first and second hydraulic cylinders extend at least substantially perpendicular to the plane of rotation of the boom arm.
According to a fourth described aspect, a method of installing vertical piles comprises: providing a vertical loader including: a left loader arm; a right loader arm; a boom arm operatively attached to the left loader arm and the right loader arm, wherein the boom arm extends in the same or substantially the same direction that both the left loader arm and the right loader arm extends, wherein the boom arm is positioned between the left loader arm and the right loader arm, and wherein the boom arm includes a rotating mechanism at a first end for attaching and rotating a vertical column for installation in the ground; a first hydraulic cylinder attaching the left loader arm with the boom arm; and a second hydraulic cylinder attaching the right loader arm with the boom arm, wherein the first and second hydraulic cylinders are configured to exact rotation on the boom arm, and wherein the first and second hydraulic cylinders extend at least substantially perpendicular to the plane of rotation of the boom arm; attaching a vertical column to the end of the boom arm; rotating the boom arm with the hydraulic cylinders; and applying a constant downward pressure on the vertical column by the boom arm.
The subject matter disclosed herein is distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
a depicts a front view of the attachment of
b depicts a front view of the attachment of
c depicts a front view of the attachment of
a depicts a top view of the attachment of
b depicts a top view of the attachment of
c depicts a top view of the attachment of
a depicts a side view of the attachment of
b depicts a side view of the attachment of
c depicts a side view of the attachment of
A detailed description of the hereinafter described embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring firstly to
The loader vehicle 10 is shown having the main body 12. The main body 12 may house the engine (not shown), the tracks 14, 16, a driver operating position 18, a hydraulic system 20, and an electronic system 22. The hydraulic system 20 may be configured to control various hydraulic cylinders described herein. The electronic system 22 may be in communication with a remote controlling mechanism 70 (described hereinbelow) that operates the various features described herein. The main body 12 may also include a left loader arm 24 and a right loader arm 26 and a boom arm 28. The left, right and boom arms 24, 26, 28 may, in one embodiment, be an integral component of the loader vehicle 10 as sold by the manufacturer. It should be understood that any or all of the parts described may be an integral component of the loader. In other embodiments, the loader arms 24, 26, 28 may be an attachment system 100 (shown in
The left loader arm 24 and the right loader arm 26 may be attached to the main body 12 at attachment locations 30, 32. The left loader arm 24 and the right loader arm 26 may be raised and lowered by loader arm hydraulic cylinders 34, 36. The loader arms 24, 26 may be configured to be raised and lowered in unison. In other words, the hydraulic cylinders 34, 36 may not be configured to operate independently but rather may work together to raise and lower each arm 24, 26 at the same rate. The maximum and minimum height achievable by the loader arms 24, 26 may vary from embodiment to embodiment depending on, for example, the mechanical dimensions of the loader arms 24, 26 and the maximum length of the hydraulic cylinders 34, 36.
The boom arm 28 may be operatively attached to the left loader arm 24 and the right loader arm 26 such that it is raised or lowered with the left loader arm 24 and the right loader arm 26. A first boom arm hydraulic cylinder 38 may be attached at or near an end 39 of the left loader arm 24 and extends to a first location 41 along the length of the boom arm 28. Likewise, a second boom arm hydraulic cylinder 40 may be attached to an end 42 of the right loader arm 26 and also extends to the first location 41 along the length of the boom arm 28. The boom arm 28 may include a coupling foundation 44 that includes two extending parallel plates with holes for receiving two bolts (not shown) that are configured to secure the first and second hydraulic cylinders 38, 40 to the boom arm 28. The hydraulic cylinders 38, 40 may each include a rod portion 45 having an eye opening at the end for aligning with the openings of the parallel plates of the coupling foundation 44 and receiving the bolts to secure the hydraulic cylinders 38, 40 to the boom arm 28. In this way, the securing of the hydraulic cylinders 38, 40 may allow for some rotational movement of the hydraulic cylinders 38, 40 about the coupling foundation 44.
The boom arm 28 may also be secured to the loader arms 24, 26 by a base portion 46. The base portion 46 may be attached to the left loader arm 24 and the right loader arm 26. The base portion 46 may include a shaft 48, rod or beam that extends from the left loader arm 24 to the right loader arm 26. The shaft 48 may be an integral portion of the loader vehicle 10 in one embodiment. The base portion 46 may also include a supporting structure 50 extending upwards from the shaft 48 to the boom arm 28. The supporting structure 50 may be welded to the shaft 48 or may be attached to the shaft 48 by any securing means. The base portion 46 may include a rotatable attachment end 52 for attaching to the boom arm 28. The rotatable attachment end 52 may be rotatably attached to the supporting structure 50. The supporting structure 50 of the base portion 46 may be securably or permanently attached to a second location 54 along the length of the boom arm 28. The boom arm 28 may be permitted to rotate about the second location 54. The rotation of the boom arm 28 may be provided about a pin 50a. The rotatable attachment end 52, and therefore the entire boom arm 28, is configured to rotate about the pin 50a at the pivot second location 54. The boom arm 28 may extend in the same or substantially the same direction that both the left loader arm 34 and the right loader arm 36 extends. The boom arm 28 may also be positioned between the left loader arm 34 and the right loader arm 36.
Referring now to
The first and second hydraulic cylinders 38, 40 may both extend substantially perpendicular upwards. “Substantially perpendicular upwards” is defined herein to mean that the first and hydraulic cylinders, on average, extend upwards at least at a 45 degree angle from the ground when viewed from both the side (as shown in
The substantially perpendicular nature of the first and second hydraulic cylinders 38, 40 may permit the boom arm 28 to move in an arc over the ground 62 such that the boom arm 28 is closest to the ground 62 in the leftmost and rightmost positions (shown in
The left loader arm 24 and the right loader arm 26 may be configured to raise and fall simultaneously in order to lift and lower the boom arm 28. As previously described, the hydraulic cylinders 34, 36 may extend or retract in order to raise and lower the left loader arm 24 and the right lower arm 26.
The boom arm 28 may further include a rotating mechanism 56 at the first end 58 for attaching and rotating a vertical column 60 for installation in the ground 62. The rotating mechanism 56 may be configured to attachably and detatchably receive the vertical column 60 as shown in
In another embodiment (not shown), rather than a rotating mechanism 56, the boom arm 28 may instead include a driving mechanism. The driving mechanism may install vertical columns, such as the vertical column 60, by driving the vertical column into the ground without rotation. It should be understood that the concepts of the present invention may be applied to any particular attachment head, not limited to column installation. Hereinafter, the embodiments described will include the rotating mechanism 56. However, this embodiment is focused on solely for exemplary purposes.
The boom arm 28 may also be telescopic in one embodiment. Thus, the boom arm 28 may include an outer arm portion 66 and an inner arm portion 68 that extends from an end 69 of the outer arm portion 66. The boom arm 28 may thus extend, then retract, and then extend again in order to retain the same vertical position when installing the vertical column 60 into the ground. The boom arm 28 may thus be extended in the raised position (shown in
The boom arm 28 may be configurable to apply a constant downward pressure into the ground 62 when installing the vertical column 60 attached to the first end 58. This constant downward pressure may be a preset pressure set by a user. The pressure may be increasable or decreasable during the installation of the vertical column 60 as disclosed herein. For example, the constant downward pressure may be set to 500 lbs. Furthermore, the pressure may be preset such that it is lower than the amount of pressure that will cause the loader vehicle 10 to be lifted from the ground by the boom arm 28. This constant downward pressure may help to achieve a consistent installation speed, and promote the safety of the installation. Furthermore, the constant pressure allows an installer to not have to control the loader arms 24, 26 during installation as the pile 60 is installed into the ground 62. The pressure also helps the helical end 64 to bite into the ground 62 so it does more than simply dig a hole in the ground 62.
Referring to
The controller 70 is specifically shown in
Referring now to
Further contemplated herein is a method of installing vertical columns or piles, such as the vertical column 60. The method may first include providing a vertical loader vehicle or attachment for a vertical loader vehicle, such as the loader vehicle 10 or the attachment 100. The method may then include attaching a vertical column to the end of a boom arm, such as the boom arm 28. The method may then include rotating the boom arm with hydraulic cylinders, such as the hydraulic cylinders 38, 40. The method may further include applying a constant downward pressure on the vertical column by the boom arm. Moreover, the method may include moving the boom arm in an arc to the left and right with the hydraulic cylinders. The method may further include telescoping the boom arm for expansion and contraction. The method may further include remotely controlling the boom arm with a controller such as the controller 70.
Elements of the embodiments have been introduced with either the articles “a” or “an.” The articles are intended to mean that there are one or more of the elements. The terms “including” and “having” and their derivatives are intended to be inclusive such that there may be additional elements other than the elements listed. The conjunction “or” when used with a list of at least two terms is intended to mean any term or combination of terms. The terms “first” and “second” are used to distinguish elements and are not used to denote a particular order.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.