The present invention relates to the attachment of a multi-flow turbojet engine to an aircraft by suspending it from the wing structure or any other structure thereof by means of a pylon.
A multi-flow turbojet engine comprises a turbojet consisting of a gas turbine engine driving a fan. The invention relates to the fan engines situated at the front. The air compressed by the fan is split into two or more concentric flows; an internal primary flow passes through the gas turbine engine being heated up in the combustion chamber then expanded in the turbine section which drives the air compression sections, before being discharged into the atmosphere. The other flow or flows remain cold; they are discharged directly into the atmosphere or alternatively are mixed beforehand with the gases of the primary flow and provide most of the thrust. The bypass ratio, which is the ratio between the flow rate of cold air and the flow rate of hot gas, in the case of engines for civil aviation is relatively high, and at the present time is commonly of the order of five to six. This type of engine comprises two structural casing elements via which the loads are transmitted between the aircraft and the engine, one at the front in the continuation of the fan casing, that forms the casing known as the intermediate casing, and the other at the rear, forming the exhaust casing. The engine is attached to the wing structure on two transverse suspension planes passing through these structural elements.
The attachment pylon or strut is a rigid structural component that forms the connection interface between the engine and the wing structure of the aircraft and, in particular, is connected to the engine in these two planes. It allows load to be transmitted from the engine to the structure of the aircraft. It also has the function of guiding auxiliaries. The pylon is generally an elongate structure of rectangular cross section of the box structure type. It is formed by assembling upper and lower spars and lateral panels joined together via transverse ribs. It comprises, on the one hand, means of attachment to the engine and, on the other hand, on its upper part, means of attachment to the wing structure of the airplane.
This type of engine attachment is used and works satisfactorily for engines with the kind of bypass ratio mentioned hereinabove.
Technological advances in engine technology lead to an increase in the bypass ratio with a view to doubling this in the future. This will result in a structural modification that could make the current means of attachment less suitable. This is because the diameter of the fan is increased while that of the part involving the primary flow does not progress to the same extent and remains at the same order of magnitude. The loads introduced along the axis of this type of engine, particularly when the aircraft is taking off, are then greater even though the central part downstream of the fan remains relatively flexible. No solution has been found nor even is any solution possible for making this more rigid. This results in deformations along the axis, bending, and misalignment of the rotary elements, all of this reducing engine performance.
Document US2005/0194493 has proposed reducing non-axisymmetric deformation of the engine by making the suspension of the engine statically indeterminate on the basis of a predetermined deformation of the engine that occurs particularly when the airplane is taking off. In cruising flight, the suspension remains statically determinate and works in the conventional way. A link rod connecting the fan casing to an element of the pylon used to suspend the engine from the wing structure forms a means that opposes longitudinal bending of the engine. The connection between the casing and the link rod is flexible such that the link rod remains on standby and is loaded only when the deformation of the fan casing exceeds a set amount.
The present invention proposes an improved solution.
Thus, in accordance with the invention, the suspension for suspending a multi-flow turbojet engine provided with an intermediate casing and an exhaust casing from a pylon that can be attached to the structure of an aircraft, comprising forward means of attachment between the hub of the intermediate casing and said pylon and a rear means of attachment between the exhaust casing and the pylon, is one which also comprises a means of connection rigidly connecting the intermediate casing to the pylon, and which is one wherein the rear means of attachment comprises a means for compensating for the variations in diameter of the exhaust casing so as to keep the axis of the exhaust casing coaxial with the axis of the intermediate casing through the various phases of flight of the aircraft.
The suspension of the invention is therefore of the statically indeterminate type with the rigid connection between the intermediate casing and the pylon. Some of these loads are transmitted to the pylon via this connection. It also avoids the problems that result from bending of the engine. Further, insofar as the engine also experiences deformations of a thermal origin, the invention is able to compensate for these, maintaining coaxiality between the fan and turbine shafts.
According to another feature, said means for compensating for the variations in diameter of the exhaust casing comprises an actuator capable of varying the distance from the exhaust casing to the pylon. This more particularly means the height of the exhaust casing relative to the pylon.
More specifically, said means for compensating for the variations in diameter is driven by a sensor that measures the coaxiality between the turbine and fan casing. This sensor according to one embodiment provides a signal representative of the fan blade tip clearance.
According to another embodiment, the sensor provides a measurement of the variation in height between the fan casing and the exhaust casing.
One embodiment of the suspension of the invention will now be described with reference to the drawings in which:
The engine depicted in
As can be seen from
Insofar as the forward attachment has elements with ball joint connections, it does not react the bending moments applied along the axis of the engine by the fan as a whole if the aircraft is taking off or in a nose-up attitude, for example. These loads, when the ratio between the diameters of the fan casing and of the primary stream flow casing is high, are liable to give rise to deformation leading to losses in performance.
One feature of the invention therefore proposes giving the forward attachment the ability to react to a bending moment about a transverse axis.
The other means of suspension are the same as before.
By virtue of this additional connection, the bending loads are reacted by the pylon directly.
The mere fact of securing the fan casing to the pylon is not enough in transient engine speed phases. This is because, as has been depicted in dotted lines in
During changes in engine speed, there are dimensional variations particularly of those parts of the engine subject to variations in engine gas temperature. These variations result in expansion of the exhaust casing and a vertical shift of the engine axis with respect to the pylon.
In order to solve this problem, the invention creates a suspension with an element that is active in the vertical direction between the exhaust casing and the pylon. The purpose of this element is to shorten the distance between the pylon and the casing when the latter expands, so as to keep the fan and turbine axes coaxial.
The active element advantageously consists of an actuator 10 of which one end is, as can be seen in
According to one embodiment, as is depicted in
This sensor may be positioned on the turbojet engine compressor at the high-pressure stages and deliver a signal that is a function of the blade tip clearance, using electrical capacitance for example. This is the clearance between the distal end of the compressor blades and the casing that delimits the airstream. In a variation in speed, this clearance varies according to the difference in expansion between the moving parts and the fixed parts of the compressor. This clearance is therefore an indicator of the expansion of the exhaust casing; the signal supplied by the sensor is input into the actuator control circuit. The height can thus be modified in such a way that the axis of the turbine is kept coaxial with that of the fan.
Other means of driving the actuator are conceivable. For example, use may be made of a sensor that measures the angle made by the axis of the turbine shaft and the axis of the fan, and the actuator may be slaved to this measured angle.
Likewise, any other type of actuator or equivalent means may be used.
Number | Date | Country | Kind |
---|---|---|---|
08 00402 | Jan 2008 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4022018 | Tuten et al. | May 1977 | A |
4044973 | Moorehead | Aug 1977 | A |
4458863 | Smith | Jul 1984 | A |
4555078 | Grognard | Nov 1985 | A |
4603821 | White | Aug 1986 | A |
4997145 | Hodgkinson | Mar 1991 | A |
5319922 | Brantley | Jun 1994 | A |
5385013 | Barron et al. | Jan 1995 | A |
5452575 | Freid | Sep 1995 | A |
5746391 | Rodgers et al. | May 1998 | A |
6398161 | Jule et al. | Jun 2002 | B1 |
7063290 | Marche | Jun 2006 | B2 |
7156343 | Marche | Jan 2007 | B2 |
7232091 | Marche | Jun 2007 | B2 |
7797947 | Lafont et al. | Sep 2010 | B2 |
20030173456 | Levert et al. | Sep 2003 | A1 |
20050194493 | Marche | Sep 2005 | A1 |
20070138338 | Luo et al. | Jun 2007 | A1 |
20080251633 | Journade et al. | Oct 2008 | A1 |
20080302907 | Schafer | Dec 2008 | A1 |
20090056343 | Suciu et al. | Mar 2009 | A1 |
20090084893 | Balk | Apr 2009 | A1 |
20090266932 | Roche et al. | Oct 2009 | A1 |
20100127117 | Combes et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
0 147 878 | Jul 1985 | EP |
1 571 081 | Sep 2005 | EP |
2 303 884 | Mar 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20090189014 A1 | Jul 2009 | US |