(Not Applicable)
(Not Applicable)
(Not Applicable)
This invention relates generally to free-piston Stirling machines which include free-piston Stirling engines, heat pumps, coolers and cryocoolers. More particularly, the invention is directed to compact structures for attaching the cylinder, in which a piston reciprocates, to the interior of the pressurized housing for the machine. The invention compensates for distortion or movement of component parts of the housing as a result of heat or pressurization by allowing the cylinder to move with the housing component in the direction in which it needs to move with the housing component but also prevents movement and physical distortion of the cylinder as a result of housing movement or distortion in directions that, if applied to the cylinder, would distort the cylinder or otherwise harmfully damage the machine or its operation.
Free-piston Stirling machines typically use close-running clearance seals. That means that the clearance gap between the piston 20 and the cylinder 12 is small in order to minimize leakage through the clearance gap and to allow the effective use of gas bearings. However, free-piston Stirling machines are also subjected to extreme temperatures and to substantial temperature differences between component parts of the same machine. Additionally, in order to increase their specific power, Stirling machines are most often pressurized to a mean pressure of 3.0 MPa (450 psi) or more. Consequently, the machine and many of its component parts become physically distorted as a result of the pressurization, thermal expansion and differing thermal expansion rates of adjacent parts. The distortion of the housing 10 and of any intermediate structures connected between the housing 10 and the cylinder 12 can apply forces against the cylinder flange 14 and/or the cylinder 12 and thereby cause the cylinder 12 to move and/or distort. Because the piston to cylinder clearance gap is so small, physical distortion of the cylinder often leads to the piston rubbing against the cylinder.
As an example of one form of distortion, which is quantitatively exaggerated in
The goal of a cylinder mounting technique is to minimize how much the housing distortion in turn distorts the critical engine running surfaces, especially the interior of the cylinder. In particular, the cylinder 12 should be attached so that, when the housing 10 distorts, that distortion will not distort the cylinder 12. However, an additional requirement is that the cylinder 12 be relatively firmly fixed axially to the housing so the cylinder 12 does not move axially relative to the transition plate 16 when the Stirling machine is pressurized and heated or during operation when a cyclic pressure force is acting on the cross-sectional area of the cylinder.
The prior art recognized that the above-described distortion problems exist if the cylinder 12 is directly and rigidly attached to the housing 10 as illustrated in
It is therefore an object and purpose of the invention to provide a cylinder mounting structure that attaches the cylinder to the housing so that the cylinder (1) remains stationery with respect to the housing (moves with the housing) in response to distortion in the axial direction 1, (2) is not distorted or otherwise affected by housing distortion in the direction of radial translation 2 and (3) is not distorted or otherwise affected by housing distortion in the direction of radial rotation 3.
The invention is an improvement to a free-piston Stirling machine having a cylinder mounted within a housing. The cylinder has an outwardly extending cylinder flange for mounting the cylinder within the housing and the housing includes a transition plate having an opening with a central axis for mounting the cylinder within the opening. The invention has an elastic rim bounding and surrounding the opening and extending from the plate to a crest of the rim. The crest of the rim is in contact against a first axially facing side of the cylinder flange. The interior side of the rim is outwardly spaced from the exterior side of the cylinder. A compliant clamp is attached to the transition plate and is positioned on the opposite, axially facing side of the cylinder flange. The compliant clamp has an elastic spring extending against the cylinder flange which applies a force urging the cylinder flange in an axial direction against the crest of the elastic rim.
In describing the preferred embodiment of the invention which is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific term so selected and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
The preferred embodiment of the invention is illustrated in
However, in this preferred embodiment the plate 16 is formed with the structural features of the invention in order to accomplish the purpose and object of the invention. An elastic rim 30 that is formed in the plate 16 bounds (forms an inner boundary of) and surrounds the opening 28 and extends, preferably in an axial direction, from the plate 16 to a crest 32 of the rim 30. Preferably and typically the rim 30 is cylindrical and coaxial with the central axis 22 of reciprocation. The crest 32 contacts in engagement against a first axially facing side 34 of the cylinder flange 14. The interior side 36 of the rim 30 is outwardly spaced from the exterior side 38 of the cylinder 12 to provide a space 40 between the rim 30 and the cylinder 12. This space 40 allows some movement of the plate 16 with respect to the cylinder 12 in the event of distortion of the plate 16 in the radial direction 2 or radial rotation direction 3.
A compliant clamp 42 is attached to the transition plate 16 by machine screws 44 that are fastened in threaded holes 46. The compliant clamp 42 is positioned on the opposite, axially facing side 48 of the cylinder flange 14. The compliant clamp 42 comprises an annular ring 50 surrounding the cylinder 12 and fastened against the axially facing end surface 54 of the plate 16. The ring 50 is spaced from the opposite, axially facing side 48 of the cylinder flange 16 so that an elastic spring 52 can extend from the annular ring 50 to the cylinder flange 14. The spring 52 is in compression so it applies a force urging the cylinder flange 14 in an axial direction against the crest 32 of the elastic rim 30. The preferred spring 52 is a wave spring but various other kinds of springs can be used to form a compliant clamp to push the cylinder flange firmly against the crest 32 of the elastic rim 30.
Although the elastic rim 30 can be formed or constructed in a variety of ways, it is preferably and most conveniently formed as an integral part of the plate 16. A circular groove 56 is machined into the plate 16 in an axial direction to extend coaxially around the opening 28 in order to form the elastic rim 30 between the groove 56 and the interior side 36 of the rim 30.
It is not necessary that the elastic rim 30 be formed as an integral part of the plate 16. Instead, the rim 30 can be formed as a separate part. For example,
The invention operates to accomplish the purposes of the invention because it maintains the axial position of the cylinder in the housing but will not distort the cylinder from radial translation or radial rotation of the housing or any other component part that contacts the cylinder or its flange. In other words it is rigid in the axial direction 1, but elastic (compliant) in the radial direction 2 and elastic in the radial rotation direction 3.
The invention provides rigidity in the axial direction because the cylinder flange 14 is held against the crest 32 of the elastic rim 30. Axial force against the rim 30 that is applied by the cylinder flange 14 is applied in a direction that is longitudinal along the rim. That force is strongly resisted by the rim 30 because the rim will not bend but rather can only compress because an axial force applies no bending force against the rim 30.
However, forces applied in the radial direction 2 and in the radial rotation direction 3 are in a direction urging the bending of the rim 30. So the rim 30 can bend in response rather than applying a force against the cylinder 12 or its flange 14. The rim 30 is elastic in those directions because the circular groove 56 is positioned sufficiently close to the interior side 36 of the rim 30 to make the rim 30 sufficiently thin that it provides elasticity in a bending direction. Because of the temperatures and pressures encountered by Stirling machines, their internal mechanical parts are constructed of a metal. Metals have a characteristic known as elasticity. Elasticity means that the metal, when subjected to a force, will deform and when the force is removed will return to its original shape. The stress applied to a metal is directly proportional to its strain, which are related to each other by the proportionality constant for the metal known as its modulus of elasticity (Young's modulus). This property of elasticity remains unless the strain causes the metal's elastic limit to be exceeded. Therefore, the elastic rim 30 can bend like a cantilevered spring and the spring constant for that spring is a function of both the elasticity of the metal and the thickness of the elastic rim 30. Consequently, the designer who is implementing the invention can position the circular groove 56 a distance from the interior side 36 of the elastic rim that gives a rim thickness that in turn provides a desired spring constant. The desired spring constant will permit the elastic rim to bend without exceeding the elastic limit when the transition plate 16 is distorted by temperature or pressure and to return if and when that distortion ceases to exist. The preferred rim thickness and its resulting spring constant will be different for different Stirling machines because different Stirling machines will subject the elastic rim to different forces. Ultimately, the rim thickness can be determined by experimentation, testing and trial and error methods. In addition to the compliance characteristic of the elastic rim 30, the space 40 between the rim 30 and the cylinder 12 also allows some movement of the cylinder 12 in the radial direction 2 and in the radial rotation direction 3.
In summary, the invention minimizes distortion to the cylinder when the machine is pressurized or heated. It has a local mounting seat at the crest 32 which is rigid in the axial location but has flexibility in the lateral on-axis direction as well as being locally compliant to on-axis rotation. It applies an axial force to seat the flange of an engine cylinder against the rim.
This detailed description in connection with the drawings is intended principally as a description of the presently preferred embodiments of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the designs, functions, means, and methods of implementing the invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and features may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention and that various modifications may be adopted without departing from the invention or scope of the following claims.
This invention was made with Government support under contract ARPA-E GENSETS Assistance Agreement # DE-AR0000604 awarded by DOE. The Government has certain rights in the invention.