The present invention relates generally to computing devices, and more particularly, to a computing device with a touch screen display that can be folded from a compact state to an expanded state.
The use of handheld computing devices today has been significantly enabled by a number of advancements in electronics, including the miniaturization of components, an increase in processing speeds, improved memory capacity, and the optimization of battery efficiency. Advancements in touch screen display technology have also enabled interfaces to become more adaptable and intuitive to use on a small scale. Because of these enormous improvements over the last decade, the differences in the performance between handheld computing devices, such as mobile phones, and larger computing devices, have become increasingly subtle.
The use of handheld computing devices today has been significantly enabled by a number of advancements in electronics, including the miniaturization of components, an increase in processing speeds, improved memory capacity, and the optimization of battery efficiency. Advancements in touch screen display technology have also enabled interfaces to become more adaptable and intuitive to use on a small scale. Because of these enormous improvements over the last decade, the differences in the performance between handheld computing devices, such as mobile phones, and larger computing devices, have become increasingly subtle.
There is therefore a need for touch screen display devices that can be adjusted in size without sacrificing the convenience of being small and handheld. There is also a need for a structural hinge supports that can prevent a device from folding to undesirable angles that would comprise the life span of a flexible display or damage it to be unusable.
To mitigate the difficulties associated with a small-scale touch screen, variations on flexible displays and the implementation of multiple screen displays have been proposed to enable the transformation of a display from a compact state to an expanded state. Although the use of flexible displays and multiple screen displays offer the advantages of a transformation in scale, there are still a number of limitations to how they can be implemented. For example, since a flexible display has a radius when folded, it is difficult to configure multiple segments into a folded position where the thickness of the device is not compromised. If a flexible display is to be used as a touch screen, a reconfigurable structure that can prevent the device from folding to an obtuse angle beyond the flexible display's folding capacity would be advantageous if built to reduce the mechanical complexity and thickness of the device.
There is a need for a computing device that can retain the form factor and functionality of a phone, while also providing a touch screen display that can be reconfigured from a compact state to an expanded state. Furthermore, there is a need for structural hinge supports that can prevent a flexible display from folding to obtuse angles beyond its folding capacity.
A foldable touch screen display device with a flexible display made up of segments that can be folded from a compact state to an expanded state which also includes a hinge mechanism having plate stops is disclosed. The form factor of the compact state is roughly the size of a typical handheld phone or smaller. The form factor of the expanded state is roughly the size of a larger phone or tablet computer, which may also include the mechanical functionality of a laptop. Both states may include an integrated speaker and microphone. The hinge mechanism's plate stops provide a support structure situated below and in between the device's flexible display segments which prevents the device from folding beyond a flat open state to an obtuse angle and may be situated between two or more segments. The device may further include sensors to indicate the state of configuration and mechanisms for alignment, locking, and further structural support. In one embodiment, a module attached to, situated within, or otherwise associated with at least one segment of the flexible display or rigid display may contain all or substantially all processing and memory, along with a communications system, which may be used in any state.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
Although embodiments of the invention are not limited in this regard, discussions utilizing terms such as, for example, “processing,” “computing,” “calculating,” “determining,” “establishing”, “analyzing”, “checking”, or the like, may refer to operation(s) and/or process(es) of a computer, a computing platform, a computing system, or other electronic computing device, that manipulates and/or transforms data represented as physical (e.g., electronic) quantities within the computer's registers and/or memories into other data similarly represented as physical quantities within the computer's registers and/or memories or other information non-transitory storage medium that may store instructions to perform operations and/or processes. Although embodiments of the invention are not limited in this regard, the terms “plurality” and “a plurality” as used herein may include, for example, “multiple” or “two or more”. The terms “plurality” or “a plurality” may be used throughout the specification to describe two or more components, devices, elements, units, parameters, or the like. Unless explicitly stated, the method embodiments described herein are not constrained to a particular order or sequence. Additionally, some of the described method embodiments or elements thereof can occur or be performed simultaneously, at the same point in time, or concurrently.
In accordance with the exemplary embodiment shown in
To further elaborate on the details of hinge 59,
It should be noted that the primary function of these structural plate stop features within a hinge sleeve is to prevent foldable computing device 11 from folding beyond a flat angle when it is an open state, and similarly preventing the display from folding beyond 90 degrees from that position when the device is in a folded state. This prevents flexible display segments 60 and 63 from being folded farther than they were designed to be folded so that the display's functionality is not compromised. When the device is in an unfolded state, it also needs to provide structural support to counter the force of a user's fingers against the device when interacting with its touch screen. These same plate stops situated with the hinge 59 and it folding mechanism could also be used to provide support to a foldable device that has a flexible display which folds in such a way that the back of two display segments meet with each other in the compact state. This is essentially the inversion of the embodiment disclosed in the drawings. Using plate stops within the hinge sleeve also provides a thinner assembly as compared with using a sleeve that is hidden away when the two structural segments are unfolded. It is important to note that this hinge configuration could be implemented with a device that has more than two segments.
In
This application is a continuation of U.S. patent application Ser. No. 17/212,937, filed Mar. 25, 2021, which claims priority to and the benefit of U.S. patent application Ser. No. 62/994,571, filed Mar. 25, 2020 and titled “HINGE MECHANISM HAVING PLATE STOPS FOR A FLEXIBLE DISPLAY DEVICE.” The entire contents of the above-referenced applications are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
9348450 | Kim | May 2016 | B1 |
9557771 | Park | Jan 2017 | B2 |
10028395 | Chen | Jul 2018 | B2 |
11294431 | Torres | Apr 2022 | B2 |
11614779 | Delaporte | Mar 2023 | B2 |
20150241925 | Seo et al. | Aug 2015 | A1 |
20150338888 | Kim et al. | Nov 2015 | A1 |
20170192460 | Watanabe et al. | Jul 2017 | A1 |
20200081487 | Lin | Mar 2020 | A1 |
20210034116 | Torres | Feb 2021 | A1 |
20210034117 | Torres | Feb 2021 | A1 |
20210207414 | Wong | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
115769168 | Mar 2023 | CN |
2021195417 | Sep 2021 | WO |
Entry |
---|
International Preliminary Report on Patentability in Application No. PCT/US2021/024214 dated Sep. 22, 2022, 9 pages. |
International Search Report and Written Opinion in Application No. PCT/US2021/024214 dated Sep. 30, 2021, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20230195179 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62994571 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17212937 | Mar 2021 | US |
Child | 18113334 | US |