1. Field of the Invention
This invention relates to an attenuated landing system. More particularly, the present invention relates to a cushioning system for an air-dropped cargo platform.
2. Description of the Background Art
The use of air-dropped cargo platforms is known in the art. These platforms typically include a rigging that deploys a parachute shortly after the platform exits an aircraft. The parachute ensures that the cargo platform slowly travels to the ground below. Even with a parachute, however, such air-dropped cargo platforms land with considerable force, which often damages the associated cargo. This is especially true when the cargo platform is carrying sensitive equipment and/or electronics. Thus, there exists a need in the art for a cushioning system that absorbs the landing forces encountered by air-dropped cargo. There further exists a need in the art for a cushioning system that is deployed by a terrain sensor. The present invention is aimed at fulfilling these needs.
It is therefore one of the objectives of this invention to more effectively cushion the landing of air-dropped cargo.
It is another object of this invention to deploy a cushioning system prior to contact with the ground.
It is another object of this invention to monitor the terrain below a cargo platform such that the cushioning system is deployed shortly before impact.
Still yet another object of this invention is to prevent air dropped palletized cargo from tipping over after landing.
The foregoing has outlined rather broadly the more pertinent and important features of the present invention in order that the detailed description of the invention that follows may be better understood so that the present contribution to the art can be more fully appreciated. Additional features of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Similar reference characters refer to similar parts throughout the several views of the drawings.
The present invention relates to an attenuated landing system. More specifically, the invention relates to a landing system that includes one or more inflatable structures that are mounted to the underside of a cargo platform. A terrain sensor is also mounted to the cargo platform and is activated after being dropped from an aircraft. Once terrain is detected, the inflatable structures are activated and inflated to cushion the landing of the cargo platform and, thereby, protect sensitive equipment from being damaged. Inflatable side structures are optionally mounted about the periphery of the cargo platform and are activated in the event the platform becomes unstable after landing. The various details of the present invention, and the manner in which they interrelate, are described in greater detail hereinafter.
With reference now to
In the preferred embodiment, each container 34 houses a pressurized gas vessel that serves to inflate the associated structure 36 with a compressed gas, such as air. In the preferred embodiment, the gas vessels are activated pyrotechnically. Pyrotechnic gas generators can optionally be employed in lieu of gas vessels. As is known in the art, pyrotechnic gas generators covert solid material into a pressurized gas. In yet another embodiment, structures 36 are filled with an expansible foam instead of a gas. Structures 36 can be filled with still yet other fluids and/or gases that provide a sufficient degree of energy absorption upon impact.
Furthermore, although it is preferred to inflate structures 36 with a gas or fluid, still yet other cushioning means are within the scope of the present invention. For example, structures 36 could employ internally mounted springs that are activated via a one way valve prior to impact. Another option is to build structures 36 from a cardboard material that is gravity deployed and that crushes upon impact. Again, whatever cushioning means is employed, it must absorb a sufficient amount of energy upon impact to protect the associated cargo 22.
With reference to
In use, cargo platform 20 is air dropped from an aircraft 32 in flight. In the embodiment depicted in
Once fully extended (note
Impact sensor 38a and its associated tether 38b are preferably longer than the length of the fully inflated structures 36. This differential gives the inflatable structures 36 sufficient time to fully inflate before contacting terrain 46. The length of the differential will depend, in part, upon the deployment time of inflatable structures 36. Tether 38b should also be sufficiently long enough to accommodate a wide range of payload weights, and vertical and horizontal velocities associated with the descent of the payload. Namely, heavier payloads, or payloads with smaller parachutes, may have increased decent velocities that require longer tether lengths. In an alternative embodiment, the length of tether 38(b) dispensed from assembly 42 can be varied. Additionally, an on-board microprocessor (not shown) is included for computing the proper length of tether 38(b) on the basis of payload weight and decent velocity. The microprocessor can also be used to determine payload weight and detect decent velocity. Decent velocity can be detected after deployment of parachute 26. These values can then be used by microprocessor to compute a tether length 38(b) that ensures that structures 36 have sufficient space to fully inflate.
Upon contact with the ground 46, inflatable structures 36 serve to eliminate any jarring forces to the associated cargo 22. After contact, the air within the inflatable structures 36 is vented to the atmosphere via one or more vents (not shown). Thus, immediately after impact, inflatable structures 36 begin to slowly deflate to bring the platform 20 to ground level. The inflatable structures 36 preferably deflate at a uniform rate such that platform 20 is kept level during deflation. Furthermore, a level sensor, such as a gyroscope or accelerator, can be positioned upon platform 20 to determine whether platform 20 is level. In the event the sensor determines a non-level condition, on-board controllers can regulate the deflation of structures 36 to compensate. Namely, the deflation of one or more of the structures 36 can be delayed (or prevented altogether) while the remaining structures 36 are deflated as normal. This selective deflation would ensure that even in mountainous terrain platform 20 and the associated cargo 22 remain level upon landing. In this manner, inflatable structures 36 serve to effectively attenuate the landing of platform 20. Finally, those skilled in the art will appreciate that system 18 can be retrofitted to existing cargo platforms 20.
System 18 can optionally include one or more side mounted containers 48 that house side inflation members 52 about the periphery of platform 20. In the depicted embodiment, platform 20 includes four containers 48 mounted to each of the four sides of platform 20. However, it is within the scope of the present invention to utilize side containers 48 on fewer than all four sides. Containers 48 may be mounted in still yet other configurations depending upon the size and shape of platform 20. Side containers 48 are preferably frangible and house side inflatable structures 52. The function and operation of side structures 52 is the same as the inflatable structures 36 described hereinabove. Both structures 36 and 52 are preferably cylindrical shape after being fully deployed. However, the longitudinal axis of structures 36 is preferably perpendicular to platform 36 and the longitudinal axis of structures 52 is preferably parallel to the sides of platform 20.
The side inflatable structures 52 are selectively deployed to prevent the platform 20 and associated containers 22 from becoming unbalanced after impact. More specifically, if structures 36 land upon rocky or uneven terrain, structures 52 can be deployed to prevent platform from rolling over or falling to one side. This, in turn, further prevents damage to the payload. Structures can be selectively deployed by a platform orientation sensor (or sensors) to maintain platform 20 in a level orientation. Platform orientation sensor can optionally be the above described sensor employed in regulating the deflation of structures 36.
The present disclosure includes that contained in the appended claims, as well as that of the foregoing description. Although this invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention.
Now that the invention has been described,
This application claims priority to co-pending Provisional Application Ser. No. 61/181,446 filed on May 27, 2009 and entitled “Attenuated Landing System.” The contents of this co-pending application are fully incorporated herein.
Number | Date | Country | |
---|---|---|---|
61181446 | May 2009 | US |