The present invention relates generally to attenuated viral vaccines, particularly those providing broad, safe, and effective protection to palmipeds against infections or diseases. The invention further relates to methods of producing the attenuated virus, and to the identification of variations in the nucleotide sequence that are associated with decreased virulence of the attenuated virus.
Goose parvovirus (GPV; also called Derzsy's Disease) and Muscovy duck parvovirus (MDPV) are antigenically distinct viruses that affect palmipeds. GPV is highly contagious and is characterized by multiple clinical signs, including anorexia, prostration, weakness and polydipsia. GPV may present in acute, subacute or chronic forms; the acute form of the disease may cause 100% mortality in goslings under 10 days of age. GPV primarily affects geese and Muscovy ducks (Cairina moschata). Currently, goose and Muscovy duck producers may protect against GPV using an attenuated live vaccine.
MDPV is an acute systemic infection of Muscovy ducklings. The clinical signs of MDPV are similar to those of GPV and the mortality rate can be 80% or higher. MDPV is transmitted horizontally and can also be transmitted vertically when susceptible hens become infected during lay or if there is reactivation of latency. To date, MDPV is known to affect only Muscovy ducks while other avian species are not susceptible. No attenuated live vaccine currently exists for combatting MDPV although an inactivated vaccine is available.
Accordingly, Muscovy ducks are vulnerable to both GPV and MDPV. Given the similarity with which both diseases present, it is difficult to determine which vaccine to administer, as the vaccine for GPV is ineffective against MDPV and the MDPV vaccine is ineffective against GPV. Muscovy duck producers may then administer vaccines against both diseases or face the economic hardship associated with the above-mentioned mortality rates.
Administering two vaccinations is less than ideal for logistical and economic reasons.
In one embodiment, the invention is a composition comprising an attenuated palmiped parvovirus capable of providing a heterologous immune response in palmipeds against Muscovy duck parvovirus and goose parvovirus (Derzsy's Disease). In one aspect, the composition of the attenuated palmiped parvovirus comprises a polynucleotide encoding viral protein 1 (VP1) having the sequence as set forth in SEQ ID NO. 2. See
In another embodiment, the invention is an attenuated palmiped parvovirus capable of providing a heterologous immune response in palmipeds against Muscovy duck parvovirus and goose parvovirus (Derzsy's Disease). In one aspect, the attenuated palmiped parvovirus comprises a polynucleotide encoding viral protein 1 (VP1) having the sequence as set forth in SEQ ID NO. 2. In another aspect, the attenuated palmiped parvovirus comprises a polynucleotide having the sequence as set forth in SEQ ID NO. 1.
In yet another embodiment, the invention is a method of treating a palmiped against Muscovy duck parvovirus and goose parvovirus (Derzsy's Disease) comprising the step of administering a composition comprising an attenuated palmiped parvovirus capable of providing a heterologous immune response in palmipeds against Muscovy duck parvovirus and goose parvovirus (Derzsy's Disease). In one aspect, the composition comprises the attenuated palmiped parvovirus comprising a polynucleotide encoding viral protein 1 (VP1) having the sequence as set forth in SEQ ID NO. 2. In another aspect, the composition comprises the attenuated palmiped parvovirus comprising a polynucleotide having the sequence as set forth in SEQ ID NO. 1.
In yet another embodiment, the invention is an isolated polynucleotide encoding the polypeptide having the sequence as set forth in SEQ ID NO. 2. The invention is further an isolated polynucleotide having the sequence as set forth in SEQ ID NO. 1.
As defined herein, the term “gene” will be used in a broad sense, and shall encompass both coding and non-coding sequences (i.e. upstream and downstream regulatory sequences, promoters, 5′/3′ UTR, introns, and exons). Where reference to only a gene's coding sequence is intended, the term “gene's coding sequence” or “CDS” will be used interchangeably throughout this disclosure. When a specific sequence is discussed, for example, the sequence as set forth in SEQ ID NO. # (the DNA sequence equivalent of parental virus cRNA “sense” strand), the skilled person will instantly be in possession of all derivable forms of that sequence (mRNA, vRNA, cRNA, DNA, protein, etc.). A skilled person using the genetic code can routinely derive from a DNA sequence the vRNA, cRNA, and peptide sequences.
In a particular embodiment, the attenuated vaccine comprises an adjuvant. The adjuvant may be any substance which increases and/or augments the elicited immune response, as compared to attenuated vaccine alone. Mucosal adjuvants, including chitosans and derivatives thereof, are particularly useful for the disclosed oral attenuated vaccines.
The invention further provides methods for inducing an immunological (or immunogenic) or protective response against GPV and MDPV, as well as methods for preventing or treating GPV and MDPV, or disease state(s) caused by the same, comprising administering the attenuated virus, or a composition comprising the attenuated virus to animals in need thereof.
These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.
A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, wherein:
The present invention provides nucleotide sequences and genes involved in the attenuation of a microorganism, such as virus, for instance, parvovirus, products (e.g., proteins, antigens, immunogens, epitopes) encoded by the nucleotide sequences, methods for producing such nucleotide sequences, products, micro-organisms, and uses therefor, such as for preparing vaccine or immunogenic compositions or for eliciting an immunological or immune response or as a vector, e.g., as an expression vector (for instance, an in vitro or in vivo expression vector).
Mutations introduced into nucleotide sequences and genes of micro-organisms produce novel and nonobvious attenuated mutants. These mutants are useful for the production of live attenuated immunogenic compositions or live attenuated vaccines having a high degree of immunogenicity.
Identification of the mutations provides novel and nonobvious nucleotide sequences and genes, as well as novel and nonobvious gene products encoded by the nucleotide sequences and genes.
In an embodiment, the invention provides an attenuated palmiped parvovirus capable of providing a heterologous immune response in palmipeds against Muscovy duck parvovirus and goose parvovirus.
In another aspect, the invention provides immunological composition comprising an attenuated MDPV strain that provides a heterologous immune response in palmipeds against Muscovy duck parvovirus and goose parvovirus. In one embodiment, the compositions may further comprise a pharmaceutically or veterinary acceptable vehicle, diluent or excipient.
In an embodiment, the invention provides methods of vaccinating an animal comprising at least one administration of the compositions comprising sequences encoding an attenuated MDPV strain that provides a heterologous immune response in palmipeds against Muscovy duck parvovirus and goose parvovirus.
The invention further encompasses gene products, which provide antigens, immunogens and epitopes, and are useful as isolated gene products.
Such isolated gene products, as well as epitopes thereof, are also useful for generating antibodies, which are useful in diagnostic applications.
Such gene products, which can provide or generate epitopes, antigens or immunogens, are also useful for immunogenic or immunological compositions, as well as vaccines.
In an aspect, the invention provides a virus containing attenuating mutations in a nucleotide sequence or a gene wherein the mutation modifies the biological activity of a polypeptide or protein encoded by a gene, resulting in attenuated virulence of the virus.
In particular, the present invention encompasses attenuated parvovirus strains and vaccines comprising the same, which elicit an immunogenic response in an animal, particularly a attenuated parvovirus strain that elicits, induces or stimulates a response in a Muscovy duck.
The particular MDPV attenuated strain of interest has mutations relative to the virulent parent strain.
In another aspect, the novel attenuated parvovirus strain is formulated into a safe, effective vaccine against GPV and MDPV.
In an embodiment, the attenuated parvovirus vaccine further comprises an adjuvant. In a particular embodiment, the adjuvant is a mucosal adjuvant, such as chitosan, methylated chitosan, trimethylated chitosan, or derivatives or combinations thereof. Other adjuvants are well known to those of skill in the art.
The terms “protein”, “peptide”, “polypeptide” and “polypeptide fragment” are used interchangeably herein to refer to polymers of amino acid residues of any length. The polymer can be linear or branched, it may comprise modified amino acids or amino acid analogs, and it may be interrupted by chemical moieties other than amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling or bioactive component.
The term “immunogenic or antigenic polypeptide” as used herein includes polypeptides that are immunologically active in the sense that once administered to the host, it is able to evoke an immune response of the humoral and/or cellular type directed against the protein. Preferably the protein fragment is such that it has substantially the same immunological activity as the total protein. Thus, a protein fragment according to the invention comprises or consists essentially of or consists of at least one epitope or antigenic determinant. An “immunogenic” protein or polypeptide, as used herein, includes the full-length sequence of the protein, analogs thereof, or immunogenic fragments thereof. By “immunogenic fragment” is meant a fragment of a protein which includes one or more epitopes and thus elicits the immunological response described above. Such fragments can be identified using any number of epitope mapping techniques, well known in the art. See, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66 (Glenn E. Morris, Ed., 1996). For example, linear epitopes may be determined by e.g., concurrently synthesizing large numbers of peptides on solid supports, the peptides corresponding to portions of the protein molecule, and reacting the peptides with antibodies while the peptides are still attached to the supports. Such techniques are known in the art and described in, e.g., U.S. Pat. No. 4,708,871; Geysen et al., 1984; Geysen et al., 1986. Similarly, conformational epitopes are readily identified by determining spatial conformation of amino acids such as by, e.g., x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols, supra.
As discussed herein, the invention encompasses active fragments and variants of the antigenic polypeptide. Thus, the term “immunogenic or antigenic polypeptide” further contemplates deletions, additions and substitutions to the sequence, so long as the polypeptide functions to produce an immunological response as defined herein. The term “conservative variation” denotes the replacement of an amino acid residue by another biologically similar residue, or the replacement of a nucleotide in a nucleic acid sequence such that the encoded amino acid residue does not change or is another biologically similar residue. In this regard, particularly preferred substitutions will generally be conservative in nature, i.e., those substitutions that take place within a family of amino acids. For example, amino acids are generally divided into four families: (1) acidic-aspartate and glutamate; (2) basic-lysine, arginine, histidine; (3) non-polar-alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar-glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another hydrophobic residue, or the substitution of one polar residue for another polar residue, such as the substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like; or a similar conservative replacement of an amino acid with a structurally related amino acid that will not have a major effect on the biological activity. Proteins having substantially the same amino acid sequence as the reference molecule but possessing minor amino acid substitutions that do not substantially affect the immunogenicity of the protein are, therefore, within the definition of the reference polypeptide. All of the polypeptides produced by these modifications are included herein. The term “conservative variation” also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.
The term “epitope” refers to the site on an antigen or hapten to which specific B cells and/or T cells respond. The term is also used interchangeably with “antigenic determinant” or “antigenic determinant site”. Antibodies that recognize the same epitope can be identified in a simple immunoassay showing the ability of one antibody to block the binding of another antibody to a target antigen.
An “immunological response” to a composition or vaccine is the development in the host of a cellular and/or antibody-mediated immune response to a composition or vaccine of interest. Usually, an “immunological response” includes but is not limited to one or more of the following effects: the production of antibodies, B cells, helper T cells, and/or cytotoxic T cells, directed specifically to an antigen or antigens included in the composition or vaccine of interest. Preferably, the host will display either a therapeutic or protective immunological response such that resistance to new infection will be enhanced and/or the clinical severity of the disease reduced. Such protection will be demonstrated by either a reduction or lack of symptoms and/or clinical disease signs normally displayed by an infected host, a quicker recovery time and/or a lowered viral titer in the infected host.
By “animal” is intended palmipeds; specifically Muscovy ducks.
Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The singular terms “a”, “an”, and “the” include plural referents unless context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicate otherwise.
“Heterologous” with respect to the claimed invention means a composition that confers protective immunity against a pathogen that shares cross-reacting antigens with the microorganisms in the vaccine. For example, a vaccine made from the composition of the claimed invention confers immunity to palmipeds against Muscovy Duck Parvovirus (MDPV) and Goose Parvovirus (GPV or Derzsy Disease).
Methods of Use and Article of Manufacture
The present invention includes the following method embodiments. In an embodiment, a method of vaccinating an animal comprising administering a composition comprising an attenuated palmiped parvovirus capable of providing a heterologous immune response in waterfowl against Muscovy duck parvovirus and goose parvovirus (Derzsy's Disease) and a pharmaceutical or veterinarily acceptable carrier, excipient, or vehicle to an animal is disclosed.
In one embodiment of the invention, a prime-boost regimen can be employed, which is comprised of at least one primary administration and at least one booster administration using at least one common polypeptide, antigen, epitope or immunogen. Typically the immunological composition or vaccine used in primary administration is different in nature from those used as a booster. However, it is noted that the same composition can be used as the primary administration and the booster administration. This administration protocol is called “prime-boost”.
A prime-boost regimen comprises at least one prime-administration and at least one boost administration using at least one common polypeptide and/or variants or fragments thereof. The vaccine used in prime-administration may be different in nature from those used as a later booster vaccine. The prime-administration may comprise one or more administrations. Similarly, the boost administration may comprise one or more administrations. By way of example, the “prime” could comprise the modified live virus of the invention alone while the “boost” could comprise the modified live virus of the invention with an adjuvant.
The dose volume of compositions for target species is generally between about 0.1 to about 2.0 ml, between about 0.1 to about 1.0 ml, and between about 0.5 ml to about 1.0 ml.
The efficacy of the vaccines may be tested after the last immunization by challenging animals with a virulent strain of GPV or MDPV. The animal may be challenged by IM or SC injection, spray, intra-nasally, intra-ocularly, intra-tracheally, and/or orally. Samples from joints, lungs, brain, and/or mouth may be collected before and post-challenge and may be analyzed for the presence of parvovirus-specific antibody.
The compositions comprising the attenuated viral strains of the invention used in the prime-boost protocols are contained in a pharmaceutically or veterinary acceptable vehicle, diluent or excipient. The protocols of the invention protect the animal from parvovirus and/or prevent disease progression in an infected animal.
It should be understood by one of skill in the art that the disclosure herein is provided by way of example and the present invention is not limited thereto. From the disclosure herein and the knowledge in the art, the skilled artisan can determine the number of administrations, the administration route, and the doses to be used for each injection protocol, without any undue experimentation.
Another embodiment of the invention is a kit for performing a method of eliciting or inducing an immunological or protective response against parvovirus in an animal comprising an attenuated MDPV immunological composition or vaccine and instructions for performing the method of delivery in an effective amount for eliciting an immune response in the animal.
Yet another aspect of the present invention relates to a kit for prime-boost vaccination according to the present invention as described above. The kit may comprise at least two vials: a first vial containing a vaccine or composition for the prime-vaccination according to the present invention, and a second vial containing a vaccine or composition for the boost-vaccination according to the present invention. The kit may advantageously contain additional first or second vials for additional prime-vaccinations or additional boost-vaccinations.
The pharmaceutically or veterinarily acceptable carriers or vehicles or excipients are well known to the one skilled in the art. For example, a pharmaceutically or veterinarily acceptable carrier or vehicle or excipient can be a 0.9% NaCl (e.g., saline) solution or a phosphate buffer. Other pharmaceutically or veterinarily acceptable carrier or vehicle or excipients that can be used for methods of this invention include, but are not limited to, poly-(L-glutamate) or polyvinylpyrrolidone. The pharmaceutically or veterinarily acceptable carrier or vehicle or excipients may be any compound or combination of compounds facilitating the administration of the vector (or protein expressed from an inventive vector in vitro); advantageously, the carrier, vehicle or excipient may facilitate transfection and/or improve preservation of the vector (or protein). Doses and dose volumes are herein discussed in the general description and can also be determined by the skilled artisan from this disclosure read in conjunction with the knowledge in the art, without any undue experimentation.
The immunological compositions and vaccines according to the invention may comprise or consist essentially of one or more adjuvants. Suitable adjuvants for use in the practice of the present invention are (1) polymers of acrylic or methacrylic acid, maleic anhydride and alkenyl derivative polymers, (2) immunostimulating sequences (ISS), such as oligodeoxyribonucleotide sequences having one or more non-methylated CpG units (Klinman et al., 1996; WO98/16247), (3) an oil in water emulsion, such as the SPT emulsion described on page 147 of “Vaccine Design, The Subunit and Adjuvant Approach” published by M. Powell, M. Newman, Plenum Press 1995, and the emulsion MF59 described on page 183 of the same work, (4) cationic lipids containing a quaternary ammonium salt, e.g., DDA (5) cytokines, (6) aluminum hydroxide or aluminum phosphate, (7) saponin or (8) other adjuvants discussed in any document cited and incorporated by reference into the instant application, or (9) any combinations or mixtures thereof.
In an embodiment, adjuvants include those which promote improved absorption through mucosal linings. Some examples include MPL, LTK63, toxins, PLG microparticles and several others (Vajdy, M. Immunology and Cell Biology (2004) 82, 617-627). In an embodiment, the adjuvant may be a chitosan (Van der Lubben et al. 2001; Patel et al. 2005; Majithiya et al. 2008; U.S. Pat. No. 5,980,912).
Choice of Vaccine Strain
The viral strain was isolated from liver of ducks originating from SPF (specific pathogen-free) flocks. These ducks were introduced onto a farm of the Guyomarc'h company struck down by the “MMFC” syndrome (Mortality, Malnutrition, Featherlessing, Crawling syndrome). The isolated virus obtained was named GM and it was inoculated to 7 SPF ducklings aged one day. These ducklings died 5 to 9 days after inoculation. The livers, hearts and spleens of these ducklings were removed and ground. The ground product was propagated successively 20 times in SPF duck embryo primary cells, with 3 cloning in limit dilutions, at the seventeenth, the eighteenth and the nineteenth passages. Then, the harvest of the twentieth passage underwent 179 passages in duck embryo cells before establishing the Master Seed Virus. The GM strain has thus been attenuated by a large number of passages in duck embryo cells before being used for the production of the final vaccine product (i.e., Parvoduck vaccine). Its characteristics are those of the parvovirus but without the pathogenic properties of wild strains.
In addition, the wild parvovirus in ducks being deemed stable, this strain is perfectly suited to the production of a vaccine against both the MDPV and GPV.
Methodology
The GM strain was adapted for growth on primary duck embryo cells (PDEC) as mentioned above and then purified. Another 74 attenuation passages were then carried out on PDEC (until strain GM93, ie 93 passages after the initial isolate). From this level, the strain was attenuated on either TDF2A cell line, PDEC or Pekin duck cells. The safety of the passaged strains was tested in SPF ducklings by successive studies in order to determine the most appropriate attenuation level for use as live modified vaccine. The passages are diagrammed in
(b)s
(a) post-mortem lesions: spleen and/or liver enlargement, ascitis, hydropericarditis
(b)ie bad general condition, anorexia, lameness
(c) clinical assessment (no weighing)
(b)s
(a)post-mortem lesions: spleen and/or liver enlargement, ascitis, hydropericarditis
(b)ie bad general condition, anorexia, lameness
(c)clinical assessment (no weighing)
*the 3 birds with growth retardation had showed severe lameness at D7, but had recovered from the disease at the final examination
**all 3 birds with growth retardation showed pm lesions.
(a)number of birds examined at D21
(b)Some birds can show different types of lesions
(a)number of birds examined at D21 - NB:in G2, one bird was omitted at necropsy by mistake
(b)Most birds showed at least 2 different types of lesions
(c)Fibrinous pericarditis and/or myocarditis
(d)Fibrinous perihepatitis and/or necrosed hepatitis
According to these studies, the strain finally considered as satisfactorily attenuated was the 189th passage from the initial isolate, obtained as follows: 19 adaptation passages on PDEC (i.e., until GM19); 74 attenuation passages on PDEC (i.e., until GM93); 71 attenuation passages on TDF2A cells at 38° C. (i.e., until GM164) and 25 attenuation passages on TDF2A cells at 33° C. (i.e., until GM189).
Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.
This application is a divisional application of U.S. application Ser. No. 14/427,197 filed on Mar. 10, 2015, which claims the benefit of U.S. Provisional Application No. 61/698,842, filed Sep. 10, 2012.
Number | Name | Date | Kind |
---|---|---|---|
20040208886 | Daeffler et al. | Oct 2004 | A1 |
Entry |
---|
Gough Re et al., 1982, “Studies with a duck embryo adapted goose parvovirus vaccine”, Avian Pathology, 11(3):503-510. |
Wozniakowski Grzegore et al., 2009, “Genetic variacne of Derzsy's disease strains isolated in Poland”, J. of Molecular and Genetic Medicine, vol. 3(2), 210-216. |
Le Gall-Recule Ghislaine et al., 1996, “Expression of muscovy duck parvovirus capsid proteins (Vp2 and VP3) in a baculovirus expression system and demonstration of immunigy induced by the recombinant proteins”, J of General Virology, vol. 77(9), 2159-2163. |
Lee et al., 2010, “CpG oligodeoxynucleotides containing GACGTT motifs enhance the immune responses elicited by a goose parvovirus vaccine in ducks”, Vaccine, vol. 28, 7956-7962. |
Number | Date | Country | |
---|---|---|---|
20170173146 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61698842 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14427197 | Mar 2015 | US |
Child | 15378147 | US |