The amount of devices that are made available for a user to interact with a computing device is ever increasing. For example, interaction with a computing device was initially performed using text. Therefore, a user typically entered the text using a keyboard and viewed an output by the computing device that was also in text.
These techniques were then expanded into graphical user interfaces in which a user could interact with a cursor control device, such as a mouse. The techniques continued to expand as graphical user interfaces were configured to recognize gestures made by a user to provide inputs to the computing device. For example, gestures may be used to select objects, interact with a video game, and so on. However, these conventional techniques could consume a significant amount of computing resources, which could slow interaction with the computing device using these conventional techniques as well as increase the cost of a computing device that is configured to employ the techniques.
Attribute state classification techniques are described. In one or more implementations, one or more pixels of an image are classified by a computing device as having one or several states for one or more attributes that do not identify corresponding body parts of a user. A gesture is recognized by the computing device that is operable to initiate one or more operations of the computing device based at least in part of the state classifications of the one or more pixels of one or more attributes.
In one or more implementations, pixels of an image are classified by a computing device as belonging to particular parts of an object and as having a state for one or more attributes that relate to the parts. The classifications of the attribute states of the pixels are aggregated by the computing device to derive an aggregate classification for the object.
In one or more implementations, pixels of an image are classified by a computing device as belonging to particular parts of a body and as having a state for one or more attributes that relate to the parts. A gesture is recognized by the computing device, which is operable to initiate one or more operations of the computing device, by examining pixels that relate to one or more parts of the body that define the gesture and excluding pixels that do not relate to the one or more parts of the body.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
Input techniques that may be utilized to interact with a computing device have evolved from text input techniques typically implemented using a keyboard to gestures that may be captured using a camera. For example, a camera may be used to take an image of one or more body parts of a user and recognize a gesture from the image. This gesture may then be used to interact with a user interface output by the computing device. However, conventional techniques that were used to recognize gestures were stateless and thus relied on an identity of an object.
Attribute state classification techniques are described. In one or more implementations, techniques are described to predict an identity of a body part as well as a state of an attribute of the body part for pixels in an image. Example attributes include orientation (e.g., pose), shape, appearance, and so on. For example, a body part of a hand may be identified as well as a state of an attribute of the hand, e.g., closed. This state may also be computed from states of attributes of parts of the hand, such as states of a palm and fingers of the hand which may then be aggregated to determine an overall state of the hand. The states of the attributes for the body parts may then be used as to help recognize a gesture that may be used to initiate a function of a computing device. Further discussion of attribute state classification techniques may be found in relation to the following sections.
In the following discussion, an example environment is first described that is operable to employ attribute state classification techniques described herein. Example illustrations of the techniques and procedures are then described, which may be employed in the example environment as well as in other environments. Accordingly, the example environment is not limited to performing the example techniques and procedures. Likewise, the example techniques and procedures are not limited to implementation in the example environment.
The computing device 102 is illustrated as including an input/output module 106 having a classification module 114 and a gesture module 116. The input/output module 106 is representative of functionality relating to recognition of inputs and/or provision of outputs by the computing device 102. For example, the input/output module 106 may be configured to receive inputs from a keyboard, mouse, to identify gestures and cause operations to be performed that correspond to the gestures using the gesture module 116, and so on. The inputs may be detected by the input/output module 106 in a variety of different ways.
The input/output module 106 may be configured to receive one or more inputs via touch interaction with a hardware device, such as a controller 108 as illustrated. Touch interaction may involve pressing a button, moving a joystick, movement across a track pad, use of a touch screen of the display device 104 (e.g., detection of a finger of a user's hand or a stylus), and so on. Recognition of the touch inputs may be leveraged by the input/output module 106 to interact with a user interface output by the computing device 102, such as to interact with a game, an application, browse the internet, change one or more settings of the computing device 102, and so forth. A variety of other hardware devices are also contemplated that involve touch interaction with the device. Examples of such hardware devices include a cursor control device (e.g., a mouse), a remote control (e.g. a television remote control), a mobile communication device (e.g., a wireless phone configured to control one or more operations of the computing device 102), and other devices that involve touch on the part of a user or object.
The input/output module 106 may also be configured to provide a natural user interface (NUI) that may recognize interactions that may not involve touch. For example, the computing device 102 may include a NUI input device 110. The NUI input device 110 may be configured in a variety of ways to detect inputs without having a user touch a particular device, such as to recognize audio inputs through use of a microphone. For instance, the input/output module 106 may be configured to perform voice recognition to recognize particular utterances (e.g., a spoken command) as well as to recognize a particular user that provided the utterances.
In another example, the NUI input device 110 that may be configured to recognize gestures, presented objects, and so on through use of a camera. The camera, for instance, may be configured to include multiple lenses so that different perspectives may be captured and thus determine depth. The different perspectives, for instance, may be used to determine a relative distance from the NUI input device 110 and thus a change in the relative distance. The different perspectives may be leveraged by the computing device 102 as depth perception. The images may also be leveraged by the input/output module 106 to provide a variety of other functionality, such as techniques to identify particular users (e.g., through facial recognition), objects, and so on.
The input-output module 106 may leverage the NUI input device 110 to perform skeletal mapping along with feature extraction of particular points of a human body (e.g., 48 skeletal points) to track one or more users (e.g., four users simultaneously) to perform motion analysis. For instance, the NUI input device 110 may capture images that are analyzed by the input/output module 106 to recognize one or more motions made by a user, including what body part is used to make the motion as well as which user made the motion. An example is illustrated through recognition of positioning and movement of one or more fingers of a user's hand 112 and/or movement of the user's hand 112 as a whole. The motions may be identified as gestures by the gesture module 116 of the input/output module 106 to initiate a corresponding operation.
A variety of different types of gestures may be recognized, such a gestures that are recognized from a single type of input (e.g., a motion gesture) as well as gestures involving multiple types of inputs, e.g., a motion gesture and an object gesture made using an object such as a stylus. Thus, the input/output module 106 may support a variety of different gesture techniques by recognizing and leveraging a division between inputs. It should be noted that by differentiating between inputs in the natural user interface (NUI), the number of gestures that are made possible by each of these inputs alone is also increased. For example, although the movements may be the same, different gestures (or different parameters to analogous commands) may be indicated using different types of inputs. Thus, the input/output module 106 may provide a natural user interface that supports a variety of user interaction's that do not involve touch.
Accordingly, although the following discussion may describe specific examples of inputs, in instances different types of inputs may also be used without departing from the spirit and scope thereof. Further, although in instances in the following discussion the gestures are illustrated as being input using a NUI, the gestures may be input using a variety of different techniques by a variety of different devices, such as to employ touchscreen functionality of a tablet computer.
As previously described, the input/output module 106 is also illustrated as including a classification module 114. The classification module 114 is representative of functionality of the computing device 102 to identify parts of objects as well as classify attribute states for those parts. Continuing with the previous example, the classification module 114 may recognize parts of the user's hand 112, such as fingers and palm, from an image taken by a camera of the NUI input device 110. The classification module 114 may also identify an attribute state for those parts. The state of the attributes and the identification of the respective body part may be used as a basis to recognize a gesture by the gesture module 116. In this way, the classification module 114 may support a rich definition of gestures that may be efficiently processed by the computing device 102, further discussion of which may be found in relation to
Generally, any of the functions described herein can be implemented using software, firmware, hardware (e.g., fixed logic circuitry), or a combination of these implementations. The terms “module,” “functionality,” and “logic” as used herein generally represent software, firmware, hardware, or a combination thereof. In the case of a software implementation, the module, functionality, or logic represents program code that performs specified tasks when executed on a processor (e.g., CPU or CPUs). The program code can be stored in one or more computer readable memory devices. The features of the laser mode techniques described below are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.
For example, the computing device 102 may also include an entity (e.g., software) that causes hardware of the computing device 102 to perform operations, e.g., processors, functional blocks, and so on. For example, the computing device 102 may include a computer-readable medium that may be configured to maintain instructions that cause the computing device, and more particularly hardware of the computing device 102 to perform operations. Thus, the instructions function to configure the hardware to perform the operations and in this way result in transformation of the hardware to perform functions. The instructions may be provided by the computer-readable medium to the computing device 102 through a variety of different configurations.
One such configuration of a computer-readable medium is signal bearing medium and thus is configured to transmit the instructions (e.g., as a carrier wave) to the hardware of the computing device, such as via a network. The computer-readable medium may also be configured as a computer-readable storage medium and thus is not a signal bearing medium. Examples of a computer-readable storage medium include a random-access memory (RAM), read-only memory (ROM), an optical disc, flash memory, hard disk memory, and other memory devices that may use magnetic, optical, and other techniques to store instructions and other data.
Continuing with the discussion of
The orientation module 206, for instance, may be configured to detect poses of one or more body parts of a user. As shown in the image 204, a user's hand may be clenched into a fist. Accordingly, the orientation module 206 may assign a “closed” state for a pose attribute to pixels of the hand in the image 204 that correspond to the user's hand. A variety of other mappings are also contemplated, such as to map continuous joint angles of body parts to a state.
The shape module 208 is representative of functionality to classify states of shape attributes for parts of an object. For example, the shape module 208 may assign a state for a body mass index scale to the user's hand shown in the image 204, a gender, a size (e.g., small, medium, or large for clothing options), clothing type (e.g., trousers, skirt, dress) and so on. The state may then be used for a variety of purposes, such as a gesture to generate an avatar to accurately represent a user of the computing device, provide clothing options for a shopping application, and so forth. A variety of other states are also contemplated, such as shapes of objects in the image 204 to recognize the objects, e.g., chair and couch for a furniture attribute.
The appearance module 210 is representative of functionality to classify states for appearance attributes. As before, a variety of different states may be assigned for a variety of different attributes, such as textures (e.g., rough, smooth, pile), skin tones, colors, dress state (e.g., naked, semi-naked, fully clothed through identification of skin regions) and so on. Thus, the classification module 114 may support a variety of different attributes and states for those attributes. It should be readily apparent that a variety of other attributes are also contemplated without departing from the spirit and scope thereof.
The classification module 114 may also be configured to aggregate attributes. For example, the classification module 114 may combine classifications from various parts of an object to derive a single dominate state. The classification module 114 may also utilize classifications taken at different points in time. For instance, the classification module 114 may examine several frames having defined states for attributes to interpret a sequence that may be used as a basis to recognize a gesture to initiate an operation of the computing device 102. A user, for example, could provide a sequence of gestures to work as a vocabulary that may be interpreted by the computing device 102 to initiate a respective operation based on the sequence. The classification performed by the classification module 114 may be performed in a variety of ways, further discussion of which may be found in relation to the following figure.
Previous systems employed body part recognition by relying on a machine learning technique (e.g., decision trees with features based on depth differences between pairs of pixel locations) to predict associations between pixels and body parts in a depth map together with confidence values. In one instantiation, the previous systems used example depth images of different people in various poses for training that have an associated label image that essentially segments the depth map into individual body part regions.
In the techniques described herein, however, different image labels may be used to denote a state of an attribute for a body part as well as include an identifier of the body part. This state can be a function of a variety of different attributes, such as orientation (e.g., pose), shape, appearance, and so forth. Examples of pose dependent states include whole body poses (e.g., standing, sitting, lying down), body-part specific poses, e.g., canonical hand poses such as open palm, closed fist, an “OK” or “peace” sign, and so forth. The state may also be a function of shape, such as gender, or clothing sizes (S/M/L/XL), body mass index (BMI) ranges, and so forth. It can also be a function of appearance that relates to an entire body (e.g., a state of clothing). In one or more implementations, states of individual body parts in synthetically generated training data (e.g., generated using motion capture data and CGI) may be determined by specifying a mapping from pose (e.g., continuous joint angles) to state (e.g., discrete such as open or closed).
Gestures may be defined using select parts of an object, e.g., parts of a user's body. Accordingly, these parts are used to recognize a gesture while other parts that are not involved in the definition are excluded from the recognition analysis. The irrelevant regions on the body, for instance, may be assigned a NULL class, similar to objects located in a background of the image 204. As an example, in the case of hand poses used to determine whether the hand is open or closed, the pixels covering the palm and fingers may be assigned a hand pose state while other pixels that do not pertain to those parts of the body may be excluded from the analysis.
At run time 310 for a captured image 312 (e.g., captured by the camera 202), the output of the classification 314 may be configured as a probability distribution 316 over an entire state domain for each pixel of the captured images 312. Overall state aggregation 318 may also be achieved by finding a simple average over the entirety of the captured image 312 for each domain state, a weighted average that combines a classified state for each pixel with a likelihood that the pixel is part of a body region that exerts an influence on that state class, and so forth. The aggregate state 318 may be obtained in a variety of other ways, such as by using the previous system that classifies pixels to body parts. For example, pixels that are classified as being less likely to be on the hand would have less say (e.g., a lower weighting) on whether a hand is ultimately classified as open or closed in comparison with pixels that are included on the hand.
Temporal filtering 320 (e.g. for example Gaussian smoothing, bilateral filtering, or extrapolation based on past predictions) of predicted states between consecutive frames may also be performed to reduce the impact of spurious state changes. Additionally, the classification module 114 may be set to detect predefined sequences of states in order to do gesture recognition (e.g., by forming sentences using sign language hand poses) in the case of pose dependent attributes. An output may then be formed using one or more of these techniques that is compatible for gesture recognition 322, e.g., for processing by the gesture module 116 using machine learning to recognize a gesture. In this way, the attribute state classification may improve efficiency of the gesture module 116 by preprocessing the pixels to include attribute states. Although a few examples of attributes and states have been described, it should be readily apparent that a wide variety of states may be classified to pixels that describe attributes of objects in an image without departing from the spirit and scope thereof.
The following discussion describes attribute state classification techniques that may be implemented utilizing the previously described systems and devices. Aspects of each of the procedures may be implemented in hardware, firmware, software, or a combination thereof. The procedures are shown as a set of blocks that specify operations performed by one or more devices and are not necessarily limited to the orders shown for performing the operations by the respective blocks. In portions of the following discussion, reference will be made to the environment 100 of
A gesture is recognized by the computing device that is operable to initiate one or more operations of the computing device based at least in part on the state classifications of the one or more pixels of the one or more attributes (block 404). The gesture module 116, for instance, may receive image data having pixels that are classified into one or more attribute states such as orientation, shape, appearance, and so on. The gesture module 116 may then leverage these stages to efficiently recognize a gesture, such as a selection gesture input through making a fist by a user's hand as shown in the image 204 of
The recognizing of the gesture may also leverage a variety of additional functionality. For example, aggregation of the classifications may be performed (block 406). Additionally, the pixels that relate to one or more parts of the body that define the gesture for the other attribute described above may be examined and pixels that do not relate to the one or more parts of the body may be excluded (block 408). For example, a gesture definition may involve particular parts of a human body. Accordingly, body parts that fall within the definition of the gesture may be examined and pixels that relate to other body parts or objects may be excluded from the examination. A variety of other aggregation techniques are also contemplated.
In the example system 500, multiple devices are interconnected through a central computing device. The central computing device may be local to the multiple devices or may be located remotely from the multiple devices. In one embodiment, the central computing device may be a cloud of one or more server computers that are connected to the multiple devices through a network, the Internet, or other data communication link. In one embodiment, this interconnection architecture enables functionality to be delivered across multiple devices to provide a common and seamless experience to a user of the multiple devices. Each of the multiple devices may have different physical requirements and capabilities, and the central computing device uses a platform to enable the delivery of an experience to the device that is both tailored to the device and yet common to all devices. In one embodiment, a class of target devices is created and experiences are tailored to the generic class of devices. A class of devices may be defined by physical features, types of usage, or other common characteristics of the devices.
In various implementations, the computing device 102 may assume a variety of different configurations, such as for computer 502, mobile 504, and television 506 uses. Each of these configurations includes devices that may have generally different constructs and capabilities, and thus the computing device 102 may be configured according to one or more of the different device classes. For instance, the computing device 102 may be implemented as the computer 502 class of a device that includes a personal computer, desktop computer, a multi-screen computer, laptop computer, netbook, and so on.
The computing device 102 may also be implemented as the mobile 502 class of device that includes mobile devices, such as a mobile phone, portable music player, portable gaming device, a tablet computer, a multi-screen computer, and so on. The computing device 102 may also be implemented as the television 506 class of device that includes devices having or connected to generally larger screens in casual viewing environments. These devices include televisions, set-top boxes, gaming consoles, and so on. The techniques described herein may be supported by these various configurations of the computing device 102 and are not limited to the specific examples the techniques described herein.
The cloud 508 includes and/or is representative of a platform 510 for content services 512. The platform 510 abstracts underlying functionality of hardware (e.g., servers) and software resources of the cloud 508. The content services 512 may include applications and/or data that can be utilized while computer processing is executed on servers that are remote from the computing device 102. Content services 512 can be provided as a service over the Internet and/or through a subscriber network, such as a cellular or Wi-Fi network.
The platform 510 may abstract resources and functions to connect the computing device 102 with other computing devices. The platform 510 may also serve to abstract scaling of resources to provide a corresponding level of scale to encountered demand for the content services 512 that are implemented via the platform 510. Accordingly, in an interconnected device embodiment, implementation of functionality of the functionality described herein may be distributed throughout the system 500. For example, the functionality may be implemented in part on the computing device 102 as well as via the platform 510 that abstracts the functionality of the cloud 508.
Device 600 also includes communication interfaces 608 that can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 608 provide a connection and/or communication links between device 600 and a communication network by which other electronic, computing, and communication devices communicate data with device 600.
Device 600 includes one or more processors 610 (e.g., any of microprocessors, controllers, and the like) which process various computer-executable instructions to control the operation of device 600 and to implement embodiments of the techniques described herein. Alternatively or in addition, device 600 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 612. Although not shown, device 600 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
Device 600 also includes computer-readable media 614, such as one or more memory components, examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 600 can also include a mass storage media device 616.
Computer-readable media 614 provides data storage mechanisms to store the device data 604, as well as various device applications 618 and any other types of information and/or data related to operational aspects of device 600. For example, an operating system 620 can be maintained as a computer application with the computer-readable media 614 and executed on processors 610. The device applications 618 can include a device manager (e.g., a control application, software application, signal processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, etc.). The device applications 618 also include any system components or modules to implement embodiments of the gesture techniques described herein.
In this example, the device applications 618 include an interface application 622 and an input/output module 624 (which may be the same or different as input/output module 114) that are shown as software modules and/or computer applications. The input/output module 624 is representative of software that is used to provide an interface with a device configured to capture inputs, such as a touchscreen, track pad, camera, microphone, and so on. Alternatively or in addition, the interface application 622 and the input/output module 624 can be implemented as hardware, software, firmware, or any combination thereof. Additionally, the input/output module 624 may be configured to support multiple input devices, such as separate devices to capture visual and audio inputs, respectively.
Device 600 also includes an audio and/or video input-output system 626 that provides audio data to an audio system 628 and/or provides video data to a display system 630. The audio system 628 and/or the display system 630 can include any devices that process, display, and/or otherwise render audio, video, and image data. Video signals and audio signals can be communicated from device 600 to an audio device and/or to a display device via an RF (radio frequency) link, S-video link, composite video link, component video link, DVI (digital video interface), analog audio connection, or other similar communication link. In an embodiment, the audio system 628 and/or the display system 630 are implemented as external components to device 600. Alternatively, the audio system 628 and/or the display system 630 are implemented as integrated components of example device 600.
Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
4288078 | Lugo | Sep 1981 | A |
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5774591 | Black et al. | Jun 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie et al. | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6721444 | Gu et al. | Apr 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6788809 | Grzeszczuk | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7007035 | Kamath et al. | Feb 2006 | B2 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7257237 | Luck et al. | Aug 2007 | B1 |
7259747 | Bell | Aug 2007 | B2 |
7289645 | Yamamoto et al. | Oct 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7372977 | Fujimura et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7574411 | Suontausta et al. | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
7974443 | Kipman et al. | Jul 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
20020041327 | Hildreth et al. | Apr 2002 | A1 |
20030085887 | Hunt et al. | May 2003 | A1 |
20050031166 | Fujimura et al. | Feb 2005 | A1 |
20060098845 | Sotriropoulos et al. | May 2006 | A1 |
20060274947 | Fujimura | Dec 2006 | A1 |
20080019589 | Yoon et al. | Jan 2008 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080037875 | Kim et al. | Feb 2008 | A1 |
20080107303 | Kim et al. | May 2008 | A1 |
20080201340 | Thonangi | Aug 2008 | A1 |
20080212836 | Fujimura et al. | Sep 2008 | A1 |
20080267447 | Kelusky et al. | Oct 2008 | A1 |
20090027337 | Hildreth | Jan 2009 | A1 |
20090110292 | Fujimura et al. | Apr 2009 | A1 |
20090228841 | Hildreth | Sep 2009 | A1 |
20090315740 | Hildreth et al. | Dec 2009 | A1 |
20100034457 | Berliner et al. | Feb 2010 | A1 |
20100094800 | Sharp | Apr 2010 | A1 |
20100194872 | Mathe et al. | Aug 2010 | A1 |
20100197390 | Craig et al. | Aug 2010 | A1 |
20100197392 | Geiss | Aug 2010 | A1 |
20100214322 | Lim et al. | Aug 2010 | A1 |
20100215257 | Dariush et al. | Aug 2010 | A1 |
20120092445 | McDowell et al. | Apr 2012 | A1 |
20120154373 | Finocchio et al. | Jun 2012 | A1 |
20120163723 | Balan et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
201254344 | Mar 2008 | CN |
100409261 | Aug 2008 | CN |
101246602 | Aug 2008 | CN |
101320344 | Dec 2008 | CN |
0583061 | Feb 1994 | EP |
08044490 | Feb 1996 | JP |
WO-9310708 | Jun 1993 | WO |
WO-9717598 | May 1997 | WO |
WO-9944698 | Sep 1999 | WO |
Entry |
---|
Plagemann, et al., “Real-time Identification and Localization of Body Parts from Depth Images”, Retrieved at << http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5509559 >>, IEEE International Conference on Robotics and Automation (ICRA), May 3-7, 2010, pp. 6. |
Cohen, et al., “Inference of Human Postures by Classification of 3D Human Body Shape”, Retrieved at << http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1240827 >>, IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Oct. 17, 2003, pp. 8. |
Jüngling, et al., “Feature based Person Detection beyond the Visible Spectrum”, Retrieved at << http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204085 >>, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Jun. 20-25, 2009, pp. 30-37. |
Khan, et al., “Real-time Human Motion Detection and Classification”, Retrieved at << http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1215953 >>, IEEE Proceedings Students Conference, Aug. 16-17, 2002, pp. 135-139. |
“Parallel Processing Machine Learning Decision Tree Training”, Filed Date: Dec. 15, 2010, U.S. Appl. No. 12/969,112, pp. 1-27. |
“Classification of Posture States”, Filed Date: Dec. 28, 2010, U.S. Appl. No. 12/979,897, pp. 1-24. |
“Human motion-capture for Xbox Kinect”, Retrieved at << http://research.microsoft.com/en-us/projects/vrkinect/ >>, Retrieved Date: Apr. 15, 2011, pp. 3. |
“Simulation and Training”, Division Incorporated,(1994), 6 Pages. |
“Virtual High Anxiety”, Tech update, (Aug. 1995), 1 Page. |
Aggarwal, et al., “Human Motion Analysis: A Review”, IEEE Nonrigid and Articulated motion Workshop, University of Texas at Austin, Austin, TX.,(1997), pp. 90-102. |
Azarbayejani, et al., “Visually Controlled Graphics”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 6, (Jun. 1993), pp. 602-605. |
Breen, David et al., “Interactive Occlusion and Collision of Real and Virtual Objects in Augmented Reality”, Technical report ECRC-95-02 European Computer-Industry Research Centre GmbH, Munich, Germany, (1995), 22 Pages. |
Brogan, David et al., “Dynamically Simulated Characters in Virtual Environments”, vol. 18, Issue 5, IEEE Computer Graphics and Applications, (Sep./Oct. 1998), pp. 58-69. |
Fisher, et al., “Virtual Environment Display System”, ACM Workshop on Interactive 3D Graphics, Chapel Hill, NC, (Oct. 1986), 12 Pages. |
Freeman, William et al., “Television Control by Hand Gestures”, International Workshop on Automatic Face and Gesture Recognition, (1995), pp. 179-183. |
Granieri, John P., et al., “Simulating Humans in VR”, The British Computer Society, Academic Press, (Oct. 1994), 15 Pages. |
Hasegawa, Shoichi et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator”, ACM Computers in Entertainment, vol. 4, No. 3, (Jul. 2006), 12 Pages. |
He, Lei “Generation of Human Body Models”, University of Auckland, New Zealand, (Apr. 2005), 111 Pages. |
Hongo, Hitoshi et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras”, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, (Mar. 2000), pp. 156-161. |
Isard, Michael et al., “Condensation—Conditional Density Propagation for Visual Tracking”, International Journal of Computer Vision 29(1), Netherlands, (1998), pp. 5-28. |
Kanade, Takeo et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,(1996), pp. 196-202. |
Kohler, Marcus “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments”, Germany, (1997), 35 Pages. |
Kohler, Markus “Special Topics of Gesture Recognition Applied in Intelligent Home Environments”, In Proceedings of the Gesture Workshop, Germany, (1998), 12 Pages. |
Kohler, Markus “Vision Based Remote Control in Intelligent Home Environments”, University of Erlangen-Nuremberg, Germany, (1996), 8 Pages. |
Livingston, Mark A., “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality”, The University of North Carolina at Chapel Hill, North Carolina, USA, (1998), 145 Pages. |
Miyagawa, Ryohei et al., “CCD-Based Range-Finding Sensor”, IEEE Transactions on Electron Devices, vol. 44, No. 10, (Oct. 1997),pp. 1648-1652. |
Pavlovic, Vladimir et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, (Jul. 1997), pp. 677-695. |
Qian, et al., “A Gesture-Driven Multimodal Interactive Dance System”, IEEE International Conference on Multimedia and Expo, Taipei, (Jun. 2004), pp. 1579-1582. |
Rosenhahn, Bodo et al., “Automatic Human Model Generation”, University of Auckland (CITR), New Zealand, (2005), pp. 41-48. |
Shao, Jiang et al., “An Open System Architecture for a Multimedia and Multimodal User Interface”, Japanese Society for Rehabilitation of Persons with Disabilities (JSRPD), Japan, (Aug. 24, 1998), 8 Pages. |
Sheridan, Thomas et al., “Virtual Reality Check”, Technology Review, vol. 96, No. 7, (Oct. 1993), 9 Pages. |
Stevens, Jane “Flights into Virtual Reality Treating Real World Disorders”, The Washington Post, Science Psychology, (Mar. 27, 1995),2 Pages. |
Wren, Christopher et al., “Pfinder: Real-Time Tracking of the Human Body”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7 (Jul. 1997), pp. 780-785. |
Zhao, Liang “Dressed Human Modeling, Detection, and Parts Localization”, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, (2001), 121 Pages. |
“Distributed Decision Tree Induction”, retrieved from <http://www.slideshare.net/gregoryg/distributed-decision-tree-induction> on Sep. 28, 2010,3 pages. |
“High Performance Computing (HPC)—Supercomputing with NVIDIA Tesla”, retrieved from <http://www.nvidia.com/object/tesla_computing_solutions.html>,2 pages. |
Athitsos, Vassilis et al., “An Appearance-Based Framework for 3D Hand Shape Classification and Camera Viewpoint Estimation”, Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, available at <http://luthuli.cs.uiuc.edu/˜daf/courses/AppCV/Papers/01004129.pdf>,(2002),6 pages. |
Coates, Adam et al., “Scalable Learning for Object Detection with GPU Hardware”, available at <http://www.stanford.edu/˜acoates/papers/coates_iros2009.ps>,(2009),7 pages. |
Huisman, Johan A., “High-Speed Parallel Processing on CUDA-Enabled Graphics Processing Units”, available at <http://repository.tudelft.nl/assets/uuid:7ab16201-272c-4f18-899c-98a7fb527093/Thesis_-_Johan_Huisman.pdf>,(2010),106 pages. |
Li, Zhi et al., “Real Time Hand Gesture Recognition Using a Range Camera”, Australasian Conference on Robotics and Automation (ACRA), Dec. 2-4, 2009, available at.<http://www.araa.asn.au/acra/acra2009/papers/pap128s1.pdf>,(Dec. 2, 2009),7 pages. |
Sharp, Toby “Implementing Decision Trees and Forests on a GPU”, available at <http://research.microsoft.com/pubs/71445/ForestFire.pdf>,(2008),pp. 595-608. |
Shotton, Jamie et al., “Distributed Decision Tree Training”, U.S. Appl. No. 12/797,430, filed Jun. 9, 2010., (dated Jun. 9, 2010),36 pages. |
Podlozhnyuk, Victor, “Histogram calculation in CUDA.” NVIDIA Corporation, White Paper, Revised Nov. 9, 2007, 11 pages. |
Yang, Zhiyi et al., “Parallel Image Processing Based on CUDA”, 2008 International Conference on Computer Science and Software Engineering, Dec. 2008, pp. 42-45. |
State Intellectual Property Office of China, Office Action for Chinese Patent Application No. 201110447930.8, dated Jan. 24, 2014, 15 pages. |
State Intellectual Property Office of China, Office Action of Chinese Patent Application No. 201110443208.7, dated Nov. 21, 2013, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20120280897 A1 | Nov 2012 | US |