This patent specification relates to systems, methods, and related computer program products for the monitoring and control of energy-consuming systems or other resource-consuming systems. More particularly, this patent specification relates to systems and methods attributing causation for energy usage and setpoint program changes on a network-connected thermostat.
Substantial effort and attention continues toward the development of newer and more sustainable energy supplies. The conservation of energy by increased energy efficiency remains crucial to the world's energy future. According to an October 2010 report from the U.S. Department of Energy, heating and cooling account for 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Along with improvements in the physical plant associated with home heating and cooling (e.g., improved insulation, higher efficiency furnaces), substantial increases in energy efficiency can be achieved by better control and regulation of home heating and cooling equipment. By activating heating, ventilation, and air conditioning (HVAC) equipment for judiciously selected time intervals and carefully chosen operating levels, substantial energy can be saved while at the same time keeping the living space suitably comfortable for its occupants.
To encourage users to adopt energy saving operating levels while still maintaining comfort for the occupants, it would be useful to display an attributed causation for energy usage being above or below average, as well as information relating to creation and modification of program setpoints on a network-connected programmable thermostat.
According to one or more embodiments is a method of attributing a primary causative agent for HVAC system usage being above or below an average is described. The HVAC system is controlled by a self-programming network-connected thermostat. The method includes: using the thermostat to gather information relating to HVAC system usage over a plurality of days, as well as information relating to one or more thermostat setpoints over the plurality of days; calculating an average value for HVAC system usage for the plurality of days based on the gathered information relating to HVAC system usage; determining whether HVAC system usage for a candidate day, being one of the plurality of days, is above or below the calculated average value; hierarchically evaluating a plurality of potential causative agents for the HVAC system usage for the candidate day being above or below average; and attributing a primary causative agent for the HVAC system usage for the candidate day being above or below average based on the hierarchical evaluation.
According to some other embodiments a method is describe for interactively and graphically displaying schedule information to a user of an HVAC system controlled by a network-connected thermostat. The method includes: using the thermostat to gather information relating to HVAC system usage, the thermostat controlling the HVAC system according to a plurality of temperature setpoints, the gathered information including for each temperature setpoint information indicative of a manner in which the temperature setpoint was set; on a display device in a location remote from the thermostat, graphically displaying a plurality of graphical representations each corresponding to one of the plurality of temperature setpoints; and on the display device and based at least in part on the gathered information displaying information indicative of the manner in which a first temperature setpoint was set, the first temperature setpoint being one of the plurality of temperature setpoints.
According to some embodiments, a method is described for interactively and graphically displaying performance information to a user of an HVAC system controlled by a network-connected thermostat. The method includes: using the thermostat to gather information relating to HVAC system usage, the thermostat controlling the HVAC system according to a plurality of temperature setpoints, the setpoints being set by any of a plurality of methods including direct user interaction with the thermostat and remote interaction with the thermostat via network connection; on a display device in a location remote from the thermostat, graphically displaying performance information based on the gathered information, the displayed performance information including a graphical daily summary for each of a plurality of days; graphically displaying on the display device detailed performance information for one of the plurality of days, the information including a plurality of setpoint symbols; receiving user input indicating a selection of one of the plurality of setpoint symbols; and in real time and in response to the received input indicating the selection of one of the plurality of setpoint symbols, displaying on the display device for the selected one of the plurality setpoint symbols, information indicative of a manner in which the selected setpoint was set.
It will be appreciated that these systems and methods are novel, as are applications thereof and many of the components, systems, methods and algorithms employed and included therein. It should be appreciated that embodiments of the presently described inventive body of work can be implemented in numerous ways, including as processes, apparatus, systems, devices, methods, computer readable media, computational algorithms, embedded or distributed software and/or as a combination thereof. Several illustrative embodiments are described below.
The inventive body of work will be readily understood by referring to the following detailed description in conjunction with the accompanying drawings, in which:
A detailed description of the inventive body of work is provided below. While several embodiments are described, it should be understood that the inventive body of work is not limited to any one embodiment, but instead encompasses numerous alternatives, modifications, and equivalents. In addition, while numerous specific details are set forth in the following description in order to provide a thorough understanding of the inventive body of work, some embodiments can be practiced without some or all of these details. Moreover, for the purpose of clarity, certain technical material that is known in the related art has not been described in detail in order to avoid unnecessarily obscuring the inventive body of work.
As used herein the term “HVAC” includes systems providing both heating and cooling, heating only, cooling only, as well as systems that provide other occupant comfort and/or conditioning functionality such as humidification, dehumidification and ventilation.
As used herein the terms power “harvesting,” “sharing” and “stealing” when referring to HVAC thermostats all refer to the thermostat are designed to derive power from the power transformer through the equipment load without using a direct or common wire source directly from the transformer.
As used herein the term “residential” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used as a single family dwelling. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration (1 ton of refrigeration=12,000 Btu/h).
As used herein the term “light commercial” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used for commercial purposes, but is of a size and construction that a residential HVAC system is considered suitable. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration.
As used herein the term “thermostat” means a device or system for regulating parameters such as temperature and/or humidity within at least a part of an enclosure. The term “thermostat” may include a control unit for a heating and/or cooling system or a component part of a heater or air conditioner. As used herein the term “thermostat” can also refer generally to a versatile sensing and control unit (VSCU unit) that is configured and adapted to provide sophisticated, customized, energy-saving HVAC control functionality while at the same time being visually appealing, non-intimidating, elegant to behold, and delightfully easy to use.
Some embodiments of thermostat 110 in
As used herein, a “learning” thermostat refers to a thermostat, or one of plural communicating thermostats in a multi-thermostat network, having an ability to automatically establish and/or modify at least one future setpoint in a heating and/or cooling schedule based on at least one automatically sensed event and/or at least one past or current user input. As used herein, a “primary” thermostat refers to a thermostat that is electrically connected to actuate all or part of an HVAC system, such as by virtue of electrical connection to HVAC control wires (e.g. W, G, Y, etc.) leading to the HVAC system. As used herein, an “auxiliary” thermostat refers to a thermostat that is not electrically connected to actuate an HVAC system, but that otherwise contains at least one sensor and influences or facilitates primary thermostat control of an HVAC system by virtue of data communications with the primary thermostat. In one particularly useful scenario, the thermostat 110 is a primary learning thermostat and is wall-mounted and connected to all of the HVAC control wires, while the remote thermostat 112 is an auxiliary learning thermostat positioned on a nightstand or dresser, the auxiliary learning thermostat being similar in appearance and user-interface features as the primary learning thermostat, the auxiliary learning thermostat further having similar sensing capabilities (e.g., temperature, humidity, motion, ambient light, proximity) as the primary learning thermostat, but the auxiliary learning thermostat not being connected to any of the HVAC wires. Although it is not connected to any HVAC wires, the auxiliary learning thermostat wirelessly communicates with and cooperates with the primary learning thermostat for improved control of the HVAC system, such as by providing additional temperature data at its respective location in the enclosure, providing additional occupancy information, providing an additional user interface for the user, and so forth.
It is to be appreciated that while certain embodiments are particularly advantageous where the thermostat 110 is a primary learning thermostat and the remote thermostat 112 is an auxiliary learning thermostat, the scope of the present teachings is not so limited. Thus, for example, while certain initial provisioning methods that automatically pair associate a network-connected thermostat with an online user account are particularly advantageous where the thermostat is a primary learning thermostat, the methods are more generally applicable to scenarios involving primary non-learning thermostats, auxiliary learning thermostats, auxiliary non-learning thermostats, or other types of network-connected thermostats and/or network-connected sensors. By way of further example, while certain graphical user interfaces for remote control of a thermostat may be particularly advantageous where the thermostat is a primary learning thermostat, the methods are more generally applicable to scenarios involving primary non-learning thermostats, auxiliary learning thermostats, auxiliary non-learning thermostats, or other types of network-connected thermostats and/or network-connected sensors. By way of even further example, while certain methods for cooperative, battery-conserving information polling of a thermostat by a remote cloud-based management server may be particularly advantageous where the thermostat is a primary learning thermostat, the methods are more generally applicable to scenarios involving primary non-learning thermostats, auxiliary learning thermostats, auxiliary non-learning thermostats, or other types of network-connected thermostats and/or network-connected sensors.
Enclosure 100 further includes a private network accessible both wirelessly and through wired connections and may also be referred to as a Local Area Network or LAN. Network devices on the private network include a computer 124, thermostat 110 and remote thermostat 112 in accordance with some embodiments of the present invention. In one embodiment, the private network is implemented using an integrated router 122 that provides routing, wireless access point functionality, firewall and multiple wired connection ports for connecting to various wired network devices, such as computer 124. Other embodiments may instead use multiple discrete switches, routers and other devices (not shown) to perform networking functions equivalent to or in addition to those provided by integrated router 122.
Integrated router 122 further provides network devices access to a public network, such as the Internet, provided enclosure 100 has a connection to the public network generally through a cable-modem, DSL modem and a service provider of the Internet or other public network. The Internet and other public networks are sometimes referred to as a Wide-Area Network or WAN. In one embodiment, integrated router 122 may direct communications to other devices on these networks using a network protocol such as TCP/IP. If the communications are directed to a device or service outside the private network, integrated router 122 may route the communications outside the private network to the public network such as the Internet.
In some embodiments, thermostat 110 may wirelessly communicate with remote thermostat 112 over the private network or through an ad hoc network formed directly with remote thermostat 112. During communication with remote thermostat 112, thermostat 110 may gather information remotely from the user and from the environment detectable by the remote thermostat 112. For example, remote thermostat 112 may wirelessly communicate with the thermostat 110 providing user input from the remote location of remote thermostat 112 or may be used to display information to a user, or both. Like thermostat 110, embodiments of remote thermostat 112 may also include sensors to gather data related to occupancy, temperature, light and other environmental conditions. In an alternate embodiment, remote thermostat 112 may also be located outside of the enclosure 100.
In accordance with some embodiments, a computer device 124 in enclosure 100 may remotely control thermostat 110 by accessing a thermostat management account through a thermostat management system (not shown in
In heating, heating coils or elements 242 within air handler 240 provide a source of heat using electricity or gas via line 236. Cool air is drawn from the enclosure via return air duct 246 through filter 270, using fan 238 and is heated through heating coils or elements 242. The heated air flows back into the enclosure at one or more locations via supply air duct system 252 and supply air registers such as register 250. In cooling, an outside compressor 230 passes a gas such as Freon through a set of heat exchanger coils and then through an expansion valve. The gas then goes through line 232 to the cooling coils or evaporator coils 234 in the air handler 240 where it expands, cools and cools the air being circulated via fan 238. A humidifier 254 may optionally be included in various embodiments that returns moisture to the air before it passes through duct system 252. Although not shown in
Although being formed from a single lens-like piece of material such as polycarbonate, the cover 314 has two different regions or portions including an outer portion 314o and a central portion 314i. According to some embodiments, the cover 314 is painted or smoked around the outer portion 314o, but leaves the central portion 314i visibly clear so as to facilitate viewing of an electronic display 316 disposed thereunderneath. According to some embodiments, the curved cover 314 acts as a lens that tends to magnify the information being displayed in electronic display 316 to users. According to some embodiments the central electronic display 316 is a dot-matrix layout (individually addressable) such that arbitrary shapes can be generated, rather than being a segmented layout. According to some embodiments, a combination of dot-matrix layout and segmented layout is employed. According to some embodiments, central display 316 is a backlit color liquid crystal display (LCD). An example of information displayed on the electronic display 316 is illustrated in
Motion sensing as well as other techniques can be use used in the detection and/or predict of occupancy, as is described further in the commonly assigned U.S. Ser. No. 12/881,430 filed Sep. 14, 2010, which is incorporated by reference herein. According to some embodiments, occupancy information is used in generating an effective and efficient scheduled program. Preferably, an active proximity sensor 370A is provided to detect an approaching user by infrared light reflection, and an ambient light sensor 370B is provided to sense visible light. The proximity sensor 370A can be used to detect proximity in the range of about one meter so that the thermostat 110 can initiate “waking up” when the user is approaching the thermostat and prior to the user touching the thermostat. Such use of proximity sensing is useful for enhancing the user experience by being “ready” for interaction as soon as, or very soon after the user is ready to interact with the thermostat. Further, the wake-up-on-proximity functionality also allows for energy savings within the thermostat by “sleeping” when no user interaction is taking place or about to take place. The ambient light sensor 370B can be used for a variety of intelligence-gathering purposes, such as for facilitating confirmation of occupancy when sharp rising or falling edges are detected (because it is likely that there are occupants who are turning the lights on and off), and such as for detecting long term (e.g., 24-hour) patterns of ambient light intensity for confirming and/or automatically establishing the time of day.
According to some embodiments, for the combined purposes of inspiring user confidence and further promoting visual and functional elegance, the thermostat 110 is controlled by only two types of user input, the first being a rotation of the outer ring 312 as shown in
According to some embodiments, the thermostat 110 includes a processing system 360, display driver 364 and a wireless communications system 366. The processing system 360 is adapted to cause the display driver 364 and display area 316 to display information to the user, and to receiver user input via the rotatable ring 312. The processing system 360, according to some embodiments, is capable of carrying out the governance of the operation of thermostat 110 including the user interface features described herein. The processing system 360 is further programmed and configured to carry out other operations as described further hereinbelow and/or in other ones of the commonly assigned incorporated applications. For example, processing system 360 is further programmed and configured to maintain and update a thermodynamic model for the enclosure in which the HVAC system is installed, such as described in U.S. Ser. No. 12/881,463 filed Sep. 14, 2010, and in International Patent App. No. PCT/US11/51579 filed Sep. 14, 2011, both of which are incorporated herein by reference. According to some embodiments, the wireless communications system 366 is used to communicate with devices such as personal computers and/or other thermostats or HVAC system components, which can be peer-to-peer communications, communications through one or more servers located on a private network, and/or communications through a cloud-based service.
Backplate 440 includes electronics 482 and a temperature/humidity sensor 484 in housing 460, which are ventilated via vents 442. Two or more temperature sensors (not shown) are also located in the head unit 410 and cooperate to acquire reliable and accurate room temperature data. Wire connectors 470 are provided to allow for connection to HVAC system wires. Connection terminal 480 provides electrical connections between the head unit 410 and backplate 440. Backplate electronics 482 also includes power sharing circuitry for sensing and harvesting power available power from the HVAC system circuitry.
The embodiments described herein are advantageously configured to be compatible with a large variety of conventional integrated routers that service a large population of homes and businesses. Thus, by way of example only and not by way of limitation, the router (not shown) that services the private network 502 of
Thermostat access client 516 is a client application designed in accordance with aspects of the present invention to access the thermostat management system 506 over public network 504. The term “thermostat management system” can be interchangeably referenced as a “cloud-based management server” for the thermostats, or more simply “cloud server”, in various descriptions hereinabove and hereinbelow. Because thermostat access client 516 is designed to execute on different devices, multiple client applications may be developed using different technologies based on the requirements of the underlying device platform or operating system. For some embodiments, thermostat access client 516 is implemented such that end users operate their Internet-accessible devices (e.g., desktop computers, notebook computers, Internet-enabled mobile devices, cellphones having rendering engines, or the like) that are capable of accessing and interacting with the thermostat management system 506. The end user machine or device has a web browser (e.g., Internet Explorer, Firefox, Chrome, Safari) or other rendering engine that, typically, is compatible with AJAX technologies (e.g., XHTML, XML, CSS, DOM, JSON, and the like). AJAX technologies include XHTML (Extensible HTML) and CSS (Cascading Style Sheets) for marking up and styling information, the use of DOM (Document Object Model) accessed with client-side scripting languages, the use of an XMLHttpRequest object (an API used by a scripting language) to transfer XML and other text data asynchronously to and from a server using HTTP), and use of XML or JSON (Javascript Object Notation, a lightweight data interchange format) as a format to transfer data between the server and the client. In a web environment, an end user accesses the site in the usual manner, i.e., by opening the browser to a URL associated with a service provider domain. The user may authenticate to the site (or some portion thereof) by entry of a username and password. The connection between the end user entity machine and the system may be private (e.g., via SSL). The server side of the system may comprise conventional hosting components, such as IP switches, web servers, application servers, administration servers, databases, and the like. Where AJAX is used on the client side, client side code (an AJAX shim) executes natively in the end user's web browser or other rendering engine. Typically, this code is served to the client machine when the end user accesses the site, although in the alternative it may be resident on the client machine persistently. Finally, while a web-based application over Internet Protocol (IP) is described, this is not a limitation, as the techniques and exposed user interface technologies may be provided by a standalone application in any runtime application, whether fixed line or mobile. It is to be appreciated that although the TCP/IP protocol is set forth as the network protocol used for communications among the thermostat management system 506, the thermostat access client 514, and other devices for some embodiments, it is set forth by way of example and not by way of limitation, in that any other suitable protocol, such as UDP over IP in particular, may be used without departing from the scope of the present teachings.
In yet another embodiment, thermostat access client 516 may be a stand-alone application or “app” designed to be downloaded and run on a specific device such as smartphone 508 or a tablet 510 device running the Apple iOS operating system, Android operating system, or others. Developers create these stand-alone applications using a set of application programming interfaces (APIs) and libraries provided by the device manufacturer packaged in software development toolkit or SDK. Once completed, the “app” is made available for download to the respective device through an application store or “app” store curated by the app store owners to promote quality, usability and customer satisfaction.
In one embodiment, thermostat management system 506 illustrated in
Thermostat 110 and remote thermostat 112 may be accessed remotely from numerous different locations on the private network 502 or public network 504. As will be described in further detail hereinbelow, upon installation a thermostat such as thermostat 110 first registers with the thermostat management system 506 and then requests the thermostat management system create a pairing between the thermostat and a corresponding thermostat management account. Thereafter, a device such as a tablet 518 may be connected to public network 504 directly or through a series of other private networks (not shown) yet still access these thermostats, while outside the private network where they are located, by way of thermostat management system 506. In one embodiment, a tablet 518 running the Apple iOS operating system may remotely access to these thermostats through the thermostat management system 506 and thermostat management account using an iOS “app” version of thermostat access client 516. Pairing thermostats with the thermostat management account allows tablet 518 and other computer devices to remotely control, gather data, and generally interact with thermostats such as thermostat 110 and remote thermostat 112.
In one embodiment, thermostat management system 506 distributes the task of communication and control with the thermostats to one or more thermostat management servers 520. These thermostat management servers 520 may coordinate communication, manage access, process data and analyze results using data produced by thermostats such as thermostat 110 and remote thermostat 112. Intermediate and final results from computations on these servers 520, as well as raw data, may be stored temporarily or archived on thermostat databases 522 for future reference and use. Thermostat management servers 520 may also send a portion of the data along with control information, and more generally any of a variety of different kinds of information, back to thermostat 110 and remote thermostat 112. Results from the thermostat management servers 520 may also be stored in one or more thermostat databases 522 for subsequent access by a device such as tablet 518 running thermostat access client 516.
These thermostat management servers 520 each may perform one or several discrete functions, may serve as redundant fail-over servers for these different discrete functions or may share performance of certain discrete functions in tandem or in a cluster as well as other combinations performing more complex operations in parallel or distributed over one or more clusters of computers. In some embodiments, one of the thermostat management servers 520 may correspond directly to a physical computer or computing device while in other embodiments, the thermostat management servers 520 may be virtualized servers running on one or more physical computers under the control of a virtual machine computing environment such as provided by VMWARE of Palo Alto, Calif. or any other virtual machine provider. In yet another embodiment, the thermostat management servers 520 and thermostat databases 522 are provisioned from a “cloud” computing and storage environment such as the Elastic Compute Cloud or EC2 offering from Amazon.com of Seattle, Wash. In an EC2 solution, for example, the thermostat management servers 520 may be allocated according to processor cycles and storage requirements rather than according to a number of computers, either real or virtual, thought to be required for the task at hand.
In some embodiments, the thermostat management servers 520 making up this thermostat management system 506 may manage thermostats located in multiple enclosures across various geographic locations and time zones. Each enclosure may use one or several thermostats in accordance with embodiments of the present invention to control one or several HVAC systems, such as HVAC system 120 in
One embodiment of registration server 602 provides a number of services related to registering a thermostat on the thermostat management system 506 and preparing it for pairing with a thermostat management account. In operation, the registration server 602 may be first accessed by a thermostat when the thermostat is wired to the HVAC of an enclosure and then connected to the Internet through a private network. To make the thermostat known on system 520, the thermostat sends thermostat metadata from the private network to the public network, such as the Internet, and then onto processing by registration server 602. Preferably, the thermostat metadata includes a unique thermostat identifier, such as one that is assigned at the time of manufacturing. As the communication that sends the thermostat metadata passes through the network address translator (NAT) of the router (not shown) that serves private network 502, it is appended with the public network address of that router, which is thus the public address that is “used” by the thermostat to communicate over the public network. The thermostat identifier is used to identify the thermostat from other thermostats being registered by registration server 602 and may be based, in part or in whole, on a media access control (MAC) address assigned to the NIC of the thermostat. As one security measure against registering unauthorized devices, registration server 602 may compare the MAC address in the thermostat metadata against a list of valid MAC addresses provided by the manufacturer of the thermostat or NIC component. In accordance with one embodiment, the thermostat registration is complete when the registration server 602 provisions an entry in a thermostat registration pool and marks the thermostat entry ready to be paired with a thermostat management account. Entries in the thermostat registration pool may be referenced by their unique thermostat identifier, the public network address that they used (or, more particularly, the public address of the private network router through which they connect to the Internet), and optionally other relevant metadata associated with the thermostat.
In some embodiments, update server 604 attempts to update software, firmware and configuration updates to each of the thermostats registered in the thermostat registration pool. If metadata from entries in the registration pool exclude versioning information, update server may need to further query each thermostat for current versions installed. Update server 604 may access entries in the registration pool and then use corresponding network addresses in each entry to connect to the associated thermostat over the public network or private network, or both.
If newer software versions exist than currently used on a thermostat, update server 604 proceeds to send software updates to the thermostat over the public network. For example, update server may use file transfer protocols such as ftp (file transfer protocol), tftp (trivial file transfer protocol) or more secure transfer protocols when uploading the new software. Once uploaded, installation and update of the software on the thermostat may occur immediately through an auto-update option on the thermostat or manually through the interface of the thermostat as requested by a user.
One embodiment of pairing server 606 facilitates the association or “pairing” of a thermostat with a thermostat management account on thermostat management account server 612. The term “thermostat management account” can be used interchangeably with “user account” herein unless specified otherwise. Once the thermostat is paired with a user account, a rich variety of network-enabled capabilities are enabled as described further herein and in one or more of the commonly assigned incorporated applications, infra. For example, once pairing has been achieved, a person with access to the thermostat management account may access the thermostat (through the thermostat management system 506 using the thermostat access client 516) for a variety of purposes such as seeing the current temperature of the home, changing the current setpoint, changing the mode of the thermostat between “home” and “away”, and so forth. Moreover, the thermostat management system 506 can then start tracking the various information provided by the thermostat which, in turn, enables a rich variety of cloud-based data aggregation and analysis that can be used to provide relevant reports, summaries, updates, and recommendations to the user either through the thermostat display itself, through the thermostat access client 516, or both. A variety of other capabilities, such as demand-response actions in which the thermostat management server sends an energy alert and/or sends energy-saving setpoint commands to the thermostats of users who have enrolled in such programs, can be carried out.
In view of the importance of establishing a pairing between the thermostat and a thermostat management account, there is provided an ability for a fallback method of pairing, which can be termed a “manually assisted” method of pairing, that can take effect and be carried out in the event that the convenient auto-pairing methods described further hereinbelow cannot be securely and reliably carried out for a particular installation. The manually assisted method may use an alphanumeric “passcode” to pair the thermostat to the thermostat management account. Typically, the passcode is sent to the thermostat over a public network, like the Internet, and displayed on the display area of the thermostat. Authorization to access the thermostat is provided if the user obtaining the passcode from the display on the thermostat then enters it into a pairing dialog presented when the user logs into their thermostat management account. Pairing server 606 pairs the thermostat with the user's thermostat management account if the user enters that same passcode that was displayed on their thermostat display.
According to a preferred “auto-pairing” method, the pairing server 606 may automatically pair or “auto-pair” a thermostat management account to a thermostat if both are located on the same private network. If the thermostat and thermostat management account are associated with the same private network, embodiments of the present invention presume the thermostat is at the user's home, office, or other area where the user should also have control of the device. To make this determination automatically, the pairing server 606 compares the public network address that was used to register the thermostat over the Internet with the public network address used by the computer device that has most recently been used to access the thermostat management account. Since the thermostat and computer device only have private network addresses, the router on the private network they share inserts the same public network address into their packets thus allowing the two devices to access servers, services, and other devices on the Internet. “Auto-pairing” takes advantage of this fact and automatically pairs devices sharing the same public network address. This is particularly advantageous from a user standpoint in that the user is not bothered with the need to enter a passcode or other alphanumerical identifier in order to achieve the pairing process, and avoids the concern that a user may inadvertently enter incorrect codes or identifiers into the system. Details on auto-pairing and manually assisted pairing are described in further detail later herein.
Thermostat front end user-interface (UI) server 608 facilitates the generation and presentation of intuitive, user-friendly graphical user-interfaces that allow users to remotely access, configure, interact with, and control one or more of their network-connected thermostats 110/112 from a computer web browser, smartphone, tablet, or other computing device. The user-friendly graphical user-interfaces can also provide useful tools and interfaces that do not necessarily require real-time connectivity with the thermostats 110/112 with examples including, for some embodiments, providing user interfaces for displaying historical energy usage, historical sensor readings and/or occupancy patterns, allowing the user to learn about and/or enroll in demand-response programs, provide social networking forums that allow users to interact with each other in informative, competitive, fun ways that promote energy savings, provide access to local information including weather, public safety information, neighborhood calendar events, and local blogs, and more generally provide services and information associated with a comprehensive “energy portal” functionality. Examples of intuitive, user-friendly graphical user-interfaces provided by the UI server 608 according to one or more preferred embodiments are described further in co-pending U.S. patent application Ser. No. 13/317,423.
In some embodiments, a thermostat access client user-interface displays an image of a house representing a primary enclosure paired to the thermostat management account in the thermostat management system. Thermostat front end UI server 608 may further instruct the thermostat access client, such as thermostat access client 516 in
Thermostat backend server 610 manages the storage of data used by various thermostat management servers in the thermostat management system 506. In some embodiments, thermostat backend server 610 may manage storage of the thermostat registration pool data used by the registration server 602 or may organize and store new software updates and releases for the update server 604. In another embodiment, thermostat backend server 610 may also store heating and cooling related data (i.e., date and time HVAC system was in either heating or cooling mode within the enclosure), sensor information, battery-level data, alarms, etc. associated with an enclosure that was sent to the thermostat management system 506 by thermostats registered therewith, and in some embodiments and provide pre-computed heating and cooling schedules, applications, and other data for download over the public network for use by the thermostats.
In some embodiments, thermostat management account server 612 is used to create new accounts and update existing accounts on thermostat management system 506. To access their thermostat over a thermostat access client 516 and enjoy the benefits of thermostat connectedness, the user is first required to create of a thermostat management account (“user account”) on thermostat management account server 612 using their thermostat access client 516. Accordingly, users execute the thermostat access client 516 on a computer or other computer device to access the thermostat management account server 612. The thermostat management account server 612 should receive at least the zip code and/or city and state for the enclosure in which the thermostat is (or will be) installed, such that weather information provided by a weather service can be accessed and downloaded to the thermostat, which can be used as part of its optimal enclosure characterization and HVAC control algorithms. Optionally, a variety of other information including a user's contact information, enclosure street addresses, and so forth can also be received. Primary options associated with the thermostat management account server 612 include pairing one or more thermostats to the correct thermostat management account through pairing operations provided by pairing server 606. However, even if the account is not yet paired with a thermostat, the user may use the thermostat management account to access local information including weather, public safety information, neighborhood calendar events, local blogs and more information based upon the user's contact information, locale and other interests.
According to some embodiments, further detail for the energy usage throughout any given day is displayed when the user requests it. When the user touches one of the energy bar symbols, or anywhere on the row for that day, a detailed energy usage display for that day is activated. In
In
Further detail for the energy usage throughout any given day is displayed when the user requests it. When the user touches on the row for a day, a detailed energy usage display for that day is activated. In
When the “Energy” menu option of selected from menu 740 in
Further description will now be provided for assigning a primary responsibility or causation for either over or under average energy usage, according to some embodiments. Such responsibility information can be used, for example to display the responsibility symbols on the energy user interface screens, such as “weather” symbol 764 in
In step 1010, values for user credit and user blame are calculated. Note that in this example the user only gets credited or blamed for times when the thermostat is not in Away or Auto-Away mode. For heating, for every 30-second bucket the target temperature and the scheduled temperature at that time are compared. If the system is in OFF mode and ambient temperature is less than the scheduled temperature, the user avoided an inefficient setpoint, so the user is credited 30 seconds times difference between the scheduled temperature and the ambient temperature. If the target and scheduled temperatures are the same, the difference is zero, meaning that the device is running the scheduled setpoint, so the user is neither credited nor blamed. If the target temperature is less than the ambient temperature, and the ambient temperature is less than the scheduled temperature, then the user conserved energy, and the user is credited for 30 seconds times the difference between the ambient temperature and target temperature. If the scheduled temperature is less than the ambient temperature, and the ambient temperature is less than the target temperature, then the user consumed more energy, so we blame the user for 30 seconds times the difference between the ambient temperature and the scheduled temperature.
For cooling, for every 30-second bucket, the target temperature and the scheduled temperature at that time are compared. If the system is in OFF mode and the scheduled temperature is less than the ambient temperature, then the user avoided an inefficient setpoint, so user is credited 30 seconds time the difference between the ambient temperature and the scheduled temperature. If the temperatures are the same, the difference is zero, meaning that the device is running the scheduled setpoint, so the user is neither credited nor blamed. If the scheduled temperature is less than the ambient temperature, and the ambient temperature is less than the target temperature, the user conserved energy, so the user is credited for 30 seconds times the difference between the target temperature and the ambient temperature. If the target temperature is less than the ambient temperature, and the ambient temperature is less than the scheduled temperature, the user consumed more energy, so the user is blamed for 30 seconds times the difference between the ambient temperature and the target temperature.
In step 1012, the values for the weather credit and weather blame are calculated. Note that according to some embodiments, this weather values are averaged when finding the primary responsible agent, so that constant weather patterns are ignored. For every 30-second bucket, a calculation is made for the difference between the outside temperature and the scheduled temperature times 30 seconds (the size of bucket). If weather is in the more energetic direction in temperature (e.g. colder in the case of heating or warmer in the case of cooling), the weather is blamed by this amount. If weather is in the less energetic direction in temperature, the weather credited by this amount.
In step 1014, the values for auto-away credit are calculated. Note according to these embodiment Away or Auto-Away are not blamed in any case; they can only be credited. In heating mode, if the heating away temperature is less than the ambient temperature, and the ambient temperature is less than the scheduled target temperature, than away is credited for 30 seconds times the difference between the target temperature and the ambient temperature. In cooling mode, if the cooling away temperature high is greater than the ambient temperature, and the ambient temperature is greater than the scheduled target temperature, then away is credited 30 seconds times the difference between the ambient temperature the target temperature.
In step 1016, the values for away credit are calculated which is the same as described above for step 1014 except for manually initiated away times.
In step 1018 the primary responsible agent is calculated using the method of steps 1020, 1022 and 1024. In step 1020, the seconds above/below average is calculated by summing total activity (heating, cooling, aux) over days in the past week that have enough data (e.g. missing no more than 2 hours) and divide that by the number of valid days. Then the seconds above weekly average is equal to the total activity today minus the average activity. In step 1022, if today is above average, then blame the agent with the greatest (blame-credit). If all values are less than zero, then set the blame to unknown. In step 1024, if today is below average, then credit the agent with the greatest (credit-blame). If all values are less than zero, then set the credit to unknown. Note that according to some embodiments, the weather can only be blamed/credited when at least 18 hours of weather data is available. In step 1030, the energy summary is logged with an event including which agent (user, weather, auto-away, or manual-away) is deemed to be primarily responsible for the above or below average energy usage.
Area 1120 of email 1110 includes the manufacturer's logo, along with the user's account name, location and the dates for which the information pertains. Area 1130 gives the user an energy usage summary for the month. In this calculations indicate that 35% more energy was used this month versus last month. Bar symbols are included for both cooling and heating for the current month versus the past month. The bars give the user a graphical representation of the energy, including different shading for the over (or under) user versus the previous month.
Area 1140 indicates leaf award information. In this case the user has earned a total of 46 leafs overall (since the initial installation). A message indicates how the user compares to the average user. A calendar graphic 1142 shows the days (by shading) in which a leaf was earned. In this case leafs were earned on 12 days in the current month. Details of the leaf algorithm are given in
Area 1150 shows information relating to the auto-away and manual-away features. The calendar symbols 1152 and 1154 show the days that auto-away and/or manual-away was triggered. Also provided in area 1150 is information about the number of hours auto-away was used, recommendations for saving energy and cost, as well as information about averages among other users.
Area 1160 shows information during which the thermostat was switched to “off,” and includes a month calendar symbol 1162. Area 1170 provides tips the aid the user in saving more energy. The tips can be customized for the particular user. For example, if the user has set the away temperature for heating to greater than the default 62 degrees, a message can be displayed suggesting a change. A link is also provided to further aid the user in conveniently making the suggested settings change.
Area 1180 provides further assistance such as how to use certain features and obtain further information, along with links for further information and assistance.
Further description will now be provided for assigning a primary causative agent, that can be used alternatively or in combination with those shown and described supra with respect to
In block 1700, average HVAC usage is calculated for the preceding 7 days. According to some embodiments, the HVAC usage is calculated based on the number of hours during that day the HVAC system was operating. For example, during the winter when a heating system is the primary HVAC function, the average number of hours per day the heating system was turned “on” is calculated. In decision 1702, if the average usage is less than 15 minutes per day, then in block 1704 no usage causation is assigned the candidate day (yesterday), since it has been found that such assignments are likely to be inaccurate. In decision 1706, if there are at least three days in a row without any HVAC usage (i.e. a “no usage” day), and the string of no usage days included yesterday or the day before yesterday, then in block 1708 no usage cause is assigned. If the answer to decision 1706 is “no” then control passes to decision 1710.
It has been found that it is particularly useful to for users to be informed as to the primary cause of HVAC energy use being above of below average in cases where the departure from the average is relatively great. In decision 1710 the top three outlier days of the preceding seven days is determined. The degree of “outlier-ness”, according to some embodiments, is calculated simply by the distance from the 7-day average calculated in block 1700. If the candidate day, in this case yesterday, is not one of the top three outlier days then control passes to decision 1770 on
In block 1716, if yesterday's usage was below average then control passes to decision 1740 in
Referring to
According to some embodiments, other types of causative agents can be evaluated and if appropriate assigned at the primary cause of thermostat usage being above and/or below average in manner analogous to that described herein. For example, if the thermostat is responsive to demand response requests from a utility supplier which cause changes in the energy usage, then demand response can be incorporated into the causation algorithm. In this example in
According to some embodiments, the user is notified of the attributed cause for energy usage above and below average using a responsibility symbol appropriate for the attributed type. For example, when weather is attributed as the primary cause for below average energy usage, symbols such as symbol 764 shown in
According to some embodiments, information sufficient to indicate the manner that each setpoint was last set is logged and maintained on one or more servers such as thermostat management system 506 and thermostat backend server 610 shown and described with respect to
According to some embodiments further aspects of interactively displaying setpoint and other energy event information will now be described with reference to
According to some embodiments, the form of textual message can be adapted to the type of energy event. For events triggered by a ad-hoc adjustment, such as a real-time setpoint adjustment, the message takes the form of “set by ______” where the blank is filled in by an appropriate description to indicate the manner in which the ad-hoc adjustment was made. For example if the change was made by via a mobile device “set by Nest web” can be used. Other variations include “Nest Mobile” “Kate's iPhone” for adjustments made using a mobile phone and “Thermostat” where the ad-hoc adjustment was made directly on the thermostat's device user interface. Note that in the example shown in
For events triggered by a scheduled setpoint, as opposed to an ad-hoc, real-time adjustment, the message can be displayed in the form “Schedule set by” followed by the device or manner that the setpoint was created or last modified. In this case, the method of setting information is the same or similar to that described above with respect to
For events triggered by a scheduled setpoint, with an adaptive recovery algorithm such as an “early-on” feature, the message can be displayed in the form “Started early to reach scheduled temperature set by” and followed by the manner that the setpoint was created or last modified.
For events triggered by an automated schedule adjustment algorithm (ASAA), the message can be displayed in the form “Schedule set by [insert the name of ASAA feature].”
For events triggered by manually setting the thermostat to an “away” status, where the thermostat is set back to an more energy saving setpoint due to non-occupancy, the message can be displayed in the form of “Away set by” followed by the method or device name used to make the setting (e.g. “Nest web,” “your adjustment,” “Nest mobile,” and “Kates iPhone,” etc.). When a manually set away status is ended, the form of the message can take several forms depending on the triggering event that ended the away state. For example “Away ended on arrival” is used when the thermostat automatically detected an occupant; “Away ended from [device type or name]” can be used to identify what type of device (web, mobile, on-thermostat) ended the away status. Additionally, if a thermostat feature ends the “away” status such as ASAA algorithm, then “Away ended by” can be used followed by the name of the feature. For events trigged by an “auto away” feature, the messages can take a similar form to the manually set away cases just described but with the word “auto” preceding “away” (e.g. Auto-away set by,” “Auto-away ended on arrival,” etc.).
For events where the thermostat is switched “off” or back “on” the message can take the form of “Switched off by” or “Switched on by” followed by the type of device (web, mobile, on-thermostat) of name of device that switched the thermostat on or off.
For switchover events (i.e. heating-to-cooling, cooling-to-heating, heating and cooling (e.g. range control)) the message can take the form of “Switched to [Cooling | Heating | Heat⋅Cool]” followed by the type of device (web, mobile, on-thermostat) of name of device that set the switchover setting.
For emergency heat events, the message can take the form of “Emergency heat started by” followed by the device or feature name or identifier that caused emergency heat to become active.
According to some embodiments, other massage forms can be used. For example for a feature that automatically detects and/or corrects for direct sun exposure on the housing of the thermostat, the message can use a generic description such as “temperature corrected due to direct solar exposure on thermostat housing,” or a proprietary name such as “SUNBLOCK™ corrected the temperature.”
The subject matter of this patent specification also relates to the subject matter of the following commonly assigned applications: U.S. Ser. No. 13/656,189 filed Oct. 19, 2012; U.S. Ser. No. 29/433,416 filed Sep. 28, 2012; and U.S. Ser. No. 13/624,875 filed Sep. 21, 2012. Each of the above-referenced patent applications is incorporated by reference herein. The above-referenced patent applications are collectively referenced herein as “the commonly assigned incorporated applications.”
Various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not limited to the above-described embodiments, but instead is defined by the appended claims in light of their full scope of equivalents.
This patent application is a continuation of U.S. Ser. No. 13/831,236 filed Mar. 14, 2013. U.S. Ser. No. 13/831,236 is a continuation-in-part of U.S. Ser. No. 13/434,560 filed Mar. 29, 2012. U.S. Ser. No. 13/434,560 is a continuation-in-part of U.S. Ser. No. 13/269,501 filed Oct. 7, 2011, of U.S. Ser. No. 13/317,423 filed Oct. 17, 2011, of PCT/US11/61437 filed Nov. 18, 2011, and of PCT/US12/30084 filed Mar. 22, 2012. U.S. Ser. No. 13/434,560 furthermore claims the benefit of U.S. Prov. Ser. No. 61/627,996 filed Oct. 21, 2011. U.S. Ser. No. 13/269,501 claims the benefit of: U.S. Provisional No. 61/415,771 filed Nov. 19, 2010; and U.S. Provisional No. 61/429,093 filed Dec. 31, 2010. All of the above-identified applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2558648 | Gausmann | Jun 1951 | A |
3991357 | Kaminski | Nov 1976 | A |
4183290 | Kucharczyk | Jan 1980 | A |
4223831 | Szarka | Sep 1980 | A |
4316577 | Adams et al. | Feb 1982 | A |
4335847 | Levine | Jun 1982 | A |
4386649 | Hines et al. | Jun 1983 | A |
4408711 | Levine | Oct 1983 | A |
4460125 | Barker et al. | Jul 1984 | A |
4613139 | Robinson, II et al. | Sep 1986 | A |
4615380 | Beckey | Oct 1986 | A |
4621336 | Brown | Nov 1986 | A |
4669654 | Levine et al. | Jun 1987 | A |
4674027 | Beckey | Jun 1987 | A |
4685614 | Levine | Aug 1987 | A |
4741476 | Russo et al. | May 1988 | A |
4751961 | Levine et al. | Jun 1988 | A |
4768706 | Parfitt | Sep 1988 | A |
4847781 | Brown, III et al. | Jun 1989 | A |
4897798 | Cler | Jan 1990 | A |
4971136 | Mathur et al. | Nov 1990 | A |
5005365 | Lynch | Apr 1991 | A |
D321903 | Chepaitis | Nov 1991 | S |
5065813 | Berkeley et al. | Nov 1991 | A |
5088645 | Bell | Feb 1992 | A |
5211332 | Adams | May 1993 | A |
5224648 | Simon et al. | Jul 1993 | A |
5224649 | Brown et al. | Jul 1993 | A |
5240178 | Dewolf et al. | Aug 1993 | A |
5244146 | Jefferson et al. | Sep 1993 | A |
D341848 | Bigelow et al. | Nov 1993 | S |
5294047 | Schwer et al. | Mar 1994 | A |
5303612 | Odom et al. | Apr 1994 | A |
5395042 | Riley et al. | Mar 1995 | A |
5415346 | Bishop | May 1995 | A |
5460327 | Hill et al. | Oct 1995 | A |
5462225 | Massara et al. | Oct 1995 | A |
5476221 | Seymour | Dec 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5485954 | Guy et al. | Jan 1996 | A |
5499196 | Pacheco | Mar 1996 | A |
5499330 | Lucas et al. | Mar 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5555927 | Shah | Sep 1996 | A |
5603451 | Helander et al. | Feb 1997 | A |
5611484 | Uhrich | Mar 1997 | A |
5627531 | Posso et al. | May 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
5690277 | Flood | Nov 1997 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
D396488 | Kunkler | Jul 1998 | S |
5779143 | Michaud et al. | Jul 1998 | A |
5808294 | Neumann | Sep 1998 | A |
5808602 | Sellers | Sep 1998 | A |
5816491 | Berkeley et al. | Oct 1998 | A |
5819840 | Wilson et al. | Oct 1998 | A |
5902183 | D'Souza | May 1999 | A |
5909378 | De Milleville | Jun 1999 | A |
5918474 | Khanpara et al. | Jul 1999 | A |
5931378 | Schramm | Aug 1999 | A |
5959621 | Nawaz et al. | Sep 1999 | A |
5973662 | Singers et al. | Oct 1999 | A |
5977964 | Williams et al. | Nov 1999 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
6062482 | Gauthier et al. | May 2000 | A |
6066843 | Scheremeta | May 2000 | A |
6072784 | Agrawal et al. | Jun 2000 | A |
D428399 | Kahn et al. | Jul 2000 | S |
6093914 | Diekmann et al. | Jul 2000 | A |
6095427 | Hoium et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6157943 | Meyer | Dec 2000 | A |
6164374 | Rhodes et al. | Dec 2000 | A |
6206295 | LaCoste | Mar 2001 | B1 |
6211921 | Cherian et al. | Apr 2001 | B1 |
6213404 | Dushane et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6286764 | Garvey et al. | Sep 2001 | B1 |
6298285 | Addink et al. | Oct 2001 | B1 |
6311105 | Budike, Jr. | Oct 2001 | B1 |
D450059 | Itou | Nov 2001 | S |
6318639 | Toth | Nov 2001 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6356204 | Guindi et al. | Mar 2002 | B1 |
6359564 | Thacker | Mar 2002 | B1 |
6363422 | Hunter et al. | Mar 2002 | B1 |
6370894 | Thompson et al. | Apr 2002 | B1 |
6415205 | Myron et al. | Jul 2002 | B1 |
6438241 | Silfvast et al. | Aug 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
D464660 | Weng et al. | Oct 2002 | S |
6478233 | Shah | Nov 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6513723 | Mueller et al. | Feb 2003 | B1 |
6519509 | Nierlich et al. | Feb 2003 | B1 |
D471825 | Peabody | Mar 2003 | S |
6574581 | Bohrer et al. | Jun 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6619055 | Addy | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
D480401 | Kahn et al. | Oct 2003 | S |
6636197 | Goldenberg et al. | Oct 2003 | B1 |
6641054 | Morey | Nov 2003 | B2 |
6641055 | Tiernan | Nov 2003 | B1 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6644557 | Jacobs | Nov 2003 | B1 |
6645066 | Gutta et al. | Nov 2003 | B2 |
D485279 | DeCombe | Jan 2004 | S |
6726112 | Ho | Apr 2004 | B1 |
D491956 | Ombao et al. | Jun 2004 | S |
6769482 | Wagner et al. | Aug 2004 | B2 |
6785630 | Kolk et al. | Aug 2004 | B2 |
6798341 | Eckel et al. | Sep 2004 | B1 |
D497617 | Decombe et al. | Oct 2004 | S |
6814299 | Carey | Nov 2004 | B1 |
6824069 | Rosen | Nov 2004 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6868293 | Schurr et al. | Mar 2005 | B1 |
D503631 | Peabody | Apr 2005 | S |
6891838 | Petite et al. | May 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6909921 | Bilger | Jun 2005 | B1 |
6951306 | DeLuca | Oct 2005 | B2 |
D511527 | Hernandez et al. | Nov 2005 | S |
6975958 | Bohrer et al. | Dec 2005 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
7000849 | Ashworth et al. | Feb 2006 | B2 |
7024336 | Salsbury et al. | Apr 2006 | B2 |
7028912 | Rosen | Apr 2006 | B1 |
7035805 | Miller | Apr 2006 | B1 |
7038667 | Vassallo et al. | May 2006 | B1 |
7047092 | Wimsatt | May 2006 | B2 |
7055759 | Wacker et al. | Jun 2006 | B2 |
7083109 | Pouchak | Aug 2006 | B2 |
7108194 | Hankins, II | Sep 2006 | B1 |
7109970 | Miller | Sep 2006 | B1 |
7111788 | Reponen | Sep 2006 | B2 |
7114554 | Bergman et al. | Oct 2006 | B2 |
7135965 | Chapman, Jr. et al. | Nov 2006 | B2 |
7140551 | de Pauw et al. | Nov 2006 | B2 |
7141748 | Tanaka et al. | Nov 2006 | B2 |
7142948 | Metz | Nov 2006 | B2 |
7149727 | Nicholls et al. | Dec 2006 | B1 |
7149729 | Kaasten et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
7159789 | Schwendinger et al. | Jan 2007 | B2 |
7159790 | Schwendinger et al. | Jan 2007 | B2 |
7181317 | Amundson et al. | Feb 2007 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7222494 | Peterson et al. | May 2007 | B2 |
7222800 | Wruck | May 2007 | B2 |
7225054 | Amundson et al. | May 2007 | B2 |
7225057 | Redetzke et al. | May 2007 | B2 |
D544877 | Sasser | Jun 2007 | S |
7232075 | Rosen | Jun 2007 | B1 |
7258280 | Wolfson | Aug 2007 | B2 |
D550691 | Hally et al. | Sep 2007 | S |
7264175 | Schwendinger et al. | Sep 2007 | B2 |
7274972 | Amundson et al. | Sep 2007 | B2 |
7287709 | Proffitt et al. | Oct 2007 | B2 |
7289887 | Rodgers | Oct 2007 | B2 |
7299996 | Garrett et al. | Nov 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7333880 | Brewster et al. | Feb 2008 | B2 |
7346467 | Bohrer et al. | Mar 2008 | B2 |
D566587 | Rosen | Apr 2008 | S |
7379778 | Hayes et al. | May 2008 | B2 |
7379791 | Tamarkin et al. | May 2008 | B2 |
7379997 | Ehlers et al. | May 2008 | B2 |
RE40437 | Rosen | Jul 2008 | E |
7418663 | Pettinati et al. | Aug 2008 | B2 |
7427926 | Sinclair et al. | Sep 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7451937 | Flood et al. | Nov 2008 | B2 |
7455240 | Chapman, Jr. et al. | Nov 2008 | B2 |
7460690 | Cohen | Dec 2008 | B2 |
7469550 | Chapman, Jr. et al. | Dec 2008 | B2 |
D588152 | Okada | Mar 2009 | S |
7509753 | Nicosia et al. | Mar 2009 | B2 |
D589792 | Clabough et al. | Apr 2009 | S |
D590412 | Saft et al. | Apr 2009 | S |
7516106 | Ehlers et al. | Apr 2009 | B2 |
D593120 | Bouchard et al. | May 2009 | S |
7537171 | Mueller et al. | May 2009 | B2 |
D594015 | Singh et al. | Jun 2009 | S |
D595309 | Saski et al. | Jun 2009 | S |
7555364 | Poth et al. | Jun 2009 | B2 |
D596194 | Vu et al. | Jul 2009 | S |
D597101 | Chaudhri et al. | Jul 2009 | S |
7558648 | Hoglund et al. | Jul 2009 | B2 |
D598463 | Hirsch et al. | Aug 2009 | S |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7571865 | Nicodem et al. | Aug 2009 | B2 |
7575179 | Morrow et al. | Aug 2009 | B2 |
D599806 | Brown et al. | Sep 2009 | S |
D599810 | Scalisi et al. | Sep 2009 | S |
7584899 | de Pauw et al. | Sep 2009 | B2 |
7600694 | Helt et al. | Oct 2009 | B2 |
D603277 | Clausen et al. | Nov 2009 | S |
D603421 | Ebeling et al. | Nov 2009 | S |
D604740 | Matheny et al. | Nov 2009 | S |
7614567 | Chapman, Jr. et al. | Nov 2009 | B2 |
7620996 | Torres et al. | Nov 2009 | B2 |
D607001 | Ording | Dec 2009 | S |
7624931 | Chapman, Jr. et al. | Dec 2009 | B2 |
7634504 | Amundson et al. | Dec 2009 | B2 |
7641126 | Schulz et al. | Jan 2010 | B2 |
7644869 | Hoglund et al. | Jan 2010 | B2 |
7667163 | Ashworth et al. | Feb 2010 | B2 |
D613301 | Lee et al. | Apr 2010 | S |
D614194 | Guntaur et al. | Apr 2010 | S |
D614196 | Guntaur et al. | Apr 2010 | S |
7693582 | Bergman et al. | Apr 2010 | B2 |
7702421 | Sullivan et al. | Apr 2010 | B2 |
7702424 | Cannon et al. | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
D614976 | Skafdrup et al. | May 2010 | S |
D615546 | Lundy et al. | May 2010 | S |
D616460 | Pearson et al. | May 2010 | S |
7721209 | Tilton | May 2010 | B2 |
7726581 | Naujok et al. | Jun 2010 | B2 |
D619613 | Dunn | Jul 2010 | S |
7761189 | Froman et al. | Jul 2010 | B2 |
7784704 | Harter | Aug 2010 | B2 |
7802618 | Simon et al. | Sep 2010 | B2 |
D625325 | Vu et al. | Oct 2010 | S |
D625734 | Kurozumi et al. | Oct 2010 | S |
D626133 | Murphy et al. | Oct 2010 | S |
7823076 | Borovsky et al. | Oct 2010 | B2 |
RE41922 | Gough et al. | Nov 2010 | E |
7845576 | Siddaramanna et al. | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7849698 | Harrod et al. | Dec 2010 | B2 |
7854389 | Ahmed | Dec 2010 | B2 |
7861179 | Reed | Dec 2010 | B2 |
D630649 | Tokunaga et al. | Jan 2011 | S |
7890195 | Bergman et al. | Feb 2011 | B2 |
7900849 | Barton et al. | Mar 2011 | B2 |
7904209 | Podgorny et al. | Mar 2011 | B2 |
7904830 | Hoglund et al. | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7913925 | Ashworth | Mar 2011 | B2 |
7918406 | Rosen | Apr 2011 | B2 |
D638835 | Akana et al. | May 2011 | S |
D640269 | Chen | Jun 2011 | S |
D640273 | Arnold et al. | Jun 2011 | S |
D640278 | Woo | Jun 2011 | S |
D640285 | Woo | Jun 2011 | S |
D641373 | Gardner et al. | Jun 2011 | S |
7963454 | Sullivan et al. | Jun 2011 | B2 |
7984384 | Chaudhri et al. | Jun 2011 | B2 |
D643045 | Woo | Aug 2011 | S |
8010237 | Cheung et al. | Aug 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8037022 | Rahman et al. | Oct 2011 | B2 |
D648735 | Arnold et al. | Nov 2011 | S |
D651529 | Mongell et al. | Jan 2012 | S |
8087593 | Leen | Jan 2012 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8091375 | Crawford | Jan 2012 | B2 |
8091794 | Siddaramanna et al. | Jan 2012 | B2 |
8091795 | McLellan et al. | Jan 2012 | B1 |
8091796 | Amundson et al. | Jan 2012 | B2 |
8131207 | Hwang et al. | Mar 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8136052 | Shin et al. | Mar 2012 | B2 |
D656950 | Shallcross et al. | Apr 2012 | S |
D656952 | Weir et al. | Apr 2012 | S |
8155900 | Adams | Apr 2012 | B1 |
8156060 | Borzestowski et al. | Apr 2012 | B2 |
8166395 | Omi et al. | Apr 2012 | B2 |
D658674 | Shallcross et al. | May 2012 | S |
D660732 | Bould et al. | May 2012 | S |
8174381 | Imes et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8185164 | Kim | May 2012 | B2 |
8195313 | Fadell et al. | Jun 2012 | B1 |
D663743 | Tanghe et al. | Jul 2012 | S |
D663744 | Tanghe et al. | Jul 2012 | S |
D664559 | Ismail et al. | Jul 2012 | S |
8219249 | Harrod et al. | Jul 2012 | B2 |
8223134 | Forstall et al. | Jul 2012 | B1 |
8234581 | Kake | Jul 2012 | B2 |
D664978 | Tanghe et al. | Aug 2012 | S |
D665397 | Naranjo et al. | Aug 2012 | S |
8239922 | Sullivan et al. | Aug 2012 | B2 |
8243017 | Brodersen et al. | Aug 2012 | B2 |
8253704 | Jang | Aug 2012 | B2 |
8253747 | Niles et al. | Aug 2012 | B2 |
8265798 | Imes | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8281244 | Neuman et al. | Oct 2012 | B2 |
8292494 | Rosa et al. | Oct 2012 | B2 |
D671136 | Barnett et al. | Nov 2012 | S |
8316022 | Matsuda et al. | Nov 2012 | B2 |
D673171 | Peters et al. | Dec 2012 | S |
D673172 | Peters et al. | Dec 2012 | S |
8341557 | Pisula et al. | Dec 2012 | B2 |
D677180 | Plitkins et al. | Mar 2013 | S |
8387891 | Simon et al. | Mar 2013 | B1 |
8387892 | Koster et al. | Mar 2013 | B2 |
8392561 | Dyer et al. | Mar 2013 | B1 |
8406816 | Marui et al. | Mar 2013 | B2 |
8420404 | Diebold et al. | Apr 2013 | B2 |
8442693 | Mirza et al. | May 2013 | B2 |
8442695 | Imes et al. | May 2013 | B2 |
8442752 | Wijaya et al. | May 2013 | B2 |
8446381 | Molard et al. | May 2013 | B2 |
D687043 | Matas et al. | Jul 2013 | S |
D687044 | Ruff | Jul 2013 | S |
D687045 | Plitkins et al. | Jul 2013 | S |
D687046 | Plitkins et al. | Jul 2013 | S |
D687047 | Hales et al. | Jul 2013 | S |
D687050 | Matas et al. | Jul 2013 | S |
D687056 | Matas et al. | Jul 2013 | S |
D687057 | Plitkins | Jul 2013 | S |
D687058 | Corcoran et al. | Jul 2013 | S |
D687059 | Bruck et al. | Jul 2013 | S |
8478447 | Fadell et al. | Jul 2013 | B2 |
8489243 | Fadell et al. | Jul 2013 | B2 |
D687459 | Sloo et al. | Aug 2013 | S |
D687851 | Sloo et al. | Aug 2013 | S |
8510255 | Fadell et al. | Aug 2013 | B2 |
D690322 | Matas et al. | Sep 2013 | S |
8527096 | Pavlak et al. | Sep 2013 | B2 |
8543243 | Wallaert et al. | Sep 2013 | B2 |
D691629 | Matas et al. | Oct 2013 | S |
8571518 | Imes et al. | Oct 2013 | B2 |
D696677 | Corcoran et al. | Dec 2013 | S |
8606374 | Fadell et al. | Dec 2013 | B2 |
D697526 | Bruck et al. | Jan 2014 | S |
D697930 | Crabtree et al. | Jan 2014 | S |
D701515 | Matas et al. | Mar 2014 | S |
D701869 | Matas et al. | Apr 2014 | S |
8689572 | Evans et al. | Apr 2014 | B2 |
8706270 | Fadell et al. | Apr 2014 | B2 |
8727611 | Huppi et al. | May 2014 | B2 |
D707245 | Bruck et al. | Jun 2014 | S |
8752771 | Warren et al. | Jun 2014 | B2 |
8757507 | Fadell et al. | Jun 2014 | B2 |
D711916 | Matas et al. | Aug 2014 | S |
8843239 | Mighdoll et al. | Sep 2014 | B2 |
8850348 | Fadell et al. | Sep 2014 | B2 |
8850478 | Moshiri et al. | Sep 2014 | B2 |
8893032 | Bruck et al. | Nov 2014 | B2 |
8918219 | Sloo et al. | Dec 2014 | B2 |
8950686 | Matsuoka et al. | Feb 2015 | B2 |
9026254 | Warren et al. | May 2015 | B2 |
9092040 | Fadell et al. | Jul 2015 | B2 |
9098279 | Mucignat et al. | Aug 2015 | B2 |
9104211 | Fadell et al. | Aug 2015 | B2 |
9223323 | Matas et al. | Dec 2015 | B2 |
9261287 | Warren et al. | Feb 2016 | B2 |
9453655 | Bruck et al. | Sep 2016 | B2 |
9476606 | Fadell et al. | Oct 2016 | B2 |
9489062 | Corcoran et al. | Nov 2016 | B2 |
9494332 | Filson et al. | Nov 2016 | B2 |
9605858 | Warren et al. | Mar 2017 | B2 |
9732979 | Fadell et al. | Aug 2017 | B2 |
9890970 | Bruck et al. | Feb 2018 | B2 |
10145577 | Bruck et al. | Dec 2018 | B2 |
1024152 | Fadell et al. | Mar 2019 | A1 |
10295974 | Bruck et al. | May 2019 | B2 |
1034627 | Fisher et al. | Jul 2019 | A1 |
20020005435 | Cottrell | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020178047 | Or | Nov 2002 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030042320 | Decker | Mar 2003 | A1 |
20030070437 | Hafner et al. | Apr 2003 | A1 |
20030093186 | Patterson et al. | May 2003 | A1 |
20030112262 | Adatia et al. | Jun 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030231001 | Bruning | Dec 2003 | A1 |
20030233432 | Davis et al. | Dec 2003 | A1 |
20040034484 | Solomita, Jr. et al. | Feb 2004 | A1 |
20040055446 | Robbin et al. | Mar 2004 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040107717 | Yoon et al. | Jun 2004 | A1 |
20040117330 | Ehlers et al. | Jun 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040164238 | Xu et al. | Aug 2004 | A1 |
20040225955 | Ly | Nov 2004 | A1 |
20040249479 | Shorrock | Dec 2004 | A1 |
20040256472 | DeLuca | Dec 2004 | A1 |
20040260427 | Wimsatt | Dec 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050040250 | Wruck | Feb 2005 | A1 |
20050040943 | Winick | Feb 2005 | A1 |
20050043907 | Eckel et al. | Feb 2005 | A1 |
20050053063 | Madhavan | Mar 2005 | A1 |
20050055432 | Rodgers | Mar 2005 | A1 |
20050071780 | Muller et al. | Mar 2005 | A1 |
20050090915 | Geiwitz | Apr 2005 | A1 |
20050091596 | Anthony et al. | Apr 2005 | A1 |
20050103875 | Ashworth et al. | May 2005 | A1 |
20050119766 | Amundson et al. | Jun 2005 | A1 |
20050119793 | Amundson et al. | Jun 2005 | A1 |
20050120012 | Poth et al. | Jun 2005 | A1 |
20050128067 | Zakrewski | Jun 2005 | A1 |
20050150968 | Shearer | Jul 2005 | A1 |
20050159847 | Shah et al. | Jul 2005 | A1 |
20050189429 | Breeden | Sep 2005 | A1 |
20050192915 | Ahmed et al. | Sep 2005 | A1 |
20050194456 | Tessier et al. | Sep 2005 | A1 |
20050195757 | Kidder et al. | Sep 2005 | A1 |
20050204997 | Fournier | Sep 2005 | A1 |
20050279840 | Schwendinger et al. | Dec 2005 | A1 |
20050279841 | Schwendinger et al. | Dec 2005 | A1 |
20050280421 | Yomoda et al. | Dec 2005 | A1 |
20050287424 | Schwendinger et al. | Dec 2005 | A1 |
20060000919 | Schwendinger et al. | Jan 2006 | A1 |
20060065750 | Fairless | Mar 2006 | A1 |
20060123053 | Scannell | Jun 2006 | A1 |
20060143236 | Wu | Jun 2006 | A1 |
20060147003 | Archacki et al. | Jul 2006 | A1 |
20060184284 | Froman et al. | Aug 2006 | A1 |
20060186214 | Simon et al. | Aug 2006 | A1 |
20060196953 | Simon et al. | Sep 2006 | A1 |
20060206220 | Amundson | Sep 2006 | A1 |
20060283965 | Mueller et al. | Dec 2006 | A1 |
20070001830 | Dagci et al. | Jan 2007 | A1 |
20070012793 | Flood et al. | Jan 2007 | A1 |
20070043473 | Anderson et al. | Feb 2007 | A1 |
20070043478 | Ehlers et al. | Feb 2007 | A1 |
20070045430 | Chapman et al. | Mar 2007 | A1 |
20070045431 | Chapman, Jr. et al. | Mar 2007 | A1 |
20070045433 | Chapman et al. | Mar 2007 | A1 |
20070045444 | Gray et al. | Mar 2007 | A1 |
20070050732 | Chapman et al. | Mar 2007 | A1 |
20070057079 | Stark et al. | Mar 2007 | A1 |
20070084941 | De Pauw et al. | Apr 2007 | A1 |
20070105252 | Lee et al. | May 2007 | A1 |
20070114295 | Jenkins | May 2007 | A1 |
20070115902 | Shamoon et al. | May 2007 | A1 |
20070120856 | De Ruyter et al. | May 2007 | A1 |
20070127645 | Bloebaum et al. | Jun 2007 | A1 |
20070132503 | Nordin | Jun 2007 | A1 |
20070157639 | Harrod | Jul 2007 | A1 |
20070158442 | Chapman et al. | Jul 2007 | A1 |
20070158444 | Naujok et al. | Jul 2007 | A1 |
20070173978 | Fein et al. | Jul 2007 | A1 |
20070177857 | Troost et al. | Aug 2007 | A1 |
20070182580 | Elwell | Aug 2007 | A1 |
20070185390 | Perkins et al. | Aug 2007 | A1 |
20070192739 | Hunleth et al. | Aug 2007 | A1 |
20070205297 | Finkam et al. | Sep 2007 | A1 |
20070213876 | Warren et al. | Sep 2007 | A1 |
20070221741 | Wagner et al. | Sep 2007 | A1 |
20070225867 | Moorer et al. | Sep 2007 | A1 |
20070227721 | Springer et al. | Oct 2007 | A1 |
20070228182 | Wagner et al. | Oct 2007 | A1 |
20070228183 | Kennedy et al. | Oct 2007 | A1 |
20070241203 | Wagner et al. | Oct 2007 | A1 |
20070257120 | Chapman et al. | Nov 2007 | A1 |
20070278320 | Lunacek et al. | Dec 2007 | A1 |
20070296280 | Sorg et al. | Dec 2007 | A1 |
20080004838 | Yungkurth et al. | Jan 2008 | A1 |
20080006709 | Ashworth et al. | Jan 2008 | A1 |
20080015740 | Osann | Jan 2008 | A1 |
20080015742 | Kulyk et al. | Jan 2008 | A1 |
20080048046 | Wagner et al. | Feb 2008 | A1 |
20080054082 | Evans et al. | Mar 2008 | A1 |
20080054084 | Olson | Mar 2008 | A1 |
20080099568 | Nicodem et al. | May 2008 | A1 |
20080168368 | Louch et al. | Jul 2008 | A1 |
20080183335 | Poth et al. | Jul 2008 | A1 |
20080191045 | Harter | Aug 2008 | A1 |
20080215240 | Howard et al. | Sep 2008 | A1 |
20080221737 | Josephson et al. | Sep 2008 | A1 |
20080245480 | Knight et al. | Oct 2008 | A1 |
20080256475 | Amundson et al. | Oct 2008 | A1 |
20080262755 | Dayton et al. | Oct 2008 | A1 |
20080273754 | Hick et al. | Nov 2008 | A1 |
20080290183 | Laberge et al. | Nov 2008 | A1 |
20080317292 | Baker et al. | Dec 2008 | A1 |
20090001180 | Siddaramanna et al. | Jan 2009 | A1 |
20090001181 | Siddaramanna et al. | Jan 2009 | A1 |
20090012959 | Ylivainio et al. | Jan 2009 | A1 |
20090024927 | Schrock et al. | Jan 2009 | A1 |
20090057427 | Gaedelmann et al. | Mar 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090140056 | Leen | Jun 2009 | A1 |
20090140057 | Leen | Jun 2009 | A1 |
20090140060 | Stoner et al. | Jun 2009 | A1 |
20090140062 | Amundson et al. | Jun 2009 | A1 |
20090140064 | Schultz et al. | Jun 2009 | A1 |
20090143916 | Boll et al. | Jun 2009 | A1 |
20090143918 | Amundson et al. | Jun 2009 | A1 |
20090144642 | Crystal | Jun 2009 | A1 |
20090157529 | Ehlers et al. | Jun 2009 | A1 |
20090158188 | Bray et al. | Jun 2009 | A1 |
20090171862 | Harrod et al. | Jul 2009 | A1 |
20090194601 | Flohr | Aug 2009 | A1 |
20090195349 | Frader-Thompson et al. | Aug 2009 | A1 |
20090215534 | Wilson et al. | Aug 2009 | A1 |
20090254225 | Boucher et al. | Oct 2009 | A1 |
20090259713 | Blumrich et al. | Oct 2009 | A1 |
20090261174 | Butler et al. | Oct 2009 | A1 |
20090263773 | Kotlyar et al. | Oct 2009 | A1 |
20090273610 | Busch et al. | Nov 2009 | A1 |
20090276714 | Kandlikar et al. | Nov 2009 | A1 |
20090283603 | Peterson et al. | Nov 2009 | A1 |
20090297901 | Kilian et al. | Dec 2009 | A1 |
20090327354 | Resnick et al. | Dec 2009 | A1 |
20100000417 | Tetreault et al. | Jan 2010 | A1 |
20100019051 | Rosen | Jan 2010 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100050004 | Hamilton, II et al. | Feb 2010 | A1 |
20100058450 | Fein et al. | Mar 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070085 | Harrod et al. | Mar 2010 | A1 |
20100070086 | Harrod et al. | Mar 2010 | A1 |
20100070089 | Harrod et al. | Mar 2010 | A1 |
20100070093 | Harrod et al. | Mar 2010 | A1 |
20100070101 | Benes et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070907 | Harrod et al. | Mar 2010 | A1 |
20100076835 | Silverman | Mar 2010 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100104074 | Yang | Apr 2010 | A1 |
20100106305 | Pavlak et al. | Apr 2010 | A1 |
20100106322 | Grohman | Apr 2010 | A1 |
20100107070 | Devineni et al. | Apr 2010 | A1 |
20100107076 | Grohman et al. | Apr 2010 | A1 |
20100107103 | Wallaert et al. | Apr 2010 | A1 |
20100107111 | Mirza et al. | Apr 2010 | A1 |
20100156665 | Krzyzanowski et al. | Jun 2010 | A1 |
20100163633 | Barrett et al. | Jul 2010 | A1 |
20100167783 | Alameh et al. | Jul 2010 | A1 |
20100168924 | Tessier et al. | Jul 2010 | A1 |
20100174419 | Brumfield et al. | Jul 2010 | A1 |
20100179704 | Ozog | Jul 2010 | A1 |
20100198425 | Donovan | Aug 2010 | A1 |
20100211224 | Keeling et al. | Aug 2010 | A1 |
20100261465 | Rhoads et al. | Oct 2010 | A1 |
20100262298 | Johnson et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100273610 | Johnson | Oct 2010 | A1 |
20100276482 | Raihi et al. | Nov 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20100324962 | Nesler et al. | Dec 2010 | A1 |
20110001812 | Kang et al. | Jan 2011 | A1 |
20110015797 | Gilstrap | Jan 2011 | A1 |
20110015798 | Golden et al. | Jan 2011 | A1 |
20110015802 | Imes | Jan 2011 | A1 |
20110016017 | Carlin et al. | Jan 2011 | A1 |
20110022242 | Bukhin et al. | Jan 2011 | A1 |
20110029488 | Fuerst et al. | Feb 2011 | A1 |
20110046756 | Park | Feb 2011 | A1 |
20110046792 | Imes et al. | Feb 2011 | A1 |
20110046805 | Bedros et al. | Feb 2011 | A1 |
20110046806 | Nagel et al. | Feb 2011 | A1 |
20110054710 | Imes et al. | Mar 2011 | A1 |
20110077758 | Tran et al. | Mar 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110078675 | Van Camp et al. | Mar 2011 | A1 |
20110095897 | Sutrave | Apr 2011 | A1 |
20110106328 | Zhou et al. | May 2011 | A1 |
20110132990 | Lin et al. | Jun 2011 | A1 |
20110151837 | Winbush, III | Jun 2011 | A1 |
20110160913 | Parker et al. | Jun 2011 | A1 |
20110166828 | Steinberg et al. | Jul 2011 | A1 |
20110167369 | Van Os | Jul 2011 | A1 |
20110184563 | Foslien | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110202185 | Imes et al. | Aug 2011 | A1 |
20110257795 | Narayanamurthy et al. | Oct 2011 | A1 |
20110282937 | Deshpande et al. | Nov 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110307112 | Barrilleaux | Dec 2011 | A1 |
20120005590 | Lombard et al. | Jan 2012 | A1 |
20120017611 | Coffel et al. | Jan 2012 | A1 |
20120036250 | Vaswani et al. | Feb 2012 | A1 |
20120046792 | Secor | Feb 2012 | A1 |
20120053745 | Ng | Mar 2012 | A1 |
20120065783 | Fadell et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120068854 | Shiflet et al. | Mar 2012 | A1 |
20120085831 | Kopp | Apr 2012 | A1 |
20120086562 | Steinberg | Apr 2012 | A1 |
20120089523 | Hurri et al. | Apr 2012 | A1 |
20120101637 | Imes et al. | Apr 2012 | A1 |
20120116593 | Amundson et al. | May 2012 | A1 |
20120125559 | Fadell et al. | May 2012 | A1 |
20120125592 | Fadell et al. | May 2012 | A1 |
20120126019 | Warren et al. | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120128025 | Huppi et al. | May 2012 | A1 |
20120130513 | Hao et al. | May 2012 | A1 |
20120130546 | Matas et al. | May 2012 | A1 |
20120130547 | Fadell et al. | May 2012 | A1 |
20120130548 | Fadell et al. | May 2012 | A1 |
20120130679 | Fadell et al. | May 2012 | A1 |
20120130907 | Thompson et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120143536 | Greaves et al. | Jun 2012 | A1 |
20120158350 | Steinberg et al. | Jun 2012 | A1 |
20120165993 | Whitehouse | Jun 2012 | A1 |
20120166616 | Meehan | Jun 2012 | A1 |
20120179300 | Warren et al. | Jul 2012 | A1 |
20120186774 | Matsuoka et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120199660 | Warren et al. | Aug 2012 | A1 |
20120221151 | Steinberg | Aug 2012 | A1 |
20120229521 | Hales, IV et al. | Sep 2012 | A1 |
20120232969 | Fadell et al. | Sep 2012 | A1 |
20120233478 | Mucignat et al. | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120239221 | Mighdoll et al. | Sep 2012 | A1 |
20120252430 | Imes et al. | Oct 2012 | A1 |
20120274602 | Bita | Nov 2012 | A1 |
20120296488 | Dharwada et al. | Nov 2012 | A1 |
20130014057 | Reinpoldt et al. | Jan 2013 | A1 |
20130046397 | Fadell et al. | Feb 2013 | A1 |
20130046872 | Seelman | Feb 2013 | A1 |
20130055132 | Foslien | Feb 2013 | A1 |
20130090767 | Bruck et al. | Apr 2013 | A1 |
20130090768 | Amundson et al. | Apr 2013 | A1 |
20130116953 | Pollard et al. | May 2013 | A1 |
20130185491 | Lin et al. | Jul 2013 | A1 |
20130263034 | Bruck et al. | Oct 2013 | A1 |
20140005837 | Fadell et al. | Jan 2014 | A1 |
20150025691 | Fadell et al. | Jan 2015 | A1 |
20150051741 | Bruck et al. | Feb 2015 | A1 |
20150058779 | Bruck et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2202008 | Feb 2000 | CA |
101042573 | Sep 2007 | CN |
101237208 | Aug 2008 | CN |
101334677 | Dec 2008 | CN |
101561172 | Oct 2009 | CN |
102377182 | Mar 2012 | CN |
202172306 | Mar 2012 | CN |
19609390 | Sep 1997 | DE |
207295 | Jan 1987 | EP |
0434926 | Jul 1991 | EP |
0196069 | Dec 1991 | EP |
720077 | Jul 1996 | EP |
802471 | Aug 1999 | EP |
1065079 | Jan 2001 | EP |
1184804 | Aug 2006 | EP |
1703356 | Sep 2006 | EP |
1731984 | Dec 2006 | EP |
1283396 | Mar 2007 | EP |
2157492 | Feb 2010 | EP |
2212317 | May 1992 | GB |
S59106311 | Jun 1984 | JP |
H01252850 | Oct 1989 | JP |
H9298780 | Nov 1997 | JP |
10023565 | Jan 1998 | JP |
2002087050 | Mar 2002 | JP |
2003054290 | Feb 2003 | JP |
1024986 | Jun 2005 | NL |
248851 | Jun 2002 | WO |
2005019740 | Mar 2005 | WO |
2008054938 | May 2008 | WO |
2009073496 | Jun 2009 | WO |
2010033563 | Mar 2010 | WO |
2011003023 | Jan 2011 | WO |
2011128416 | Oct 2011 | WO |
2011149600 | Dec 2011 | WO |
2012-024534 | Feb 2012 | WO |
2012037241 | Mar 2012 | WO |
2012068436 | May 2012 | WO |
2012068437 | May 2012 | WO |
2012068453 | May 2012 | WO |
2012068459 | May 2012 | WO |
2012068495 | May 2012 | WO |
2012068503 | May 2012 | WO |
2012068507 | May 2012 | WO |
2012068517 | May 2012 | WO |
2012068526 | May 2012 | WO |
2012068591 | May 2012 | WO |
2012092622 | Jul 2012 | WO |
2012092625 | Jul 2012 | WO |
2012092627 | Jul 2012 | WO |
2012068447 | Jan 2013 | WO |
2013-058820 | Apr 2013 | WO |
2013052389 | Apr 2013 | WO |
2013149210 | Oct 2013 | WO |
Entry |
---|
Aprilaire Electronic Thermostats Model 8355 User's Manual, Research Products Corporation, Dec. 2000, 16 pages. |
Braeburn 5300 Installer Guide, Braeburn Systems, LLC, Dec. 9, 2009, 10 pages. |
Braeburn Model 5200, Braeburn Systems, LLC, Jul. 20, 2011, 11 pages. |
Ecobee Smart Si Thermostat Installation Manual, Ecobee, Apr. 3, 2012, 40 pages. |
Ecobee Smart Si Thermostat User Manual, Ecobee, Apr. 3, 2012, 44 pages. |
Ecobee Smart Thermostat Installation Manual, Jun. 29, 2011, 20 pages. |
Ecobee Smart Thermostat User Manual, May 11, 2010, 20 pages. |
Electric Heat Lock Out on Heat Pumps, Washington State University Extension Energy Program, Apr. 2010, pp. 1-3. |
Honeywell Installation Guide FocusPRO TH6000 Series, Honeywell International, Inc., Jan. 5, 2012, 24 pages. |
Honeywell Operating Manual FocusPRO TH6000 Series, Honeywell International, Inc., Mar. 25, 2011, 80 pages. |
Honeywell Prestige THX9321-9421 Operating Manual, Honeywell International, Inc., Jul. 6, 2011, 120 pages. |
Honeywell THX9321 Prestige 2.0 and TXH9421 Prestige IAQ 2.0 with EIM Product Data, Honeywell International, Inc., 68-0311, Jan. 2012, 126 pages. |
Hunter Internet Thermostat Installation Guide, Hunter Fan Co., Aug. 14, 2012, 8 pages. |
Introducing the New Smart Si Thermostat, Datasheet [online], retrieved from the Internet: <URL: https://www.ecobee.com/solutions/home/smart-si/> [retrieved on Feb. 25, 2013], Ecobee, Mar. 12, 2012, 4 pages. |
Lennox ComfortSense 5000 Owners Guide, Lennox Industries, Inc., Feb. 2008, 32 pages. |
Lennox ComfortSense 7000 Owners Guide, Lennox Industries, Inc., May 2009, 15 pages. |
Lennox iComfort Manual, Lennox Industries, Inc., Dec. 2010, 20 pages. |
Lux PSPU732T Manual, LUX Products Corporation, Jan. 6, 2009, 48 pages. |
NetX RP32-WIFI Network Thermostat Consumer Brochure, Network Thermostat, May 2011, 2 pages. |
NetX RP32-WIFI Network Thermostat Specification Sheet, Network Thermostat, Feb. 28, 2012, 2 pages. |
RobertShaw Product Manual 9620, Maple Chase Company, Jun. 12, 2001, 14 pages. |
RobertShaw Product Manual 9825i2, Maple Chase Company, Jul. 17, 2006, 36 pages. |
SYSTXCCUIZ01-V Infinity Control Installation Instructions, Carrier Corp, May 31, 2012, 20 pages. |
T8611G Chronotherm IV Deluxe Programmable Heat Pump Thermostat Product Data, Honeywell International Inc., Oct. 1997, 24 pages |
TB-PAC, TB-PHP, Base Series Programmable Thermostats, Carrier Corp, May 14, 2012, 8 pages. |
The Perfect Climate Comfort Center PC8900A W8900A-C Product Data Sheet, Honeywell International Inc, Apr. 2001, 44 pages. |
TP-PAC, TP-PHP, TP-NAC, TP-NHP Performance Series AC/HP Thermostat Installation Instructions, Carrier Corp, Sep. 2007, 56 pages. |
Trane Communicating Thermostats for Fan Coil, Trane, May 2011, 32 pages. |
Trane Communicating Thermostats for Heat Pump Control, Trane, May 2011, 32 pages. |
Trane Install XL600 Installation Manual, Trane, Mar. 2006, 16 pages. |
Trane XL950 Installation Guide, Trane, Mar. 2011, 20 pages. |
Venstar T2900 Manual, Venstar, Inc., Apr. 2008, 113 pages. |
Venstar T5800 Manual, Venstar, Inc., Sep. 7, 2011, 63 pages. |
VisionPRO TH8000 Series Installation Guide, Honeywell International, Inc., Jan. 2012, 12 pages. |
VisionPRO TH8000 Series Operating Manual, Honeywell International, Inc., Mar. 2011, 96 pages. |
VisionPRO Wi-Fi Programmable Thermostat User Guide, Honeywell International, Inc, Aug. 2012, 48 pages. |
White Rodgers (Emerson) Model 1F81-261 Installation and Operating Instructions, White Rodgers, Apr. 15, 2010, 8 pages. |
White Rodgers (Emerson) Model IF98EZ-1621 Homeowner's User Guide, White Rodgers, Jan. 25, 2012, 28 pages. |
Akhlaghinia et al., Occupancy Monitoring in Intelligent Environment through Integrated Wireless Localizing Agents, IEEE, 2009, 7 pages. |
Akhlaghinia et al., Occupant Behaviour Prediction in Ambient Intelligence Computing Environment, Journal of Uncertain Systems, vol. 2, No. 2, 2008, pp. 85-100. |
Allen et al., Real-Time Earthquake Detection and Hazard Assessment by ElarmS Across California, Geophysical Research Letters, vol. 36, L00B08, 2009, pp. 1-6. |
Chatzigiannakis et al., Priority Based Adaptive Coordination of Wireless Sensors and Actors, Q2SWinet '06, Oct. 2006, pp. 37-44. |
Deleeuw, Ecobee WiFi Enabled Smart Thermostat Part 2: The Features Review, retrieved from <URL: http://www.homenetworkenabled.com/content.php?136-ecobee-WiFi-enabled-Smart-Thermostat-Part-2-The-Features-review> [retrieved on Jan. 8, 2013], Dec. 2, 2011, 5 pages. |
Gao et al., The Self-Programming Thermostat: Optimizing Setback Schedules Based on Home Occupancy Patterns, in Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Nov. 3, 2009, 6 pages. |
Loisos et al., Buildings End-Use Energy Efficiency: Alternatives to Compressor Cooling, California Energy Commission, Public Interest Energy Research, Jan. 2000, 80 pages. |
Lu et al., The Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes, in Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, Nov. 3-5, 2010, pp. 211-224. |
Mozer, The Neural Network House: An Environmental that Adapts to its Inhabitants, Proceedings of the American Association for Artificial Intelligence SS-98-02, 1998, pp. 110-114. |
Ros et al., Multi-Sensor Human Tracking with the Bayesian Occupancy Filter, IEEE, 2009, 8 pages. |
Wong et al., Maximum Likelihood Estimation of ARMA Model with Error Processes for Replicated Observations, National University of Singapore, Department of Economics, Working Paper No. 0217, Feb. 2002, pp. 1-19. |
Hai Lin et al., Internet Based Monitoring and Controls for HVAC Applications, Jan. 2002, IEEE, p. 49-54. |
International Search Report and Written Opinion dated Jul. 6, 2012 for International Patent Application No. PCT/US2012/030084, all pages. |
International Preliminary Report on Patentability dated Apr. 22, 2014 for International Patent Application No. PCT/US2012/030084, all pages. |
Energy Joule. Datasheet [online]. Ambient Devices, No Date Given, [retrieved on Aug. 1, 2012]. Retrieved from the Internet: URL:http://web.archive.org/web/20110723210421/http://www.ambientdevices.com/products/energyjoule.html , all pages. |
Honeywell CT2700, An Electronic Round Programmable Thermostat—User's guide, Honeywell, Inc., 1997, 8 pages. |
Honeywell CT8775A,C, The digital Round Non-Programmable Thermostats—Owner's Guide, Honeywell International Inc., 2003, 20 pages. |
Honeywell T8700C, An Electronic Round Programmable Thermostat—Owner's Guide, Honeywell International Inc., 2003, 20 pages. |
Honeywell T8755 The Digital Round Thermostat, Honeywell, 2003, 2 pages. |
Honeywell T8775A, C Digital Round Thermostat Manual No. 69-1679EF-1, www.honeywell.com/yourhome, Jun. 2004, pp. 1-16. |
ICY3815TT-001 Timer-Thermostat Package Box, Product Bar Code No. 8717953007902, No Date Given, 2 pages. |
SCE Energy$mart Thermostat Study for Southern California Edison—Presentation of Study Results, Population Research Systems, Project #1010, Nov. 10, 2004, 51 pages. |
The Clever Thermostat, ICY BV Web Page, http://www.icy.nl/en/consumer/products/clever-thermostat, 2012 ICY BV, 1 page. |
The Clever Thermostat User Manual and Installation Guide, ICY BV ICY3815 Timer-Thermostat, 2009, pp. 1-36. |
U.S. Appl. No. 60/512,886, Volkswagen Rotary Knob for Motor Vehicle—English Translation of German Application filed Oct. 20, 2003, all pages. |
Arens, et al., Demand Response Electrical Appliance Manager—User Interface Design, Development and Testing, Poster, Demand Response Enabling Technology Development, University of California Berkeley, Retrieved from dr.berkeley.edu/dream/posters/2005_6GUIposter.pdf, 2005, 1 page. |
Arens, et al., Demand Response Enabled Thermostat—Control Strategies and Interface, Demand Response Enabling Technology Development Poster, University of California Berkeley, Retrieved from dr.berkeley.edu/dream/posters/2004_11CEC_TstatPoster.pdf, 2004, 1 page. |
Arens, et al., Demand Response Enabling Technology Development, Phase I Report: Jun. 2003-Nov. 2005, Jul. 27, P:/DemandRes/UC Papers/Dr-Phase1Report-Final Draft April24-26.doc, University of California, Berkeley, pp. 1-108. |
Arens, et al., New Thermostat Demand Response Enabling Technology Poster, University of California Berkeley, Jun. 10, 2004, all pages. |
Auslander, et al., UC Berkeley DR Research Energy Management Group, Power Point Presentation, DR ETD Workshop, State of California Energy Commission, Jun. 11, 2007, pp. 1-35. |
Chen, et al., Demand Response-Enabled Residential Thermostat Controls, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings, Mechanical Engineering Dept. and Architecture Dept., University of California Berkeley, 2008, pp. 1-24 through 1-36. |
De Almeida, et al., Advanced Monitoring Technologies for the Evaluation of Demand-Side Management Programs, Energy, Vo.. 19, No. 6, 1994, pp. 661-678. |
Gevorkian, Alternative Energy Systems in Building Design, 2009, pp. 195-200. |
Green, Thermo Heat Tech Cool, Popular Mechanics Electronic Thermostat Guide, Oct. 1985, pp. 155-158. |
Hoffman, et al., Integration of Remote Meter Reading, Load Control and Monitoring of Customers' Installations for Customer Automation with Telephone Line Signaling, Electricity Distribution, 1989, CIRED 1989. 10th International Conference on May 8-12, 1989. pp. 421-424. |
Levy, A Vision of Demand Response—2016, The Electricity Journal, vol. 19, Issue 8, Oct. 2006, pp. 12-23. |
Lopes, Case Studies in Advanced Thermostat Control for Demand Response, AEIC Load Research Conference, St. Louis, MO, Jul. 2004, 36 pages. |
Martinez, SCE Energy$mart Thermostat Program, Advanced Load Control Alliance, Oct. 5, 2004, 20 pages. |
Matty, Advanced Energy Management for Home Use, IEEE Transaction on Consumer electronics, vol. 35, No. 3, Aug. 1989, pp. 584-588. |
Meier, et al., Thermostat Interface Usability: A Survey, Ernest Orlando Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Berkeley California, Sep. 2010, pp. 1-73. |
Motegi, et al., Introduction to Commercial Building Control Strategies and Techniques for Demand Response, Demand Response Research Center, May 22, 2007, 35 pages. |
Peffer, et al., A Tale of Two Houses: The Human Dimension of Demand Response Enabling Technology from a Case Study of Adaptive Wireless Thermostat, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings Architecture Dept. and Mechanical Engineering Dept., University of California Berkeley, 2008, pp. 7-242 through 7-253. |
Peffer, et al., Smart Comfort at Home: Desgin of a Residential Thermostat to Achieve Thermal Comfort, and Save Money and Peak Energy, University of California Berkeley, Mar. 2007, 1 page. |
Salus, S-Series Digital Thermostat Instruction Manual-ST620 Model No. Instruction Manual, www.salus-tech.com, Version 005, Apr. 29, 2010, 24 pages. |
Sanford, iPod (Click Wheel) (2004), www.apple-history.com [retrieved on Apr. 9, 2012]. Retrieved from: http://apple-history.com/ipod,2 pages. |
Wright, et al., DR ETD—Summary of New Thermostat, TempNode & New Meter (UC Berkeley Project), Power Point Presentation, Public Interest Energy Research, University of California Berkeley. Retrieved from: http://dr.berkeley.edu/dream/presentations/2005_6CEC.pdf, 2005, pp. 1-49. |
Non-Final Office Action dated Dec. 26, 2012, for U.S. Appl. No. 13/624,875, filed Sep. 21, 2012, all pages. |
Final Office Action dated Aug. 30, 2013 in U.S. Appl. No. 13/624,875, all pages. |
Notice of Allowance dated Jul. 18, 2014, in U.S. Appl. No. 13/624,875, all pages. |
First Office Action dated Sep. 25, 2015 in Chinese Patent Application No. 201380029046.X,all pages. |
Bourke, Server Load Balancing, O'Reilly & Associates, Inc., Aug. 2001, 182 pages. |
Detroitborg, Nest Learning Thermostat: Unboxing and Review, [online], retrieved from the Internet: <URL:http://www.youtube.com/watch?v+KrgcOL4oLzc> [retrieved on 22. 2-13], Feb. 10, 2012, 4 pages. |
White, et al., A Conceptual Model for Simulation Load Balancing, Proceedings of the 1998 Spring Simulation Interoperability Workshop, 1998, pp. 1-7. |
International Search Report and Written Opinion dated Sep. 6, 2013 in International Patent Application No. PCT/US2013/034718, 22 pages. |
International Preliminary Report on Patentability dated Oct. 9, 2014 in International Patent Application No. PCT/US2013/034718, all pages. |
Non-Final Office Action dated Oct. 20, 2014 in U.S. Appl. No. 13/434,560, all pages. |
Final Office Action dated Apr. 7, 2015, in U.S. Appl. No. 13/434,560, all pages. |
Notice of Decision to Grant dated Jun. 2, 2016 in Chinese Patent Application 201380029046.X, all pages. English Translation. |
Notice of Allowance and Fee(s) due dated Jun. 7, 2016, in U.S. Appl. No. 14/496,782, all pages. |
Notice of Allowance dated Apr. 11, 2017 in U.S. Appl. No. 15/258,422, all pages. |
Non-Final Office Action dated Sep. 6, 2018 in U.S. Appl. No. 15/251,582, all pages. |
Notice of Allowance dated Jun. 28, 2018 in U.S. Appl. No. 14/530,497, all pages. |
Ecobee, “Smart Thermostat”, Quick Start Guide (2008), all pages. |
International Search Report and Written Opinion dated Mar. 30, 2012 in International Patent Application No. PCT/US2011/061491, all pages. |
International Search Report and Written Opinion dated May 3, 2012 in International Patent Application No. PCT/US2012/020026, all pages. |
International Preliminary Report on Patentability dated Jul. 11, 2013 in International Patent Application No. PCT/US2012/020026, all pages. |
International Preliminary Report on Patentability dated Apr. 8, 2014 in International Patent Application No. PCT/US2012/058207, all pages. |
International Search Report and Written Opinion dated Jan. 11, 2013 in International Patent Application No. PCT/US2012/058207, all pages. |
Advanced Model Owner's Manual, Bay Web Thermostat, Revision: 1.7 Oct. 6, 2011, [retrieved from the internet on Nov. 7, 2012], 31 pages. |
International Patent Application No. PCT/US2011/061470, International Search Report & Written Opinion, dated Apr. 3, 2012, 11 pages. |
Rottwinkel, Mar. 6, 2002, “System for Image Reproduction”, English Translation of claims for EP 1184804 B1, 1 page. |
Extended European Search Report dated Jan. 25, 2016, for European Patent Application No. 13769316.4, 8 pages. |
Non-Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 13/434,560, all pages. |
Notice of Allowance and Fee(s) Due dated Aug. 3, 2016 in U.S. Appl. No. 13/434,560, all pages. |
Office Action dated Sep. 20, 2018 in Chinese Patent Application No. 201610677116.8, all pages. |
Non-Final Office Action dated Oct. 22, 2018 in Patent Application No. 13/831,236, all pages. |
Final Office Action dated May 10, 2018 in U.S. Appl. No. 13/831,236, all pages. |
Non-Final Office Action dated May 4, 2017 in U.S. Appl. No. 14/389,243, all pages. |
Second Office Action dated Jan. 21, 2016, for Chinese Patent Application No. 201380029046.X, filed Mar. 29, 2013, all pages (with English Translation.). |
Office action dated Apr. 25, 2019 in Chinese Patent Application No. 201610677116.8, all pages. |
Invitation to Restrict or Pay Additional Fees dated Jul. 1, 2013 in International Patent Application No. PCT/US2013/034718, all pages. |
Notice of Publication dated Feb. 11, 2015 in Chinese Patent Application No. 201380029046.X, 1 page. |
Notification of European Publication Number dated Jan. 8, 2015 in European Patent Application No. 13769316.4, 1 page. |
Notice of Allowance dated Jan. 9, 2019 in U.S. Appl. No. 15/251,582, all pages. |
Supplemental Notice of Allowance dated Feb. 21, 2019 in U.S. Appl. No. 15/251,582, all pages. |
Non-Final Office action dated Sep. 28, 2017 in U.S. Appl. No. 14/530,497, all pages. |
Office action dated Feb. 2, 2018 in Canadian Patent Application No. 2,868,844, all pages. |
Office action dated Dec. 21, 2018 in Canadian Patent Application No. 2,868,844, all pages. |
Notice of Publication dated Jan. 11, 2017 in Chinese Patent Application No. 201610677116.8, all pages. |
Notice of Allowance dated Feb. 21, 2019 in U.S. Appl. No. 13/831,236, all pages. |
Non-Final Office action dated Feb. 25, 2019 in U.S. Appl. No. 15/854,379, all pages. |
Notice of Allowance dated Jun. 3, 2019 in U.S. Appl. No. 15/854,379, all pages. |
Non-Final Office action dated Jun. 5, 2019 in U.S. Appl. No. 15/675,459, all pages. |
Notice of Allowance dated Jul. 3, 2019 in U.S. Appl. No. 15/675,459, all pages. |
Extended European Search Report dated Jan. 21, 2016 in European Patent Application No. 13769316.4, all pages. |
Number | Date | Country | |
---|---|---|---|
20190278680 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
61627996 | Oct 2011 | US | |
61415771 | Nov 2010 | US | |
61429093 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13831236 | Mar 2013 | US |
Child | 16425567 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13434560 | Mar 2012 | US |
Child | 13831236 | US | |
Parent | 13269501 | Oct 2011 | US |
Child | 13434560 | US | |
Parent | 13317423 | Oct 2011 | US |
Child | 13269501 | US | |
Parent | PCT/US2011/061437 | Nov 2011 | US |
Child | 13317423 | US | |
Parent | PCT/US2012/030084 | Mar 2012 | US |
Child | PCT/US2011/061437 | US |