Attributing in-store visits to media consumption based on data collected from user devices

Information

  • Patent Grant
  • 11734712
  • Patent Number
    11,734,712
  • Date Filed
    Thursday, August 13, 2015
    9 years ago
  • Date Issued
    Tuesday, August 22, 2023
    a year ago
  • CPC
  • Field of Search
    • US
    • NON E00000
  • International Classifications
    • G06Q30/00
    • G06Q30/0242
    • Term Extension
      459
Abstract
A system and method for attributing in-store visits to exposure to advertisement (“ad”) impressions associated with an ad campaign are disclosed. The system gathers impression data and uses that data to identify users who were exposed to the ad impressions. The system then uses location data, activity information and in some instances beacon data points reported by mobile devices of the impression users to determine if the impression users visited a target place during a conversion window. Based on the impression users who were exposed to the ad impressions, the system establishes a control group of users who were not exposed to the ad impressions to perform quasi-experimental analyses to assess whether the ad impressions had any impact on changing the impression users' physical in-store visitation behavior.
Description
BACKGROUND

Advertisers utilize various media channels to advertise their products or services to consumers. In the online domain, for example, advertisers use emails and online advertisements (“ads”) on websites and mobile applications. A consumer typically clicks on an online ad or an email to visit the advertiser's website, make a purchase on the website or download an application. As the consumption of the online ad and engagement in a desired behavior that the advertiser is interested in occurs on the same device, the advertiser is able to know, in general, if the online ad caused the consumer to engage in the desired behavior. However, when the consumption of an ad occurs in one device and the engagement in a desired behavior occurs in another device or offline, an advertiser generally does not have an effective way of knowing whether the ad had any impact on the consumer. In some instances, an advertiser can infer that an ad may have caused a consumer to make a purchase at the advertiser's store by reconciling a record of the purchase with an email address of the consumer. However, such a method can capture only “purchase” behavior. Consequently, the advertiser would not have any knowledge of the impact of the ad on the consumer if the consumer visited the store but did not purchase anything.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating an embodiment of a target place visitation behavior of example panelists associated with both an ad-network and the attribution system.



FIG. 2 is a block diagram illustrating panelist matching in the attribution system.



FIG. 3 is a diagram illustrating behavioral measurements of impression users of the attribution system.



FIG. 4 is a diagram illustrating a lookalike population similar to the impression population carved out from the baseline population in the attribution system.



FIGS. 5A, 5B and 5C are graphical diagrams illustrating propensity modeling in the attribution system.



FIG. 6 is a diagram illustrating example lift metrics from a causal analysis.



FIG. 7 is a diagram illustrating example index metrics from indexing analyses.



FIG. 8 is a block diagram illustrating an example architecture of the attribution system.



FIGS. 9-12 are block diagrams illustrating data file management in the attribution system.



FIG. 13 is a block diagram illustrating a core pipeline of the attribution system.



FIG. 14 is a block diagram illustrating a method of identifying impression users.



FIG. 15 is a block diagram illustrating a method of synthesizing baseline users.



FIG. 16 is a block diagram illustrating a method of generating attribution user profiles.



FIG. 17 is a diagram illustrating example attribution metrics determined or inferred by the attribution system.



FIG. 18 is a block diagram illustrating an example of an attribution data model of the attribution system.



FIG. 19 is a block diagram illustrating flexible metric aggregation in the attribution system.



FIG. 20 is a block diagram illustrating user visit or cluster data aggregation in the attribution system.



FIG. 21 is a block diagram illustrating affinity aggregation in the attribution system.



FIG. 22 is a block diagram illustrating causal aggregation in the attribution system.



FIG. 23 is a block diagram illustrating feature aggregation in the attribution system.



FIG. 24 is a block diagram illustrating attribution analysis in the attribution system.



FIGS. 25-26C are diagrams illustrating example attribution reports generated for an ad campaign.



FIG. 27 is a block diagram illustrating the web service and database components of the attribution system.



FIG. 28 is a block diagram illustrating attribution monitoring in the attribution system.



FIG. 29 is a block diagram illustrating a process of performing attribution analysis to generate an attribution report.



FIG. 30 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.





DETAILED DESCRIPTION

The attribution system disclosed herein ties advertisement (“ad”) impressions to visits to target places to provide advertisers one or more metrics characterizing the effectiveness of the ad impressions. Based on impression data associated with an ad campaign and geolocation data collected directly from a panel of mobile electronic device (“mobile device”) users (“panelists”), the attribution system attributes a real-world, physical visit to a target place to exposure to the ad impression. In many instances, the attribution is a function of time elapsed between the exposure to the ad impression and the physical visit to the target place. A place, as used herein, includes any physical establishment, for example, a restaurant, a park, a store, a gas station, etc.


The attribution system, in some embodiments, leverages a data collection system to obtain user information, including location data, collected directly from the panelists. The data collection system obtains and validates location data from the panelists. The user information collected by the data collection system includes, for example, latitude, longitude, altitude determinations, sensor data (e.g., compass/bearing data, accelerometer or gyroscope measurements), and other information that can be used to identify a panelist's location and activity. Additional details on the data collection system can be found in U.S. patent application Ser. No. 13/405,182, which is hereby incorporated by reference in its entirety.


In some embodiments, the data collection system may receive, obtain, or access information from third party sources in order to enhance or modify attribution metrics for ad impressions. For example, a third party source of data, such as a payment processor or social network, may provide data confirming a purchase or use of a product or service associated with an ad impression. Such purchase or use information may, therefore, augment the data associated with an ad campaign and the geolocation data collected directly from the panel of mobile electronic device users.


In some embodiments, the attribution system may receive, obtain, or access information from third party sources in order to measure purchase data from a larger population of users, such as any users associated with a third party source. For example, the attribution system may utilize purchase or use data directly from the third party sources (e.g., data indicating a user or group of users made a purchase of a product or service at a certain location, via a certain retailer, and so on) as attribution for ad impressions.


The attribution system, in various embodiments, also leverages an inference pipeline that recognizes, based on location readings, whether a user visited a target place, and if so, determines the probability of the user at the target place and how much time the user spent at the target place. Additional details on the inference pipeline can be found in U.S. Pat. No. 8,768,876 which is also hereby incorporated by reference in its entirety.


In some embodiments, the process of attributing a visit to a target place starts with an advertiser (e.g., a mobile advertiser HMC) delivering ads (e.g., mobile ads, desktop ads, television ads) through an ad-network to a group of users on their devices (e.g., mobile devices, desktop computers, television, voice telephony, tablets, mobile gaming devices, smart phones) as part of an ad campaign. In other embodiments, ads may be delivered to, or accessed by, the group of users via other media types, such as via print, billboards, radio, and others described herein.


These users who receive the ad impressions form a campaign population. The advertiser or the ad-network provides impression data and details of the ad campaign to the attribution system. The impression data can include, for example, device identifiers, impression timestamps, targeting identifiers, and other metadata associated with the campaign or the target of the impression. For example, the metadata may include user agent strings and segment identifiers. The attribution system then uses the device identifier, IP address, device model, operating system version and/or any other metadata to match the campaign population against the panelists of the attribution system to identify panelists who were exposed to the ad impressions (“impression population”). In some embodiments, impression data can be collected by the attribution system.


After identifying the impression population based on the match, a baseline population is constructed in one of two ways. First, the advertiser may provide an indicator within the impression population that codes for membership in a control group (e.g., those impressions associated with no advertisement or the presentation of an unrelated advertisement). When no control group is specified, the attribution system identifies the panelists who did not match and includes them into a baseline or control group. The attribution system then performs experimental analysis to assess whether the ad impression had any impact on changing the impression users' physical store visitation behavior. In some embodiments, the attribution system can perform other analyses. For example, the attribution system can determine metrics such as costs per store visit, frequency of store visits, likelihood of store visits for different geography and demographics, or the like. These and other metrics from the analyses enable advertisers to make adjustments to their ad campaigns to improve performance (e.g., increase store visits, target certain demographics). The metrics generated by the attribution system also describe or characterize the nature of the ad campaign run by advertisers.


Various embodiments and implementations of the attribution system will now be described. The following description provides specific details for a thorough understanding and an enabling description of these embodiments and implementations. One skilled in the art will understand, however, that the embodiments and implementations may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description of the various embodiments and implementations. The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments and implementations of the attribution system. It should be noted that although the present disclosure provides specific examples of analyses for attributing consumption of media (e.g., ads) to a physical store visitation, other analyses can be utilized by the attribution system for the same purpose. For example, any causal estimation techniques, regression analyses, etc. can be used by the attribution system to attribute consumption of media (e.g., ads) to a physical store visitation.


1. Overview



FIG. 1 is a diagram illustrating target place visitation behavior of four example panelists associated with an ad-network 105 and the attribution system 110. In FIG. 1, panelists 115 and 125 are associated with the ad-network 105 and receive an ad impression relating to an ad campaign. Panelists 120 and 125 are panelists of the attribution system 110. Some of the panelists of the attribution system (e.g., 120) receive no ad impressions, while other panelists (e.g., 125) of the attribution system match or overlap with the panelists of the ad-network and receive an ad impression relating to the ad campaign.


The attribution system analyses location and other activity information relating to panelists 125 of the attribution system who receive the ad impression over a window of time to determine or infer whether the panelists 125 visit a target place and probabilities of the visit. For example, the attribution system can determine or infer, based on location and/or other user information, that panelist 1 who receives an ad impression on day-3 does not visit the target place during the window of time (e.g., 5 days starting from the date of impression). Similarly, the attribution system can determine or infer that panelist 2 who receives an ad impression on day-2, visits the target place on day-4. In the case of panelist 3, he or she visits the target place on day-6 and day-8 after receiving an ad impression on day-3, while panelist 4 visits the target place 3 days before the ad impression and again one day after the ad-impression. The attribution system uses various models and analyses on the impression and baseline user impressions to determine if an exposure to ad impressions associated with the campaign caused the impression users to visit the target place during the window of time. In some embodiments, a multiple attribution method can be used to credit one or more impressions to a visit. For example, as illustrated in FIG. 1, panelist 5 receives an ad impression on day-2 and day-3 and visits the target place on day-5. Panelist 5 then sees an additional ad impression on day 6 and visits the target place on day-8. In this scenario, by using the multi attribution method, credit for the conversion (e.g., two visits to the target place) can be split across the ad impressions received on day-2, day-3 and day-6.


Thus, in some embodiments, the attribution system receives an indication that a mobile device has entered a target geographical location associated with a campaign, and determines a campaign impression for the campaign occurred at the mobile device within a certain time period before the mobile device entered the target location.


1a. Panelist Matching and Baseline Creation



FIG. 2 is a block diagram illustrating panelist matching in the attribution system. The panelist matching is performed to identify panelists of the attribution system who were exposed to ads associated with an ad campaign. In various embodiments, matching is based on identifiers, for example, hashed device identifiers. The hashed device identifiers from the campaign population are matched against the hashed device identifiers of the panelist population. The overlap between the campaign population and the panelist population is the impression population.


In the case where no baseline or control group is provided by the advertiser, the population of nomnatching panelists forms the baseline population. The baseline population can be used as a basis for measuring the success of the ad campaign. Panelists in the baseline population are assigned simulated impression times in the same distribution as was observed in the impression population, unless the control group impression times are explicitly provided by the advertiser. Thereafter, the baseline population is analyzed in the same manner as the impression population with respect to the simulated impression times. When the control impression times are not provided by the advertiser, this process of randomly assigning simulated impression times to the baseline panelists ensures that any calendar seasonalities (e.g., weekday, end of month, time of day) effects are the same between the impression and baseline populations.


1b. Behavior Measurement


The attribution system measures various metrics. One such metric is the in-store conversion rate (e.g., average number of visits across users) for the target place that was the focus of the ad campaign. This conversion rate is measured in the context of a conversion or time window. A conversion window is a window in time that starts just after the ad impression and ends as a later time. Different places can have different conversion windows. For example, a place that is visited weekly can have a 7-day conversion window (e.g., a grocery store), whereas a place that is usually visited on a monthly basis may have a 30 day conversion window (e.g., a mattress store). Conversion rates are computed over various widows in the period after the first impression or the most recent impression. The schematic of FIG. 3 depicts how conversions are captured in a conversion window for three example panelists. In FIG. 3, panelist 1 has one conversion event in the conversion window. Panelist 2 has two conversion events, and panelist 3 has no conversion events in the conversion window. In some embodiments, a multiple method can be used in calculating conversion rates. The multiple method weights the assignment across multiple ad impressions responsible for a visit.


1c. Propensity Scoring


Often, an advertiser carries out an ad campaign to target a specific audience. For example, an ad for a retail pharmacy may be targeted to an older population (e.g., 50-65 year olds). When a control population is provided by the advertiser, measuring ad effectiveness is done by directly comparing conversion rates for the impression group and the baseline or control group. When the baseline is constructed from the population of non-matched panelists, the method of Propensity Scoring (or lookalike modeling) can be used to adjust the baseline population so that it looks like the impression population. FIG. 4 is a diagram that depicts the attribution system carving out a lookalike population in the baseline population that is similar to the impression population.


Propensity scoring models the differences between the impression and baseline populations. A propensity model can use demographic, geographic and/or behavioral attributes to model the impression population. For example, the impression population may be comprised of panelists who are generally older than the current population as is shown in the graphical diagram of FIG. 5A. In the graph of Figure SA, age is plotted against a frequency of occurrence for both the impression population and the baseline population. The impression population has relatively more older panelists, whereas the baseline population has relatively more younger panelists. The process of propensity scoring generates weights that make the characteristics of the baseline population match the characteristics of the impression population. For the case of a single distinguishing characteristic, the propensity scores can be similar to the graph illustrated in FIG. 5B. The graph of FIG. 5B shows that older panelists have a higher propensity for belonging to the impression group than the younger panelists. These propensities are generated across the baseline population and then used to weight the baseline population so that the age distribution approximately matches the impression population. Once the impression and baseline populations are matched, any remaining difference in conversions can be assumed to be due to the ad exposure. For example, in FIG. 5C, the frequency of occurrence is plotted against age for both the impression and weighted baseline populations and depicts the difference in conversions between the two populations.


The propensity scoring process described above was based on a propensity model that considered a single characteristic (e.g., age). A similar propensity scoring process can be used to determine a propensity score based on a propensity model that considers multiple characteristics (e.g., gender, age group, geographical location). The output from the propensity model is a propensity score that is used to reweight the baseline population so that the reweighted baseline population has similar characteristics to the impression population.


1d. Lift Analysis


Lift analysis is one of the analyses performed by the attribution system to assess the effect of an ad in driving in-store visits at a higher rate for the users who received the ad impression. Lift is defined as the relative difference in the conversion rates between the impression and baseline populations. Three distinct conversion rates can be used to compute three types of lift:


(1) Baseline Conversion Rate (CRB): the conversion rate of panelists not exposed to the ad.


(2) Adjusted Baseline Conversion Rate (CRB*): the baseline conversion rate after adjusting for targeting effects via propensity modeling.


(3) Impression Conversion Rate (CRI): the conversion rate of panelists exposed to the ad


The three types of lift are then defined as follows:











(
1
)






Total





Lift


:








CR
I


CR
B



-
1








(
2
)






Targeting





Lift


:








CR

B
*



CR
B



-
1








(
3
)






Causal





Lift


:








CR
I


CR

B
*




-
1







Total Lift is the relative difference in the conversion rates between the impression and baseline populations before any propensity adjustment. Thus, Total Lift combines the effects of targeting as well as any changes in visitation behavior caused by the advertisement.


Targeting Lift measures the impact of targeting a specific set of users (e.g., “soccer moms”) versus no targeting at all. Depending on whether the targeting group already has a high or low prior likelihood of making a target visit, targeting lift can be positive or negative.


Causal Lift is considered to only be a result of the ad impression, after effects of targeting are removed. By way of an example, consider the pharmacy example above where an older population was targeted for an ad. As shown in the graphical diagram of FIG. 6, the baseline conversion rate (CRB) was 5%. After accounting for the older population, the adjusted baseline conversion rate (CRB*) was 6%. Finally, the conversion rate observed in the impression group (CRI) was 7%. Based on these conversion rates, the following lift metrics can be calculated:










(
1
)






Total





Lift


:






40

%






(


7
5

-
1

)








(
2
)






Targeting





Lift


:






20

%






(


6
5

-
1

)








(
3
)






Causal





Lift


:






16

%






(


7
6

-
1

)








In this example, we can assume that the ad drove an extra 16% in conversions, after accounting for the effects of targeting ad recipients based on age.


1e. Indexing Analysis


In some embodiments, the attribution system can segment populations based on various characteristics. Example characteristics can include but are not limited to: gender, age, income, children, relationship status, ethnicity, education, geography, presence of specific mobile applications, or the like. Additional characteristics can be derived from these base characteristics to create like segments of populations, such as ‘sports enthusiasts’ or ‘business travelers’. The attribution system can then perform an indexing analysis on any segmented population, geography and business to determine a corresponding index. Examples of index metrics determined from the indexing analysis include an impression index and a place index for different segments. The impression index provides a measure of differences between population with impression and baseline population. The place index measures the differences between the impression and baseline populations among panelists who visited the target place after viewing an ad.


These indexes enable advertisers to know if their ads effectively reached the targeted audience or if their ads were targeted to particular demographic segments, and make specific adjustments if necessary. For example, if an ad campaign was targeted to users in the West Coast more than the East Coast, a high (low) geographic index for the West Coast indicates that the impression population included relatively more (fewer) people from the West Coast than the baseline population and was thus successfully targeted to (away) users in the West Coast. Similarly, a high impression index for females would be an indication that the ad campaign was more effective at reaching females than males.


In some embodiments, the attribution system, as part of collecting user information from panelists, can collect information relating to applications that are installed on the panelists' mobile devices. The attribution system can then report to advertisers an application index that enables the advertisers to know that their ad campaigns were effective among users with certain types or specific applications in their mobile devices. For example, a high FACEBOOK index for the impression group can indicate that the users with the FACEBOOK application on their mobile devices were more receptive to ad impressions. This information can then be used by the advertiser to advertise through the FACEBOOK application, for example.


In some embodiments, the attribution system can also calculate an opportunity index or report for advertisers. The opportunity index provides advertisers with information on the geographic regions, demographics and applications that could be targeted in the next ad campaign that will increase lift. Some example index metrics are illustrated in FIG. 7.


2. Example Architecture of the Attribution System



FIG. 8 is a block diagram illustrating an example architecture of an attribution system 110. In some embodiments, the attribution system 110 receives impression data 810 from third-parties such as advertisers, ad-networks, etc. In some embodiments, the impression data can be collected by an agent of the attribution system. In other embodiments, some impression data can be received from third-parties and some impression data can be collected by the attribution system. Impression data from third-parties can be uploaded to the attribution system via an FTP server 815 or delivered to a proprietary server by using embedded code (e.g., a ‘pixel’ tag, or other industry standard method of passing data via a web service) within the ad. The impression data then flows through a data file management component 820 for initial processing and a core pipeline 830 for further analyses.


A monitoring component 835 monitors the progress of impression data processing to trigger an alert to the core pipeline that impression data is available for analyses. The monitoring component 835 also monitors the output from the core pipeline 830 to render reports 837 and update a user interface 840 to allow customers access to the reports. A web service 850 provides customers access to reports and/or other data from the analyses stored in a customer database 855.


The attribution system 110, therefore, may include an impression component that receives campaign impression data associated with media consumption at multiple mobile devices during a campaign, a location visit component that determines whether one or more of the multiple mobile devices visit a geographical location associated with the campaign within a time window for the campaign, and an attribution component that identifies occurrences of conversion events for the campaign when the one or more mobile devices visit the geographical location associated with the campaign within the time window for the campaign.


Each of the components will now be described in detail.


2a. Data File Management



FIGS. 9-12 are block diagrams illustrating processes performed by the data file management component 820 in the attribution system 110. Referring to FIG. 9, an ad-network 910 sends ads to devices 920 of users and in return, obtains one or more pieces of content or impression data from the devices 920 of the users. The impression data informs the attribution system 110 who got what and when. For example, impression data for an ad campaign can inform the attribution system 110 that device A got a HMC store ad at 3:18 pm on Mar. 1, 2014. Thus, impression data generally includes the following pieces of information:


1. a unique identifier to identify a device, usually a device identifier (deviceid), cookie, user-agent string, etc., and can be hashed for privacy;


2. a sub-placement identifier to determine what the impression was about; and


3. a timestamp of the impression to indicate the timestamp in second of when a user got the impression.


If the impression data is provided in a flat file, it is prepared and can be uploaded to the FTP server of the attribution system. In some embodiments, preparing the impression data can include hashing the device identifiers or other information for privacy reasons, so that only hashed device identifiers are provided to the attribution system. In some embodiments, the ad network can provide impression data to the attribution system by uploading the impression data to file storage/sharing services (e.g., GOOGLE DOCS, DROPBOX, AMAZON S3) or sending the impression data via email. Each upload event can be logged in a log at the FTP server 815. In some embodiments, impression data can be passed in real-time as the ad is served (via embedded code within the ad).


The attribution system stores the impression data in one or more databases or database tables. In some embodiments, for cheaper and/or scalable storage and easy retrieval during processing, the attribution system can archive and index the impression data using an archiver 1010 and an indexer 1020, respectively, as depicted in FIG. 10. The indexer 1020 can use sub-placement-id and timestamp to index the impression data for efficient retrieval of impression data.


Referring to FIG. 11, the FTP server 810 or another location (e.g., cloud-based storage) 1110 where the impression data is uploaded can include impressions, as well as other files such as logs, mapfile and device-identifiers. To process the files, the attribution system 110 reads configuration data associated with the ad-network to determine active networks. The attribution system then generates processing-id (e.g., timestamp) and sets up destination folders where the processed impression data is to be stored. All files from the source, including impressions and mapfiles are copied to the destination archive 1120 and the action is logged in archiver logs in the destination. Once the files are successfully copied, the files at source are deleted, and an archived token is created with processing-id as file-name and processing-id and path to destination as content. Then an acknowledgement is written to a source log.


After archiving, the impressions are formatted, deduped and indexed. Formatting can include applying custom network formatter on impressions and persisting the formatted data. Deduping can include applying a key (e.g., device-id, campaign and timestamp triplet) to eliminate duplicates from archive-formatted and indexed-impressions. The deduped impressions can then be indexed by impression date in an index 1130. The archive logs are then updated to record the move and other statistics. After successfully moving the data, indexed tokens are created.


The file processing continues, by reading the indexed tokens from recent runs. For each token, the file processing pipeline copies archive logs from the destination to the source and then deletes the index token. Following deletion, an acknowledgement is written to the source log and the “successful runs” log is updated.


Referring to FIG. 12, the data file management process is illustrated, with the data file management component being a point of integration between the attribution system and external ad-networks. As explained above, the impression data from ad-networks are directly uploaded 1210 to the FTP server 815 or cloud-based storage or transmitted using API or other channels to the attribution system 110. The data file management component pulls the impression data and processes the impression data by formatting, deduping and indexing 1220 for efficient storage and retrieval of the impression data.


2b. Core Pipeline


The core pipeline of the attribution system is illustrated in FIG. 13. As illustrated, the core pipeline has several dependencies including, for example, server-api, user profile, inference, and place service. These dependencies are described in detail in U.S. patent application Ser. No. 13/405,182 and U.S. Pat. No. 8,768,876.


Referring to FIG. 13, the core pipeline receives a web service query including report configuration parameters. The query triggers retrieval and processing of impression data associated with an ad campaign. Based on the report configuration parameters (e.g., placement id, sub-placement id, conversion window), the core pipeline retrieves impressions data 1315 associated with the campaign. The core pipeline then performs a match 1320 against the panelists of the attribution system to identify impression users 1330 who were exposed to the impressions associated with the campaign and baseline users who were not exposed to the impressions. The matching process is described in detail in reference to FIG. 14 and the method of synthesizing baseline users is described in detail in reference to FIG. 15.


The core pipeline then builds attribution profiles 1340 for each user in the impression or the baseline group by joining the impression data associated with the user with their existing user profile, and performs user aggregation 1350 and feature aggregation 1360. A user profile can include information such as demographics (e.g., age, gender, income level, ethnicity, education, marital status, number of children, etc.), mobile device information, user location history, distance to home location, distance to work location, commute patterns, device features (e.g., manufacturer, model, service provider, sensor availability, etc.), frequently visited places in the past and/or other information that can help predict where a user is visiting.


In some embodiments, the user profile and/or attribution profile 1340 may include or be enhanced by information received from users in response to surveys or polls asked or provided to users. For example, information received via a survey (e.g., information about what movie a user watched in a movie theatre), such as survey data, may provide additional conversion data attributed to a user, other than directly measured data, such as location visits (e.g., what movie theatre the user visited) and other geographical data.


As described herein, various types of information may be obtained via user surveys, such as user preference data, user purchasing data, user choice data, user interest data, and so on. The data collection system, therefore, may utilize various types survey and poll questions when obtaining information from users. Following the movie theatre example, a user survey targeted to a user at a movie theatre may include the following questions:


Questions directed to purchasing habits—e.g., “Did you buy the tickets?”, “How did you buy the tickets?”, “Did you buy refreshments?”, and so on;


Questions directed to purchasing information—e.g., “How much did the tickets cost?”, “When did you see the movie?”, and so on;


Questions directed to user preferences or interests—e.g., “Did you enjoy the movie?”, “Was the movie your first choice?”, and so on;


Questions directed to user habits or actions—e.g., “Did you drive to the theatre?”:Did you go to dinner before or after the movie?” “Did you go to other places while out?”, and so on.



FIGS. 16-18 depict the example embodiments of the attribution profile, aggregation metrics, and full data model. The core pipeline then performs various analyses 1370, including cluster analysis, affinity analysis and causal analysis to aggregate metrics at the user level. These analyses are described in detail with reference to FIGS. 19-22. The aggregated metrics at the user level are then aggregated over one or more features to obtain grouped aggregated metrics. The process of aggregating metrics over one or more features are described with reference to FIGS. 23 and 24. The core pipeline then performs an attribution analysis to generate the various metrics associated with an attribution report such as conversion rates, lift and indexes. The process of performing the attribution analysis is described in detail with reference to FIG. 24.



FIG. 14 is a block diagram illustrating a method of identifying impression users implemented by the core pipeline of the attribution system 110. The core pipeline retrieves impression data 1410 associated with a campaign from a database. The core pipeline then matches 1420 hashed device identifiers from the impression data against hash device identifiers of the panelists of the attribution system to identify impression users. In some embodiments, the core pipeline can also match activity 1430 so that the impression users that are selected are active users (e.g., users who are responsive to surveys, users with devices that have been reporting location data, etc.). The impression users and impressions (e.g., user id: timestamp) are then stored 1440 for further processing. The generation of match metrics (e.g., impression users and impressions) are monitored 1450 by the monitor of the attribution system to create alerts for the web service and user interface components.



FIG. 15 is a block diagram illustrating a method of synthesizing baseline users from the panelists of the attribution system who are not among the impression users. The core pipeline can retrieve activity information (e.g., user id, date, number of locations) 1510 and use one or more filter criteria to filter baseline users 1520. Example filter criteria can include, but are not limited to: panelists who are not in the impression set, who are active during campaign, who have responded to surveys, who have cluster activity, or the like. The core pipeline can then sample the baseline users 1530. In some embodiments, by default 100,000 baseline users may be selected. The core pipeline then generates baseline impressions 1540 by sampling timestamps from the impressions users and assigning simulated impression times in the same distribution as was observed in the impression users. The baseline users and impressions (e.g., user id: timestamp) are then stored 1550 for further processing.



FIG. 16 is a block diagram illustrating a method of generating 1625 attribution user profile by joining impression set impressions 1610 and baseline set impressions 1620 with dependencies such as user-profile, geography, and/or surveys. An attribution user-profile record 1630 stores associations between user id, timestamp, population (e.g., impression or baseline) and user profile.


The attribution system generates various attribution metrics that are stored in association with attribution user-profile records (or attribution profile records). FIG. 17 is a diagram illustrating example attribution metrics determined or inferred by the attribution system. Some examples of attribution metrics and their definitions are listed below in Table 1. These









TABLE 1







Example Attribution Metrics








Attribution Metrics
Definition





p_target
Probability of a visit to a target place



(e.g., BESTBUY store) or a visit to a



target place which sells a particular



product, after receiving an impression



and within the conversion window


p_anywhere;
Probability of a visit to any place after



receiving an impression and within the



conversion window


cluster_count
Number of clusters captured within a



conversion window


visitor_days_target
The number of visits to a target place



after receiving and impression and



within the conversion window


visitor_days_anywhere
The number of visits to any place after



receiving an impression and within the



conversion window


Propensity or propensity score
Output from a propensity model to



account for differences between an



impression population and a baseline



population


expected_impression_response
Predicted conversion rate assuming the



user was exposed to an ad


expected_baseline_response
Predicted conversion rate assuming the



user was not exposed to an ad


expected_impression effect
Difference between mean of



expected_impression_response for the



impression population and mean of



expected_baseline_response for



the baseline population


expected_baseline_effect
Mean of expected_baseline_response



for the baseline population


double_robust_residual
The error in the doubly robust estimate



of the causal effect, used for computing



a confidence interval


p_affinity_overlap
The probability that the user visited



both the target place and some other



predefined place within the conversion



window


p_index_overlap
The probability that the user visited



both the target place and some other



predefined feature including, but not



limited to, geography, demographic,



device, wireless carrier, operating



system, time of day, day of week,



within the conversion window


p_purchase
Purchases tied to store visits



attributable to ad impressions


p_revenue
Revenue tied to store visits



attributable to ad impressions










FIG. 18 is a block diagram illustrating an example of an attribution data model of the attribution system. In FIG. 18, the attribution profile record 1810 is created by joining profile and attribution record as described with reference to FIG. 16. The profile 1820 includes user profile 1822, geography 1824, and survey data 1826. The attribution record 1830 stores associations between user id and population (e.g., baseline or impression) and is associated with a set of attribution metadata 1840. Examples of the attribution metadata include, but are not limited to: impression-timestamp, event-type, event-id, window-start, window-end and analysis-tag. Each attribution record, for a given set of attribution metadata, is also associated with one or more of the attribution metrics 1845 listed in Table 1 above.



FIG. 19 is a block diagram illustrating flexible metric aggregation in the attribution system 110. Various metrics from cluster aggregation 1910, affinity aggregation 1912, casual aggregation 1914, and other metrics 1916 can be merged 1920 resulting in merged aggregation records 1925. As additional aggregation methods are added or deleted, the aggregation records can be updated without making any changes to the attribution data model or other components of the attribution system. The merged aggregation records created from the merging of aggregation results provide the attribution records used in the attribution analysis 1930 by the core pipeline.


Various type of aggregations performed by the core pipeline will now be described. FIG. 20 is a block diagram illustrating user visit or cluster data aggregation. Using inference cluster visit data including place weights, the core pipeline can determine the visit metrics of the impression 2010 and baseline users 2020. The inference cluster visit data is determined by an inference pipeline that is described in detail in U.S. Pat. No. 8,768,876. The inference pipeline takes raw location and sensor readings from a device of a user as input and generates probabilities that the user visited a target place (e.g., p_target) or anywhere else (e.g., p_anywhere). The inference pipeline can also determine other visit data such as cluster_count for the impression and baseline users and determine or infer other visitation data such as visitor_days_target and visitor_days_anywhere. The results from the cluster or visit aggregation analysis 2030 are stored in cluster attribution records 2035, which are eventually merged with other types of attribution records to form the attribute profile records as described before. A cluster attribution record stores association between a user id, timestamp, population (baseline or impression), profile and metrics (e.g., visit metrics, for example, p_target, p_anywhere, visitor_days_target, visitor_days_anywhere, cluster_count).


In some embodiments, in addition to or instead of location data collected from mobile devices, the attribution system can collect beacon data points. Some target places (e.g., stores), use beacon devices to broadcast information (e.g., information about a store) to devices using Bluetooth technology. Typically, a beacon device broadcasts a notification to any device that is within its range. In some embodiments, an application or an agent of the attribution system on a mobile device of a user can collect a beacon data point from a beacon device located at a target place. The attribution system can obtain the beacon data point from the mobile device and associate it with a device identifier. Once the beacon data point is associated with the device identifier, the attribution system can use that device identifier for matching and as confirmation that the user visited the target place.



FIG. 21 is a block diagram illustrating affinity aggregation to determine an affinity index. Data associated with visits to a target place 2110 by an impression population, data associated with visits to other places 2112 by the impression population, and overall total place visits 2114 by the impression population, are utilized to determine impression affinity 2120 or affinity of the target place for the impression population. Further, data associated with visits to a target place 2130 by a baseline population, data associated with visits to other places 2132 by the baseline population, and overall total place visits 2134 by the baseline population, are utilized to determine impression affinity 2140 or affinity of the target place for the baseline population.


The affinity metric measures the likelihood that a user visits the target place, given that they are a visitor to some other place. This metric is calculated for the impression and baseline populations separately.


Based on the impression affinity and the baseline affinity, the affinity index can be determined 2150 as:

Affinity Index=(Impression Affinity/Baseline Affinity)×100



FIG. 22 is a block diagram illustrating causal aggregation to determine aggregate metrics. Results from causal aggregation allows one to make causal inference on whether place visits by the impression population are attributable or caused by exposure to the ad impressions. As described above, the propensity model 2220 weights the baseline population so that the characteristics of the baseline population match those of the impression population. Any difference in behavior between the two groups is then attributable to the exposure to the ad impression. The outcome model 2225 is another model that can be used to determine from the impression data 2210 and baseline data 2212, expected response with exposure to the ad impressions and expected response with no exposure to the ad impression. The doubly robust method 2230 of causal analysis uses a combination of the propensity model and the outcome model to estimate the causal effect of the ad impression on the place visit. The propensity model or the outcome model, if used alone, are unbiased only if the model is correct. The doubly robust effect ensures that the causal effect that is estimated is unbiased if only one of the two models is correct.


The results from these models including propensity 2240, expected response with impression 2242, expected response with no impression 2244, and double robust residual 2246 are aggregated to determine the aggregation metrics 2250 of count, sum, sum of squares and non-zero count. This set of summary metrics 2250 is sufficient to estimate the mean and variance for any aggregated metrics so that they may be subjected to standard statistical testing.


The attribution profile is unique to each user and can include information such as: user/device id, gender, location, probability of visit to the target place, number of visits to the target place or the like. Example attribution profiles are listed below:

  • device-a:male:Seattle:[p(t)=0.60, visits=2]
  • device-b:female:Seattle:[p(t)=0.30, visits=1]
  • device-c:male:Portland:[p(t)=0.50, visits=4


The process of feature aggregation, as illustrated in FIG. 23, aggregates 2310 data from the attribution profile 2310 of users across various features 2320 to generate group aggregated metrics 2330. As used herein, a feature is a characteristic of a user segment. For example, the attribution profile data shown above can be aggregated across the feature “male,” “female,” “Seattle” and “Portland” to determine the grouped aggregated metrics as shown below.

  • male:[size=2 & p(t)=function(0.6, 0.5) & visits=6]
  • female:[size=1 & p(t)=function(0.3) & visits=1]
  • Seattle:[size=2 & p(t)=function(0.6, 0.3) & visits=3]
  • Portland:[size=1 & p(t)=function(0.5) & visits=4]


The following example template can be used for the grouped aggregation metrics:

  • SECTION::FEATURE::ATTRIBUTE=>[Aggregation Metrics]


For example:

  • DEMOGRAPHICS::GENDER::MALE=>[Aggregation Metrics]
  • DEMOGRAPHICS::STATE::CALIFORNIA=>[Aggregation Metrics]



FIG. 24 is a block diagram illustrating attribution analysis in the attribution system 110. The attribution analysis considers the grouped aggregated metrics 2410 and the match metrics 2420 as inputs and determines metrics 2430 associated with visits, ratios, lifts and indexes described above as outputs. The output data 2440 can be reported out in JSON or other suitable format.


Example store visit metrics, match metrics, lift metrics, revenue metrics, and index metrics that can be included in an attribution report are listed in tables 2-4 below.









TABLE 2







Store Visit Metrics From Attribution Analysis








Store Visit Metrics
Definition





Projected store visits
Cumulative projected store visits after ad


over x days
exposure, where x is a window of time



determined by the attribution system



model


Store conversion rate
Average number of store conversions in


over x days
the impression population


Cost per store visit
Ratio of ad spend (reported by the


(or other defined target)
advertiser) to projected store visits



(or other target goal) over x days


Impressions per store
Ratio of impressions (reported by the


visit ratio
advertiser) to projected store visits



over x days.


Purchase Rate
Ratio of purchases to store visits


Revenue
Revenue tied to store visits


Lift Revenue
Revenue tied to lifted store visits


Return on Ad Spend (ROAS)
Ratio of revenue to ad spend


Lift Return on Ad Spend
Ratio of lift revenue to ad spend
















TABLE 3







Panel Match Rate Metrics








Panel Match Rate Metrics
Definition





Panelist with ad impression
Count of Panelists exposed to campaign ad



impressions


Panelist impressions
Cumulative campaign ad impressions across



matched users


Impressions per panelist
Ratio of panelist impressions to panelist



with ad impression
















TABLE 4







Lift Metrics








Lift Metrics
Definition





Confidence
A measure of the confidence that the lift



is greater than zero


Lift
Measured difference in store visits based



on targeting and ad exposure compared



against baseline for panelists


Projected lift visits
The projected incremental store visits



derived from the lift estimate


Cost per lift store visit
Ratio of ad spend to projected lift visits


(or other defined target)


Impressions per lift store visit
Ratio of impressions to projected lift visits


(or other defined target) ratio









Following the attribution analysis, the attribution system 110 generates a report using a report template and other configuration parameters and database configurations. FIG. 25 illustrates an example attribution report generated for an ad campaign. The attribution report includes information associated with campaign metrics. For example, a count of the impressions and amount of money spent on the ads that are provided by the advertiser can be included along with the panel match metrics listed in table 3. The attribution report also includes metrics associated with store visits and lift listed in tables 2 and 4. Referring to FIG. 26A, the attribution report can also include high index demographics features associated with the ad exposure and corresponding impression and place indexes. The indexes for different demographic features provide advertisers an overview of effectiveness of their ad campaigns in targeting different segments of the population. For example, in the gender demographic feature on the attribution report, females may over index relative to males, indicating that the ad campaign was more effective in targeting females compared to males. In some embodiments, the attribution report can also provide impression indexes for different geographic regions (FIG. 26B) and different businesses (FIG. 26C).


2c. Web Service and Database



FIG. 27 is a block diagram illustrating the web service and database components of the attribution system. Typically an advertiser 2710 submits an insertion order 2720 to an ad-network to schedule and authorize an ad campaign through the ad-network. The insertion order includes information related to ad placement 2730 and sub-placement 2740. The placement information identifies the specific iteration of the ad campaign (e.g., HMC's Flight 1 or HMC's Flight 2) and the sub-placement information includes information about the ad itself. The ad campaign data are provided to the attribution system via the web service. The received campaign data is loaded and displayed on the attribution web user interface (UI). An example of ad campaign data received by the attribution system and stored in a customer database is listed in table 5.









TABLE 5







Ad Campaign Data








Data Fields
Value





Id
3bd3cb2b-6104-402e-b7df-68664c968479


Insertion Order
ff10d359-145f-45aa-bd76-58c658f01cg6


Name
HMC-GoldCinemas-ABCadnetwork


Start date
2013 Dec. 26


End date
2014 Feb. 14


Spend
$62,175.00


Impressions
10167842


Event
16000


Event type
Place


Status
ACTIVE


Processing Status
IDLE


Last Processing Date
2014-03-07 00:00:00


Campaign Description
HMC Gold Cinemas Report


Conversion Description
Visits to Gold Cinemas


Sub Placements
126651390, 126652950, 126656670










2d. Monitoring



FIG. 28 is a block diagram illustrating attribution monitoring in the attribution system 110. As previously described, the impression data from ad-networks are uploaded to the FTP server 818 as illustrated in FIG. 28, and also referred to as the FTP server 815 in FIGS. 8, 11, and 12), and cloud-based storage or other file storage services. The attribution system initiates file processing 2840 to archive and index 2845 the impression data and generates logs 2832 when the archiving and indexing are completed. The core pipeline retrieves the archived and indexed impression data to determine match metrics 2834 and other aggregated metrics and generate a report 2880 (e.g., PDF report). The monitor 2830 monitors both the logs from the file processing and the match and other metrics from the core pipeline 2842 to update the customer database 2825 that stores the metrics and to generate alerts. When a customer logs in to the attribution system via the attribution user interface 2810, the attribution system, via a service 2820, uses an identifier associated with the customer to retrieve from the customer database various performance metrics and other data associated with an ad campaign associated with the customer for display on the attribution user interface.


3. Data Flow Through the Attribution System



FIG. 29 is a block diagram illustrating the overall process of performing attribution analysis to generate an attribution report. An ad-network 2910 provides impression data associated with an ad campaign to the attribution system's core pipeline 2920. Typically, the ad-network is a third-party separate from the attribution system. However, in some embodiments, the impression data can be collected by an agent of the attribution system. In some other embodiments, the impression data can be derived from both third-party ad-networks and the agent of the attribution system.


In some embodiments, the impression data has been discussed in the context of ads to mobile devices. However, impression data is not limited to ads to mobile devices and may include or be associated with ad impressions for ads and/or other media (e.g., product reviews, social media) delivered to users through other media channels, for example, desktops, tablets, televisions, radio, print, billboard, or the like, to devices other than mobile devices. For example, a user's media consumption on a desktop computer, a laptop computer, or other devices may be measured and associated with a user or device identifier for attribution analysis.


The core pipeline receives the impression data and matches hashed device identifiers associated with users who received the impression against hashed device identifiers of the panelists of the attribution system to identify panelists who received the impression as impression users and panelists who did not receive the impression as baseline (if the control group is not provided by the advertiser). As described previously, panelists of the attribution system are users who have an agent or client installed on their mobile devices to report location and other observation data to an inference pipeline. The inference pipeline analyses location clusters to generate candidate places potentially visited by the users and probabilities of the visits to those candidate places. Based on the matching, the core pipeline generates impressions for the impression users and impressions for the baseline users.


The core pipeline uses the impressions associated with the impression and baseline users to perform cluster aggregation to determine visit metrics of the impression and baseline users. The visit metrics are stored in association with corresponding user, timestamp, population and profile in the cluster attribution records. The data in the cluster attribution records are utilized to perform various other analyses. For example, the core pipeline utilizes data in the cluster attribution records to perform affinity aggregation to generate affinity index. Similarly, the core pipeline utilizes the data in the cluster attribution record to generate merged profile which associates user profile, geography and surveys. The core pipeline then joins the cluster attribution records and the profile and uses that information to generate propensity input for a propensity model. The propensity input in some embodiments can be visits and demographics associated with impression users and baseline users. Demographics can include, for example, age, geography and/or other attributes.


The core pipeline then performs causal aggregation by feeding the merged profiles into a propensity model. The propensity model utilizes the propensity input data to generate a propensity score that weights the baseline users so that the demographic, geographic and/or other behavioral characteristics of the baseline users match those of the impression users. The propensity model is combined with an outcome model to obtain doubly robust estimate, though any number of propensity modeling techniques may be used. The outputs from the causal analysis are aggregated across the various aggregation dimensions (e.g., demographics, geography) to determine count, sum, sum of squares and non-zero count and stored as propensity attribution records. The cluster, affinity, causal and/or other attribution records are merged together to obtain merged attribution records. The core pipeline then uses demography, geography and survey associated with profiles to obtain group attribution profile.


The core pipeline then performs an attribution analysis to determine the performance metrics including visit metrics, lift metrics and indexes and stores such performance metrics as report data. In some embodiments, a customer can access a user interface provided by the attribution system to pick a report associated with the ad campaign for processing. Once a report is picked up for processing, the attribution system uses the report data to generate a report or update a previously generated report and provides the report to the customer via the user interface 2930. The report can be in any suitable format such as PDF, XLS, CSV or the like.



FIG. 30 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.


In the example of FIG. 30, the computer system 3000 includes a processor 3005, main memory 3010, non-volatile memory 3015, and an interface device 3020. Various common components (e.g., cache memory) are omitted for illustrative simplicity. The computer system 3000 is intended to illustrate a hardware device on which any of the components depicted in the example of FIGS. 8-12 and 28 (and any other components described in this specification) can be implemented. The computer system 3000 can be of any applicable known or convenient type. The components of the computer system 3000 can be coupled together via a bus or through some other known or convenient device.


The processor 3005 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor. One of skill in the relevant art will recognize that the terms “machine-readable (storage) medium” or “computer-readable (storage) medium” include any type of device that is accessible by the processor.


The memory 3010 is coupled to the processor by, for example, a bus 3025. The memory can include, by way of example but not limitation, random access memory (RAM), such as dynamic RAM (DRAM) and static RAM (SRAM). The memory can be local, remote, or distributed.


The bus 3025 also couples the processor to the non-volatile memory 3015 and drive unit 3045. The non-volatile memory 3015 is often a magnetic floppy or hard disk, a magnetic-optical disk, an optical disk, a read-only memory (ROM), such as a CD-ROM, EPROM, or EEPROM, a magnetic or optical card, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory during execution of software in the computer 3000. The non-volatile storage can be local, remote, or distributed. The non-volatile memory is optional because systems can be created with all applicable data available in memory. A typical computer system will usually include at least a processor, memory, and a device (e.g., a bus) coupling the memory to the processor.


Software is typically stored in the non-volatile memory and/or the drive unit. Indeed, for large programs, it may not even be possible to store the entire program in the memory. Nevertheless, it should be understood that for software to run, if necessary, it is moved to a computer readable location appropriate for processing, and for illustrative purposes, that location is referred to as the memory in this paper. Even when software is moved to the memory for execution, the processor will typically make use of hardware registers to store values associated with the software, and local cache. Ideally, this serves to speed up execution. As used herein, a software program is assumed to be stored at any known or convenient location (from non-volatile storage to hardware registers) when the software program is referred to as “implemented in a computer-readable medium 3050.” A processor is considered to be “configured to execute a program” when at least one value associated with the program is stored in a register readable by the processor.


The bus 3025 also couples the processor to the network interface device 3020. The interface can include one or more of a modem or network interface. It will be appreciated that a modem or network interface can be considered to be part of the computer system. The interface can include an analog modem, isdn modem, cable modem, token ring interface, satellite transmission interface (e.g., “direct PC”), or other interfaces for coupling a computer system to other computer systems. The interface can include one or more input 3035 and/or output devices. The I/O devices can include, by way of example but not limitation, a keyboard, a mouse or other pointing device 3040, disk drives, printers, a scanner, and other input and/or output devices, including a display device 3030. The display device can include, by way of example but not limitation, a cathode ray tube (CRT), liquid crystal display (LCD), or some other applicable known or convenient display device. For simplicity, it is assumed that controllers of any devices not depicted in the example of FIG. 30 reside in the interface.


In operation, the computer system 3000 can be controlled by operating system software that includes a file management system, such as a disk operating system. One example of operating system software with associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system. The file management system is typically stored in the non-volatile memory and/or drive unit and causes the processor to execute the various acts required by the operating system to input and output data and to store data in the memory, including storing files on the non-volatile memory and/or drive unit.


Some portions of the detailed description may be presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.


The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the methods of some embodiments. The required structure for a variety of these systems will appear from the description below. In addition, the techniques are not described with reference to any particular programming language, and various embodiments may thus be implemented using a variety of programming languages.


In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine may be a server computer, a client computer, a personal computer (PC), a tablet PC, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, an iPhone, a Blackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.


In general, the routines executed to implement the embodiments of the disclosure, may be implemented as part of an operating system or a specific application, component, program, object, module, or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.


Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.


Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include but are not limited to recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


From the foregoing, it will be appreciated that specific embodiments of the attribution system have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the embodiments. Accordingly, the embodiments are not limited except as by the appended claims.

Claims
  • 1. A computer-implemented method of analyzing an impact of a campaign on visitation behavior associated with a location, the method comprising: providing a graphical user interface for displaying campaign data;generating an alert to indicate that impression data is available for processing using a core pipeline, wherein the core pipeline comprises: a server API, a user profile, and a place service, and wherein the core pipeline is operable to: receive a web service query comprising report configuration parameters; andbased upon the report configuration parameters, retrieving the impression data;in response to generation of the alert, accessing, via the core pipeline, impression data for an impression population of impression users, wherein the impression data comprises user identifiers of the impression users exposed to media relating to the campaign;generating a set of baseline user data based on the location, wherein the baseline user data comprises raw location and device sensor readings used to determine a set of baseline uses who visited the location, and wherein the baseline users have not been exposed to the media relating to the campaign;generating user identifiers for baseline users in the set of baseline user data;generating a baseline conversation rate for the baseline users;hashing the user identifiers of the baseline users to protect a privacy of the baseline population;hashing the user identifiers of the impression users to protect a privacy of the impression population;performing a comparison of the hashed baseline user identifiers against the hashed impression user identifiers to identify a first set of hashed user identifiers, the first set of hashed user identifiers including user identifiers that are among both the hashed baseline user identifiers and the hashed impression user identifiers;identifying a second set of hashed user identifiers, the second set comprising hashed user identifiers that are not among the first set of hashed user identifiers or the hashed impression users;determining, based on one or more analyses that include a lift analysis of the second set and the first set, a conversion rate of the media relating to the campaign;upon determining the conversion rate of the media, updating the user interface to present the conversion rate of the media, campaign data, and demographic data included as part of an updated attribution report generated for the campaign.
  • 2. The method of claim 1, wherein the determining the conversion rate of the media includes determining the conversion rate of the media during a window of time.
  • 3. The method of claim 2, wherein the window of time is relative to the media consumption by a user.
  • 4. The method of claim 1, wherein the user identifiers of the baseline users and the user identifiers of the impression users comprise device identifiers.
  • 5. The method of claim 1, wherein the impression data further comprises a media identifier that identifies attributes of the media relating to the campaign, and a timestamp that indicates when the media relating to the campaign was consumed.
  • 6. The method of claim 1, wherein the method further comprises: monitoring a source database;detecting the impression data within the source database; andaccessing the impression data at the source database in response to the detecting the impression data within the source database.
  • 7. The method of claim 1, further comprising: identifying, from the user identifiers of the impression users, a first group of users associated with a demographic feature;identifying, from the user identifiers of the baseline users, a second group of users associated with the demographic feature; andcalculating an impression index for the demographic feature based on a difference between the user identifiers of the impression users and the user identifiers of the baseline users.
  • 8. A non-transitory computer-readable storage medium whose contents, when executed by a computing device, cause the computing device to perform operations for attributing a conversion event to a campaign associated with a location, the operations comprising: generating an alert to indicate that impression data is available for processing using a core pipeline, wherein the core pipeline comprises: a server API, a user profile, and a place service, and wherein the core pipeline is operable to: receive a web service query comprising report configuration parameters; andbased upon the report configuration parameters, retrieving the impression data;in response to generation of the alert, accessing, via the core pipeline, impression data for an impression population of impression users, wherein the impression data comprises user identifiers of the impression users exposed to media relating to the campaign;generating a set of baseline user data based on the location, wherein the baseline user data comprises raw location and device sensor readings used to determine a set of baseline uses who visited the location, and wherein the baseline users have not been exposed to the media relating to the campaign;generating user identifiers for baseline users in the set of baseline user data;generating a baseline conversation rate for the baseline users;generating a baseline conversation rate for the baseline users;hashing the user identifiers of the baseline users to protect a privacy of the baseline population;hashing the user identifiers of the impression users to protect a privacy of the impression population;performing a comparison of the hashed baseline user identifiers against the hashed impression user identifiers to identify a first set of hashed user identifiers, the first set of hashed user identifiers including user identifiers that are among both the hashed baseline user identifiers and the hashed impression user identifiers;identifying a second set of hashed user identifiers, the second set comprising hashed user identifiers that are not among the first set of hashed user identifiers or the hashed impression users;determining, based on one or more analyses that include a lift analysis of the second set and the first set, a conversion rate of the media relating to the campaign; andpresenting the conversion rate of the media within an updated report, the updated report including a display of an amount of money spent on the campaign, and a count that indicates a number of user identifiers among the first set of user identifiers.
  • 9. An attribution system, comprising: a memory; andat least one hardware processor coupled to the memory and comprising instructions that causes the system to perform operations comprising: generating an alert to indicate that impression data is available for processing using a core pipeline, wherein the core pipeline comprises: a server API, a user profile, and a place service, and wherein the core pipeline is operable to: receive a web service query comprising report configuration parameters; andbased upon the report configuration parameters, retrieving the impression data;in response to generation of the alert, accessing, via the core pipeline, impression data for an impression population of impression users, wherein the impression data comprises user identifiers of the impression users exposed to media relating to the campaign;generating a set of baseline user data based on the location, wherein the baseline user data comprises raw location and device sensor readings used to determine a set of baseline uses who visited the location, and wherein the baseline users have not been exposed to the media relating to the campaign;generating user identifiers for baseline users in the set of baseline user data; generating a baseline conversation rate for the baseline users;generating a baseline conversation rate for the baseline users;hashing the user identifiers of the baseline users to protect a privacy of the baseline population;hashing the user identifiers of the impression users to protect a privacy of the impression population;performing a comparison of the hashed baseline user identifiers against the hashed impression user identifiers to identify a first set of hashed user identifiers, the first set of hashed user identifiers including user identifiers that are among both the hashed baseline user identifiers and the hashed impression user identifiers;identifying a second set of hashed user identifiers, the second set comprising hashed user identifiers that are not among the first set of hashed user identifiers or the hashed impression users;determining, based on one or more analyses that include a lift analysis of the second set and the first set, a conversion rate of the media relating to the campaign; andpresenting the conversion rate of the media within an updated report, the updated report including a display of an amount of money spent on the campaign, and a count that indicates a number of user identifiers among the first set of user identifiers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/037,025, filed on Aug. 13, 2014, entitled ATTRIBUTING IN-STORE VISITS TO MEDIA CONSUMPTION BASED ON DATA COLLECTED FROM USER DEVICES, which is hereby incorporated by reference in its entirety. This application is related to U.S. application Ser. No. 13/405,182, filed Feb. 24, 2012, U.S. application Ser. No. 13/892,201, filed May 10, 2013, U.S. application Ser. No. 13/405,190, filed Feb. 24, 2012 (U.S. Pat. No. 8,768,876), and U.S. application Ser. No. 14/300,102, filed Jun. 9, 2014, which are hereby incorporated by reference in their entirety.

US Referenced Citations (636)
Number Name Date Kind
666223 Shedlock Jan 1901 A
4581634 Williams Apr 1986 A
4975690 Torres Dec 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5493692 Theimer et al. Feb 1996 A
5713073 Warsta Jan 1998 A
5754939 Herz et al. May 1998 A
5855008 Goldhaber et al. Dec 1998 A
5883639 Walton et al. Mar 1999 A
5999932 Paul Dec 1999 A
6012098 Bayeh et al. Jan 2000 A
6014090 Rosen et al. Jan 2000 A
6029141 Bezos et al. Feb 2000 A
6038295 Mattes Mar 2000 A
6049711 Yehezkel et al. Apr 2000 A
6154764 Nitta et al. Nov 2000 A
6167435 Druckenmiller et al. Dec 2000 A
6204840 Petelycky et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6216141 Straub et al. Apr 2001 B1
6285381 Sawano et al. Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6310694 Okimoto et al. Oct 2001 B1
6317789 Rakavy et al. Nov 2001 B1
6334149 Davis, Jr. et al. Dec 2001 B1
6349203 Asaoka et al. Feb 2002 B1
6353170 Eyzaguirre et al. Mar 2002 B1
6446004 Cao et al. Sep 2002 B1
6449485 Anzil Sep 2002 B1
6449657 Stanbach et al. Sep 2002 B2
6456852 Bar et al. Sep 2002 B2
6484196 Maurille Nov 2002 B1
6487601 Hubacher et al. Nov 2002 B1
6523008 Avrunin Feb 2003 B1
6542749 Tanaka et al. Apr 2003 B2
6549768 Fraccaroli Apr 2003 B1
6618593 Drutman et al. Sep 2003 B1
6622174 Ukita et al. Sep 2003 B1
6631463 Floyd et al. Oct 2003 B1
6636247 Hamzy et al. Oct 2003 B1
6636855 Holloway et al. Oct 2003 B2
6643684 Malkin et al. Nov 2003 B1
6658095 Yoakum et al. Dec 2003 B1
6665531 Soderbacka et al. Dec 2003 B1
6668173 Greene Dec 2003 B2
6684238 Dutta Jan 2004 B1
6684257 Camut et al. Jan 2004 B1
6698020 Zigmond et al. Feb 2004 B1
6700506 Winkler Mar 2004 B1
6720860 Narayanaswami Apr 2004 B1
6724403 Santoro et al. Apr 2004 B1
6757713 Ogilvie et al. Jun 2004 B1
6832222 Zimowski Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6836792 Chen Dec 2004 B1
6898626 Ohashi May 2005 B2
6959324 Kubik et al. Oct 2005 B1
6970088 Kovach Nov 2005 B2
6970907 Ullmann et al. Nov 2005 B1
6980909 Root et al. Dec 2005 B2
6981040 Konig et al. Dec 2005 B1
7020494 Spriestersbach et al. Mar 2006 B2
7027124 Foote et al. Apr 2006 B2
7072963 Anderson et al. Jul 2006 B2
7085571 Kalhan et al. Aug 2006 B2
7110744 Freeny, Jr. Sep 2006 B2
7124164 Chemtob Oct 2006 B1
7149893 Leonard et al. Dec 2006 B1
7173651 Knowles Feb 2007 B1
7188143 Szeto Mar 2007 B2
7203380 Chiu et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7227937 Yoakum et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7240089 Boudreau Jul 2007 B2
7269426 Kokkonen et al. Sep 2007 B2
7280658 Amini et al. Oct 2007 B2
7315823 Brondrup Jan 2008 B2
7349768 Bruce et al. Mar 2008 B2
7356564 Hartselle et al. Apr 2008 B2
7394345 Ehlinger et al. Jul 2008 B1
7411493 Smith Aug 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7454442 Cobleigh et al. Nov 2008 B2
7508419 Toyama et al. Mar 2009 B2
7512649 Faybishenko et al. Mar 2009 B2
7519670 Hagale et al. Apr 2009 B2
7535890 Rojas May 2009 B2
7546554 Chiu et al. Jun 2009 B2
7607096 Oreizy et al. Oct 2009 B2
7639943 Kalajan Dec 2009 B1
7650231 Gadler Jan 2010 B2
7668537 DeVries Feb 2010 B2
7770137 Forbes et al. Aug 2010 B2
7778973 Choi Aug 2010 B2
7779444 Glad Aug 2010 B2
7787886 Markhovsky et al. Aug 2010 B2
7796946 Eisenbach Sep 2010 B2
7801954 Cadiz et al. Sep 2010 B2
7856360 Kramer et al. Dec 2010 B2
7966658 Singh et al. Jun 2011 B2
8001204 Burtner et al. Aug 2011 B2
8010685 Singh et al. Aug 2011 B2
8032586 Challenger et al. Oct 2011 B2
8082255 Carlson, Jr. et al. Dec 2011 B1
8090351 Klein Jan 2012 B2
8098904 Ioffe et al. Jan 2012 B2
8099109 Altman et al. Jan 2012 B2
8112716 Kobayashi Feb 2012 B2
8131597 Hudetz Mar 2012 B2
8135166 Rhoads Mar 2012 B2
8136028 Loeb et al. Mar 2012 B1
8146001 Reese Mar 2012 B1
8161115 Yamamoto Apr 2012 B2
8161417 Lee Apr 2012 B1
8195203 Tseng Jun 2012 B1
8199747 Rojas et al. Jun 2012 B2
8200247 Starenky et al. Jun 2012 B1
8208943 Petersen Jun 2012 B2
8214443 Hamburg Jul 2012 B2
8220034 Hahn et al. Jul 2012 B2
8229458 Busch Jul 2012 B2
8234350 Gu et al. Jul 2012 B1
8276092 Narayanan et al. Sep 2012 B1
8279319 Date Oct 2012 B2
8280406 Ziskind Oct 2012 B2
8285199 Hsu et al. Oct 2012 B2
8287380 Nguyen et al. Oct 2012 B2
8296842 Singh et al. Oct 2012 B2
8301159 Hamynen et al. Oct 2012 B2
8306922 Kunal et al. Nov 2012 B1
8312086 Velusamy et al. Nov 2012 B2
8312097 Siegel et al. Nov 2012 B1
8326315 Phillips et al. Dec 2012 B2
8326327 Hymel et al. Dec 2012 B2
8332475 Rosen et al. Dec 2012 B2
8352546 Dollard Jan 2013 B1
8379130 Forutanpour et al. Feb 2013 B2
8385950 Wagner et al. Feb 2013 B1
8402097 Szeto Mar 2013 B2
8405773 Hayashi et al. Mar 2013 B2
8418067 Cheng et al. Apr 2013 B2
8423409 Rao Apr 2013 B2
8471914 Sakiyama et al. Jun 2013 B2
8472935 Fujisaki Jun 2013 B1
8509761 Krinsky et al. Aug 2013 B2
8510383 Hurley et al. Aug 2013 B2
8527345 Rothschild et al. Sep 2013 B2
8554627 Svendsen et al. Oct 2013 B2
8560612 Kilmer et al. Oct 2013 B2
8588942 Agrawal Nov 2013 B2
8594680 Ledlie et al. Nov 2013 B2
8613088 Varghese et al. Dec 2013 B2
8613089 Holloway et al. Dec 2013 B1
8660358 Bergboer et al. Feb 2014 B1
8660369 Llano et al. Feb 2014 B2
8660793 Ngo et al. Feb 2014 B2
8682350 Altman et al. Mar 2014 B2
8688524 Ramalingam Apr 2014 B1
8718333 Wolf et al. May 2014 B2
8724622 Rojas May 2014 B2
8732168 Johnson May 2014 B2
8744523 Fan et al. Jun 2014 B2
8745132 Obradovich Jun 2014 B2
8761800 Kuwahara Jun 2014 B2
8768876 Shim et al. Jul 2014 B2
8775972 Spiegel Jul 2014 B2
8788680 Naik Jul 2014 B1
8790187 Walker et al. Jul 2014 B2
8797415 Arnold Aug 2014 B2
8798646 Wang et al. Aug 2014 B1
8856349 Jain et al. Oct 2014 B2
8874677 Rosen et al. Oct 2014 B2
8886227 Schmidt et al. Nov 2014 B2
8909679 Roote et al. Dec 2014 B2
8909725 Sehn Dec 2014 B1
8942953 Yuen et al. Jan 2015 B2
8972357 Shim et al. Mar 2015 B2
8995433 Rojas Mar 2015 B2
9015285 Ebsen et al. Apr 2015 B1
9020745 Johnston et al. Apr 2015 B2
9040574 Wang et al. May 2015 B2
9055416 Rosen et al. Jun 2015 B2
9094137 Sehn et al. Jul 2015 B1
9100806 Rosen et al. Aug 2015 B2
9100807 Rosen et al. Aug 2015 B2
9113301 Spiegel et al. Aug 2015 B1
9119027 Sharon et al. Aug 2015 B2
9123074 Jacobs Sep 2015 B2
9143382 Bhogal et al. Sep 2015 B2
9143681 Ebsen et al. Sep 2015 B1
9152477 Campbell et al. Oct 2015 B1
9191776 Root et al. Nov 2015 B2
9204252 Root Dec 2015 B2
9225897 Sehn et al. Dec 2015 B1
9256832 Shim et al. Feb 2016 B2
9258459 Hartley Feb 2016 B2
9344606 Hartley et al. May 2016 B2
9385983 Sehn Jul 2016 B1
9396354 Murphy et al. Jul 2016 B1
9407712 Sehn Aug 2016 B1
9407816 Sehn Aug 2016 B1
9430783 Sehn Aug 2016 B1
9439041 Parvizi et al. Sep 2016 B2
9443227 Evans et al. Sep 2016 B2
9450907 Pridmore et al. Sep 2016 B2
9459778 Hogeg et al. Oct 2016 B2
9489661 Evans et al. Nov 2016 B2
9491134 Rosen et al. Nov 2016 B2
9532171 Allen et al. Dec 2016 B2
9537811 Allen et al. Jan 2017 B2
9628950 Noeth et al. Apr 2017 B1
9710821 Heath Jul 2017 B2
9854219 Sehn Dec 2017 B2
20020047868 Miyazawa Apr 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020087631 Sharma Jul 2002 A1
20020097257 Miller et al. Jul 2002 A1
20020122659 Mcgrath et al. Sep 2002 A1
20020128047 Gates Sep 2002 A1
20020144154 Tomkow Oct 2002 A1
20030001846 Davis et al. Jan 2003 A1
20030016247 Lai et al. Jan 2003 A1
20030017823 Mager et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030037124 Yamaura et al. Feb 2003 A1
20030052925 Daimon et al. Mar 2003 A1
20030101230 Benschoter et al. May 2003 A1
20030110503 Perkes Jun 2003 A1
20030126215 Udell Jul 2003 A1
20030148773 Spriestersbach et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030229607 Zellweger et al. Dec 2003 A1
20040027371 Jaeger Feb 2004 A1
20040064429 Hirstius et al. Apr 2004 A1
20040078367 Anderson et al. Apr 2004 A1
20040111467 Willis Jun 2004 A1
20040158739 Wakai et al. Aug 2004 A1
20040189465 Capobianco et al. Sep 2004 A1
20040203959 Coombes Oct 2004 A1
20040215625 Svendsen et al. Oct 2004 A1
20040243531 Dean Dec 2004 A1
20040243688 Wugofski Dec 2004 A1
20050021444 Bauer et al. Jan 2005 A1
20050022211 Veselov et al. Jan 2005 A1
20050048989 Jung Mar 2005 A1
20050071218 Lin Mar 2005 A1
20050078804 Yomoda Apr 2005 A1
20050097176 Schatz et al. May 2005 A1
20050102381 Jiang et al. May 2005 A1
20050104976 Currans May 2005 A1
20050114783 Szeto May 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20050122405 Voss et al. Jun 2005 A1
20050193340 Amburgey et al. Sep 2005 A1
20050193345 Klassen et al. Sep 2005 A1
20050198128 Anderson Sep 2005 A1
20050223066 Buchheit et al. Oct 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060026067 Nicholas et al. Feb 2006 A1
20060107297 Toyama et al. May 2006 A1
20060114338 Rothschild Jun 2006 A1
20060119882 Harris et al. Jun 2006 A1
20060230141 Willis Oct 2006 A1
20060242239 Morishima et al. Oct 2006 A1
20060252438 Ansamaa et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287878 Wadhwa et al. Dec 2006 A1
20070004426 Pfleging et al. Jan 2007 A1
20070038715 Collins et al. Feb 2007 A1
20070040931 Nishizawa Feb 2007 A1
20070073517 Panje Mar 2007 A1
20070073823 Cohen et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070082707 Flynt et al. Apr 2007 A1
20070136228 Petersen Jun 2007 A1
20070192128 Celestini Aug 2007 A1
20070198340 Lucovsky et al. Aug 2007 A1
20070198495 Buron et al. Aug 2007 A1
20070208751 Cowan et al. Sep 2007 A1
20070210936 Nicholson Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070214216 Carrer et al. Sep 2007 A1
20070233556 Koningstein Oct 2007 A1
20070233801 Eren et al. Oct 2007 A1
20070233859 Zhao et al. Oct 2007 A1
20070243887 Bandhole et al. Oct 2007 A1
20070244633 Phillips et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070255456 Funayama Nov 2007 A1
20070281690 Altman et al. Dec 2007 A1
20080022329 Glad Jan 2008 A1
20080025701 Ikeda Jan 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033930 Warren Feb 2008 A1
20080043041 Hedenstroem et al. Feb 2008 A2
20080049704 Witteman et al. Feb 2008 A1
20080062141 Chandhri Mar 2008 A1
20080076505 Ngyen et al. Mar 2008 A1
20080092233 Tian et al. Apr 2008 A1
20080094387 Chen Apr 2008 A1
20080104503 Beall et al. May 2008 A1
20080109844 Baldeschweiler et al. May 2008 A1
20080120409 Sun et al. May 2008 A1
20080147730 Lee et al. Jun 2008 A1
20080148150 Mall Jun 2008 A1
20080158230 Sharma et al. Jul 2008 A1
20080168033 Ott et al. Jul 2008 A1
20080168489 Schraga Jul 2008 A1
20080189177 Anderton et al. Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208692 Garaventi et al. Aug 2008 A1
20080021421 Rasanen et al. Sep 2008 A1
20080222545 Lemay Sep 2008 A1
20080255976 Altberg et al. Oct 2008 A1
20080256446 Yamamoto Oct 2008 A1
20080256577 Funaki et al. Oct 2008 A1
20080266421 Takahata et al. Oct 2008 A1
20080270938 Carlson Oct 2008 A1
20080288338 Wiseman et al. Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080313329 Wang et al. Dec 2008 A1
20080313346 Kujawa et al. Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090006191 Arankalle et al. Jan 2009 A1
20090006565 Velusamy et al. Jan 2009 A1
20090015703 Kim et al. Jan 2009 A1
20090024956 Kobayashi Jan 2009 A1
20090030774 Rothschild et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090040324 Nonaka Feb 2009 A1
20090042588 Lottin et al. Feb 2009 A1
20090058822 Chaudhri Mar 2009 A1
20090079846 Chou Mar 2009 A1
20090008971 Wood et al. Apr 2009 A1
20090089558 Bradford et al. Apr 2009 A1
20090089678 Sacco et al. Apr 2009 A1
20090093261 Ziskind Apr 2009 A1
20090132341 Klinger May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090132665 Thomsen et al. May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090153492 Popp Jun 2009 A1
20090157450 Athsani et al. Jun 2009 A1
20090157752 Gonzalez Jun 2009 A1
20090160970 Fredlund et al. Jun 2009 A1
20090163182 Gatti et al. Jun 2009 A1
20090177299 Van De Sluis Jul 2009 A1
20090192900 Collision Jul 2009 A1
20090199242 Johnson et al. Aug 2009 A1
20090204354 Davis et al. Aug 2009 A1
20090215469 Fisher et al. Aug 2009 A1
20090232354 Camp, Jr. et al. Sep 2009 A1
20090234815 Boerries et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090265647 Martin et al. Oct 2009 A1
20090276235 Benezra et al. Nov 2009 A1
20090278738 Gopinath Nov 2009 A1
20090288022 Almstrand et al. Nov 2009 A1
20090291672 Treves et al. Nov 2009 A1
20090292608 Polachek Nov 2009 A1
20090319607 Belz et al. Dec 2009 A1
20090327073 Li Dec 2009 A1
20100041378 Aceves et al. Feb 2010 A1
20100062794 Han Mar 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082693 Hugg et al. Apr 2010 A1
20100100568 Papin et al. Apr 2010 A1
20100113065 Narayan et al. May 2010 A1
20100130233 Lansing May 2010 A1
20100131880 Lee et al. May 2010 A1
20100131895 Wohlert May 2010 A1
20100153144 Miller et al. Jun 2010 A1
20100153216 Liang Jun 2010 A1
20100159944 Pascal et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100161720 Colligan et al. Jun 2010 A1
20100161831 Haas et al. Jun 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100183280 Beauregard et al. Jul 2010 A1
20100185552 Deluca et al. Jul 2010 A1
20100185665 Horn et al. Jul 2010 A1
20100191631 Weidmann Jul 2010 A1
20100197318 Petersen et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198683 Aarabi Aug 2010 A1
20100198694 Muthukrishnan Aug 2010 A1
20100198826 Petersen et al. Aug 2010 A1
20100198828 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100201536 Robertson et al. Aug 2010 A1
20100211425 Govindarajan Aug 2010 A1
20100214436 Kim et al. Aug 2010 A1
20100223128 Dukellis et al. Sep 2010 A1
20100223343 Bosan et al. Sep 2010 A1
20100223346 Dragt Sep 2010 A1
20100250109 Johnston et al. Sep 2010 A1
20100257036 Khojastepour et al. Oct 2010 A1
20100257196 Waters et al. Oct 2010 A1
20100259386 Holley et al. Oct 2010 A1
20100273509 Sweeney et al. Oct 2010 A1
20100281045 Dean Nov 2010 A1
20100306669 Della Pasqua Dec 2010 A1
20110004071 Faiola et al. Jan 2011 A1
20110010205 Richards Jan 2011 A1
20110029512 Folgner et al. Feb 2011 A1
20110040783 Uemichi et al. Feb 2011 A1
20110040804 Peirce et al. Feb 2011 A1
20110050909 Ellenby et al. Mar 2011 A1
20110050915 Wang et al. Mar 2011 A1
20110064388 Brown et al. Mar 2011 A1
20110066743 Hurley et al. Mar 2011 A1
20110076653 Culligan et al. Mar 2011 A1
20110083101 Sharon et al. Apr 2011 A1
20110099046 Weiss et al. Apr 2011 A1
20110099047 Weiss et al. Apr 2011 A1
20110099048 Weiss et al. Apr 2011 A1
20110102630 Rukes May 2011 A1
20110119133 Igelman et al. May 2011 A1
20110137881 Cheng et al. Jun 2011 A1
20110145564 Moshir et al. Jun 2011 A1
20110159890 Fortescue et al. Jun 2011 A1
20110164163 Bilbrey et al. Jul 2011 A1
20110197194 D'Angelo et al. Aug 2011 A1
20110202598 Evans et al. Aug 2011 A1
20110202968 Nurmi Aug 2011 A1
20110211534 Schmidt et al. Sep 2011 A1
20110213845 Logan et al. Sep 2011 A1
20110215903 Yang et al. Sep 2011 A1
20110215966 Kim et al. Sep 2011 A1
20110225048 Nair Sep 2011 A1
20110238763 Shin et al. Sep 2011 A1
20110255736 Thompson et al. Oct 2011 A1
20110270673 Lin Nov 2011 A1
20110273575 Lee Nov 2011 A1
20110282799 Huston Nov 2011 A1
20110283188 Farrenkopf Nov 2011 A1
20110314419 Dunn et al. Dec 2011 A1
20110320373 Lee et al. Dec 2011 A1
20120150978 Monaco Jan 2012 A1
20120028659 Whitney et al. Feb 2012 A1
20120033718 Kauffman et al. Feb 2012 A1
20120036015 Sheikh Feb 2012 A1
20120036443 Ohmori et al. Feb 2012 A1
20120054797 Skog et al. Mar 2012 A1
20120059722 Rao Mar 2012 A1
20120062805 Candelore Mar 2012 A1
20120084731 Filman et al. Apr 2012 A1
20120084835 Thomas et al. Apr 2012 A1
20120099800 Llano et al. Apr 2012 A1
20120108293 Law et al. May 2012 A1
20120110096 Smarr et al. May 2012 A1
20120113143 Adhikari et al. May 2012 A1
20120113272 Hata May 2012 A1
20120123830 Svendsen et al. May 2012 A1
20120123871 Svendsen et al. May 2012 A1
20120123875 Svendsen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124176 Curtis et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120131507 Sparandara et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120001651 Lalancette et al. Jun 2012 A1
20120143760 Abulafia et al. Jun 2012 A1
20120166971 Sachson et al. Jun 2012 A1
20120169855 Oh Jul 2012 A1
20120172062 Altman et al. Jul 2012 A1
20120173991 Roberts et al. Jul 2012 A1
20120176401 Hayward et al. Jul 2012 A1
20120184248 Speede Jul 2012 A1
20120197724 Kendall Aug 2012 A1
20120200743 Blanchflower et al. Aug 2012 A1
20120209924 Evans et al. Aug 2012 A1
20120210244 De Francisco Lopez et al. Aug 2012 A1
20120212632 Mate et al. Aug 2012 A1
20120220264 Kawabata Aug 2012 A1
20120226748 Bosworth et al. Sep 2012 A1
20120233000 Fisher et al. Sep 2012 A1
20120236162 Imamura Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120246004 Book et al. Sep 2012 A1
20120250951 Chen Oct 2012 A1
20120252418 Kandekar et al. Oct 2012 A1
20120254325 Majeti et al. Oct 2012 A1
20120264446 Xie et al. Oct 2012 A1
20120278387 Garcia et al. Nov 2012 A1
20120278692 Shi Nov 2012 A1
20120290637 Perantatos et al. Nov 2012 A1
20120299954 Wada et al. Nov 2012 A1
20120304052 Tanaka et al. Nov 2012 A1
20120304080 Wormald et al. Nov 2012 A1
20120307096 Bray et al. Dec 2012 A1
20120307112 Kunishige et al. Dec 2012 A1
20120319904 Lee et al. Dec 2012 A1
20120323933 He et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20130006759 Srivastava et al. Jan 2013 A1
20130024757 Doll et al. Jan 2013 A1
20130036364 Johnson Feb 2013 A1
20130045753 Obermeyer et al. Feb 2013 A1
20130050260 Reitan Feb 2013 A1
20130055083 Fino Feb 2013 A1
20130057587 Leonard et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130060690 Oskolkov et al. Mar 2013 A1
20130063369 Malhotra et al. Mar 2013 A1
20130067027 Song et al. Mar 2013 A1
20130071093 Hanks et al. Mar 2013 A1
20130080254 Thramann Mar 2013 A1
20130085790 Palmer et al. Apr 2013 A1
20130086072 Peng et al. Apr 2013 A1
20130090171 Holton et al. Apr 2013 A1
20130095857 Garcia et al. Apr 2013 A1
20130104053 Thornton et al. Apr 2013 A1
20130110885 Brundrett, III May 2013 A1
20130111514 Slavin et al. May 2013 A1
20130128059 Kristensson May 2013 A1
20130129252 Lauper May 2013 A1
20130132477 Bosworth et al. May 2013 A1
20130145286 Feng et al. Jun 2013 A1
20130159110 Rajaram et al. Jun 2013 A1
20130159919 Leydon Jun 2013 A1
20130169822 Zhu et al. Jul 2013 A1
20130173729 Starenky et al. Jul 2013 A1
20130182133 Tanabe Jul 2013 A1
20130185131 Sinha et al. Jul 2013 A1
20130191198 Carlson et al. Jul 2013 A1
20130194301 Robbins et al. Aug 2013 A1
20130198176 Kim Aug 2013 A1
20130218965 Abrol et al. Aug 2013 A1
20130218968 Mcevilly et al. Aug 2013 A1
20130222323 Mckenzie Aug 2013 A1
20130225202 Shim et al. Aug 2013 A1
20130226857 Shim et al. Aug 2013 A1
20130227476 Frey Aug 2013 A1
20130232194 Knapp et al. Sep 2013 A1
20130254227 Shim et al. Sep 2013 A1
20130263031 Oshiro et al. Oct 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130267253 Case et al. Oct 2013 A1
20130275505 Gauglitz et al. Oct 2013 A1
20130290443 Collins et al. Oct 2013 A1
20130304646 De Geer Nov 2013 A1
20130311255 Cummins et al. Nov 2013 A1
20130325964 Berberat Dec 2013 A1
20130344896 Kirmse et al. Dec 2013 A1
20130346869 Asver et al. Dec 2013 A1
20130346877 Borovoy et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140011538 Mulcahy et al. Jan 2014 A1
20140019264 Wachman et al. Jan 2014 A1
20140032682 Prado et al. Jan 2014 A1
20140043204 Basnayake et al. Feb 2014 A1
20140045530 Gordon et al. Feb 2014 A1
20140047016 Rao Feb 2014 A1
20140047045 Baldwin et al. Feb 2014 A1
20140047335 Lewis et al. Feb 2014 A1
20140049652 Moon et al. Feb 2014 A1
20140052485 Shidfar Feb 2014 A1
20140052633 Gandhi Feb 2014 A1
20140057660 Wager Feb 2014 A1
20140082651 Sharifi Mar 2014 A1
20140092130 Anderson et al. Apr 2014 A1
20140096029 Schultz Apr 2014 A1
20140114565 Aziz et al. Apr 2014 A1
20140122658 Haeger et al. May 2014 A1
20140122787 Shalvi et al. May 2014 A1
20140129953 Spiegel May 2014 A1
20140143143 Fasoli et al. May 2014 A1
20140149519 Redfern et al. May 2014 A1
20140155102 Cooper et al. Jun 2014 A1
20140173424 Hogeg et al. Jun 2014 A1
20140173457 Wang et al. Jun 2014 A1
20140189592 Benchenaa et al. Jul 2014 A1
20140207679 Cho Jul 2014 A1
20140214471 Schreiner, III Jul 2014 A1
20140222564 Kranendonk et al. Aug 2014 A1
20140258405 Perkin Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266703 Dalley, Jr. et al. Sep 2014 A1
20140278934 Gutierrez Sep 2014 A1
20140279061 Elimeliah et al. Sep 2014 A1
20140279436 Dorsey et al. Sep 2014 A1
20140279540 Jackson Sep 2014 A1
20140280537 Pridmore et al. Sep 2014 A1
20140282096 Rubinstein et al. Sep 2014 A1
20140287779 O'keefe et al. Sep 2014 A1
20140289833 Briceno Sep 2014 A1
20140304212 Shim et al. Oct 2014 A1
20140306986 Gottesman et al. Oct 2014 A1
20140317302 Naik Oct 2014 A1
20140324627 Haver et al. Oct 2014 A1
20140324629 Jacobs Oct 2014 A1
20140325383 Brown et al. Oct 2014 A1
20150020086 Chen et al. Jan 2015 A1
20150046278 Pei et al. Feb 2015 A1
20150071619 Brough Mar 2015 A1
20150087263 Branscomb et al. Mar 2015 A1
20150088622 Ganschow et al. Mar 2015 A1
20150088635 Maycotte Mar 2015 A1
20150095020 Leydon Apr 2015 A1
20150096042 Mizrachi Apr 2015 A1
20150116529 Wu et al. Apr 2015 A1
20150169827 Laborde Jun 2015 A1
20150172534 Miyakawaa et al. Jun 2015 A1
20150178260 Brunson Jun 2015 A1
20150222814 Li et al. Aug 2015 A1
20150261917 Smith Sep 2015 A1
20150312184 Langholz et al. Oct 2015 A1
20150348095 Dixon Dec 2015 A1
20150350136 Flynn, III et al. Dec 2015 A1
20150365795 Allen et al. Dec 2015 A1
20150378502 Hu et al. Dec 2015 A1
20160006927 Sehn Jan 2016 A1
20160014063 Hogeg et al. Jan 2016 A1
20160078485 Shim et al. Mar 2016 A1
20160085773 Chang et al. Mar 2016 A1
20160085863 Allen et al. Mar 2016 A1
20160099901 Allen et al. Apr 2016 A1
20160157062 Shim et al. Jun 2016 A1
20160180887 Sehn Jun 2016 A1
20160182422 Sehn et al. Jun 2016 A1
20160182875 Sehn Jun 2016 A1
20160239248 Sehn Aug 2016 A1
20160277419 Allen et al. Sep 2016 A1
20160321708 Sehn Nov 2016 A1
20170006094 Abou Mahmoud et al. Jan 2017 A1
20170061308 Chen et al. Mar 2017 A1
20170287006 Azmoodeh et al. Oct 2017 A1
Foreign Referenced Citations (31)
Number Date Country
2887596 Jul 2015 CA
2051480 Apr 2009 EP
2151797 Feb 2010 EP
2399928 Sep 2004 GB
19990073076 Oct 1999 KR
20010078417 Aug 2001 KR
WO-1996024213 Aug 1996 WO
WO-1999063453 Dec 1999 WO
WO-2000058882 Oct 2000 WO
WO-2001029642 Apr 2001 WO
WO-2001050703 Jul 2001 WO
WO-2006118755 Nov 2006 WO
WO-2007092668 Aug 2007 WO
WO-2009043020 Apr 2009 WO
WO-2011040821 Apr 2011 WO
WO-2011119407 Sep 2011 WO
WO-2013008238 Jan 2013 WO
WO-2013045753 Apr 2013 WO
WO-2014006129 Jan 2014 WO
WO-2014068573 May 2014 WO
WO-2014115136 Jul 2014 WO
WO-2014194262 Dec 2014 WO
WO-2015192026 Dec 2015 WO
WO-2016044424 Mar 2016 WO
WO-2016054562 Apr 2016 WO
WO-2016065131 Apr 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100342 Jun 2016 WO
WO-2016149594 Sep 2016 WO
WO-2016179166 Nov 2016 WO
Non-Patent Literature Citations (23)
Entry
Gregorich et al., “Verification of AIRS Boresight Accuracy Using Coastline Detection” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, Issue 2, (2003) pp. 298-302.
Hsu-Yang Kun et al., “Using RFID Technology and SOA with 4D Escape Route” Wireless Communications, Networking and Mobile Computing (2008) pp. 1-4.
Ning Xia et al., “GeoEcho: Inferring User Interests from Geotag Reports in Network Traffic” IEEE/WIC/ACM International Joint Conferences, vol. 2 (2014) pp. 1-8.
“A Whole New Story”, URL: https://www.snap.com/en-US/news/, (2017), 13 pgs.
“Adding a watermark to your photos”, eBay, URL: http://pages.ebay.com/help/sell/pictures.html, (accessed May 24, 2017), 4 pgs.
“BlogStomp”, URL: http://stompsoftware.com/blogstomp, (accessed May 24, 2017), 12 pgs.
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, URL: http://www.blastradius.com/work/cup-magic, (2016), 7 pgs.
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, URL: http://techpp.com/2013/02/15/instaplace-app-review, (2013), 13 pgs.
“InstaPlace Photo App Tell The Whole Story”, URL: https://youtu.be/uF_gFkg1hBM, (Nov. 8, 2013), 113 pgs.
“International Application Serial No. PCT/US2015/037251, International Search Report dated Sep. 29, 2015”, 2 pgs.
“Introducing Snapchat Stories”, URL: https://www.youtube.com/watch?v=88Cu3yN-LIM, (Oct. 3, 2013), 92 pgs.
“Macy's Believe-o-Magic”, URL: https://www.youtube.com/watch?v=xvzRXy3J0Z0, (Nov. 7, 2011), 102 pgs.
“Macys Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country, (Nov. 2, 2011), 6 pgs.
“Starbucks Cup Magic”, URL: https://www.youtube.com/watch?v=RWwQXi9RGOw, (Nov. 8, 2011), 87 pgs.
“Starbucks Cup Magic for Valentine's Day”, URL: https://www.youtube.com/watch?v=8nvqOzjq10w, (Feb. 6, 2012), 88 pgs.
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return, (Nov. 15, 2011), 5 pgs.
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, URL: https://techcrunch.com/2011/09/08/mobli-filters, (Sep. 8, 2011), 10 pgs.
Janthong, Isaranu, “Android App Review Thailand”, URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html, (Jan. 23, 2013), 9 pgs.
Macleod, Duncan, “Macys Believe-o-Magic App”, URL: http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app, (Nov. 14, 2011), 10 pgs.
Macleod, Duncan, “Starbucks Cup Magic Lets Merry”, URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic, (Nov. 12, 2011), 8 pgs.
Notopoulos, Katie, “A Guide To The New Snapchat Filters And Big Fonts”, URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term=.bkQ9qVZWe#.nv58YXpkV, (Dec. 22, 2013), 13 pgs.
Panzarino, Matthew, “Snapchat Adds Filters, A Replay Function And For Whatever Reason, Time, Temperature And Speed Overlays”, URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/, (Dec. 20, 2013), 12 pgs.
Tripathi, Rohit, “Watermark Images in PHP And Save File on Server”, URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server, (Dec. 28, 2012), 4 pgs.
Related Publications (1)
Number Date Country
20160048869 A1 Feb 2016 US
Provisional Applications (1)
Number Date Country
62037025 Aug 2014 US