1. Field of the Disclosure
The present disclosure generally relates to distribution of digital television content and more particularly to menu systems for selecting multimedia programs.
2. Description of the Related Art
Many households contain televisions that are communicatively coupled to set-top boxes for receiving multimedia content from provider networks. When selecting multimedia content, a user may be presented with a visual menu system with selectable icons, for example. Individuals who are visually impaired, illiterate, or learning disabled may have difficulty with such visual-based menu systems.
In one aspect, a set-top box (STB) is disclosed for providing an audible menu system. The STB includes a screen reader for reading a plurality of electronic programming guide (EPG) elements. The STB further includes a speech synthesizer for providing a plurality of audio outputs indicative of a portion of the plurality of EPG elements. In some embodiments, the screen reader is enabled for providing a plurality of audio outputs indicative of the location of a cursor on a display. The STB may include an output jack for providing audio signals. In addition, the STB may include a storage and an input jack for receiving audible inputs for associating with selected of the plurality of EPG elements. Data indicative of the audible inputs may be stored in the storage. Embodied STBs may also include a speaker for providing audible sounds corresponding to the plurality of audio outputs. The STB may also have a hardware interface for receiving signals indicative of user inputs, and further be enabled for producing audible sounds indicative of user inputs received from the hardware interface.
In another aspect, a computer program product is provided on a computer readable medium for providing an audible menu system. The computer program product includes instructions operable for receiving a plurality of inputs indicative of a corresponding plurality of electronic programming guide elements. In some embodiments, further instructions are for providing a plurality of inputs indicative of a corresponding plurality of EPG elements. Additionally, instructions may be further operable for providing a plurality of synthesized speech sounds corresponding to the plurality of inputs in response to user inputs. Audible verifications of user inputs may be provided related to the position of the cursor. Further instructions may be operable for providing audio outputs indicative of the location of a cursor on a display. Instructions may be operable for encoding audio signals corresponding to the plurality of audio outputs, wherein the audio signals are for an output jack. Additionally, instructions may be operable for storing data indicative of received audible inputs and for associating a portion of the data with selected of the plurality of EPG elements.
In still another aspect, a method is disclosed for providing an audible menu system. The method includes receiving a plurality of inputs indicative of a corresponding plurality of EPG elements. The method may further include providing a plurality of synthesized speech sounds corresponding to the plurality of audible outputs, wherein providing the plurality of synthesized speech sounds is in response to user inputs. Verification sounds may be provided to verify the position of the cursor over a selectable icon. The selectable icon may be a text box containing a program identifier. The method may further include providing audio outputs indicative of the location of a cursor on a display. Additionally, the method may include encoding audio signals that correspond to the plurality of inputs, wherein the audio signals are for providing to an output jack. In some embodiments, the method includes storing data indicative of received audible inputs and associating a portion of the data with selected of the plurality of EPG elements. The method may further include processing user input signals received at the hardware interface and producing audible signals indicative of the received user inputs.
In the following description, details are set forth by way of example to provide a thorough explanation of the disclosed subject matter. It should be apparent to a person of ordinary skill, however, that the disclosed embodiments are exemplary and not exhaustive of all possible embodiments. Throughout this disclosure, in some instances a hyphenated form of a reference numeral refers to a specific instance of an element and the un-hyphenated form of the reference numeral refers to the element generically or collectively. Thus, for example, element “102-1” refers to an instance of an element class, which may be referred to collectively as elements “102” and any one of which may be referred to generically as an element “102”.
Menu systems related to multimedia content (e.g., television programming) are common and often require a user to have good eyesight to operate them. For example, some menu systems have selectable icons that a user manipulates with an on-screen cursor using directional inputs from a remote control unit. For users that are visually impaired, it may be difficult to manipulate an on-screen cursor over a selectable icon.
Before describing details of applications and systems used in conjunction with a multimedia content distribution network, selected aspects of the network and selected devices used to implement the network are described to provide context for at least some implementations.
Television programs, video-on-demand, radio programs including music programs, and a variety of other types of multimedia content may be distributed to multiple subscribers over various types of networks. Suitable types of networks that may be configured to support the provisioning of multimedia content services by a service provider include, as examples, telephony-based networks, coaxial-based networks, satellite-based networks, and the like.
In some networks including, for example, traditional coaxial-based “cable” networks, whether analog or digital, a service provider distributes a mixed signal that includes a relatively large number of multimedia content channels (also referred to herein as “channels”), each occupying a different frequency band or channel, through a coaxial cable, a fiber-optic cable, or a combination of the two. The enormous bandwidth required to transport simultaneously large numbers of multimedia channels is a source of constant challenge for cable-based providers. In these types of networks, a tuner within a STB, television, or other form of receiver is required to select a channel from the mixed signal for playing or recording. A subscriber wishing to play or record multiple channels typically needs to have distinct tuners for each desired channel. This is an inherent limitation of cable networks and other mixed signal networks.
In contrast to mixed signal networks, Internet Protocol Television (IPTV) networks generally distribute content to a subscriber only in response to a subscriber request so that, at any given time, the number of content channels being provided to a subscriber is relatively small, e.g., one channel for each operating television plus possibly one or two channels for simultaneous recording. As suggested by the name, IPTV networks typically employ Internet Protocol (IP) and other open, mature, and pervasive networking technologies. Instead of being associated with a particular frequency band, an IPTV television program, movie, or other form of multimedia content is a packet-based stream that corresponds to a particular network address, e.g., an IP address. In these networks, the concept of a channel is inherently distinct from the frequency channels native to mixed signal networks. Moreover, whereas a mixed signal network requires a hardware intensive tuner for every channel to be played, IPTV channels can be “tuned” simply by transmitting to a server an IP or analogous type of network address that is associated with the desired channel.
IPTV may be implemented, at least in part, over existing infrastructure including, for example, existing telephone lines, possibly in combination with customer premise equipment (CPE) including, for example, a digital subscriber line (DSL) modem in communication with a STB, a display, and other appropriate equipment to receive multimedia content from a provider network and convert such content into usable form. In some implementations, a core portion of an IPTV network is implemented with fiber optic cables while the so-called last mile may include conventional, unshielded, twisted-pair, copper cables.
IPTV networks support bidirectional (i.e., two-way) communication between a subscriber's CPE and a service provider's equipment. Bidirectional communication allows a service provider to deploy advanced features, such as video-on-demand (VOD), pay-per-view, advanced programming information (e.g., sophisticated and customizable programming guides), and the like. Bidirectional networks may also enable a service provider to collect information related to a subscriber's preferences, whether for purposes of providing preference based features to the subscriber, providing potentially valuable information to service providers, or potentially lucrative information to content providers and others.
Referring now to the drawings,
Client side 101 and server side 102 are linked by access network 130. In embodiments of MCDN 100 that leverage telephony hardware and infrastructure, access network 130 may include the “local loop” or “last mile,” which refers to the physical wires that connect a subscriber's home or business to a local exchange. In these embodiments, the physical layer of access network 130 may include twisted pair copper cables or fiber optics cables employed either as fiber to the curb (FTTC) or fiber to the home (FTTH).
Access network 130 may include hardware and firmware to perform signal translation when access network 130 includes multiple types of physical media. For example, an access network that includes twisted-pair telephone lines to deliver multimedia content to consumers may utilize DSL. In embodiments of access network 130 that implement FTTC, a DSL access multiplexer (DSLAM) may be used within access network 130 to transfer signals containing multimedia content from optical fiber to copper wire for DSL delivery to consumers.
In other embodiments, access network 130 may transmit radio frequency (RF) signals over coaxial cables. In these embodiments, access network 130 may utilize quadrature amplitude modulation (QAM) equipment for downstream traffic. In these embodiments, access network 130 may receive upstream traffic from a consumer's location using quadrature phase shift keying (QPSK) modulated RF signals. In such embodiments, a cable modem termination system (CMTS) may be used to mediate between IP-based traffic on private network 110 and access network 130.
Services provided by the server side resources as shown in
A national VHO, for example, may deliver national content feeds to several regional VHOs, each of which may include its own acquisition resources to acquire local content, such as the local affiliate of a national network, and to inject local content such as advertising and public service announcements from local entities. The regional VHOs may then deliver the local and national content for reception by subscribers served by the regional VHO. The hierarchical arrangement of VHOs, in addition to facilitating localized or regionalized content provisioning, may conserve bandwidth by limiting the content that is transmitted over the core network and injecting regional content “downstream” from the core network.
Segments of private network 110, as shown in
As shown in
RG 122 may include elements of a broadband modem such as a DSL modem, as well as elements of a router and/or access point for an Ethernet or other suitable local area network (LAN) 127. In this embodiment, STB 121 is a uniquely addressable Ethernet compliant device. In some embodiments, display 124 may be any National Television System Committee (NTSC) and/or Phase Alternating Line (PAL) compliant display device. Both STB 121 and display 124 may include any form of conventional frequency tuner. Remote control device 126 communicates wirelessly with STB 121 using an infrared (IR) or RF signal.
In IPTV compliant implementations of MCDN 100, the clients 120 are operable to receive packet-based multimedia streams from access network 130 and process the streams for presentation on displays 124. In addition, clients 120 are network-aware systems that may facilitate bidirectional networked communications with server side 102 resources to facilitate network hosted services and features. Because clients 120 are operable to process multimedia content streams while simultaneously supporting more traditional web-like communications, clients 120 may support or comply with a variety of different types of network protocols including streaming protocols such as reliable datagram protocol (RDP) over user datagram protocol/internet protocol (UDP/IP) as well as web protocols such as hypertext transport protocol (HTTP) over transport control protocol (TCP/IP).
The server side 102 of MCDN 100 as depicted in
Before distributing multimedia content to users, MCDN 100 first obtains multimedia content from content providers. To that end, acquisition resources 106 encompass various systems and devices to acquire multimedia content, reformat it when necessary, and process it for delivery to subscribers over private network 110 and access network 130.
Acquisition resources 106 may include, for example, systems for capturing analog and/or digital content feeds, either directly from a content provider or from a content aggregation facility. Content feeds transmitted via VHF/UHF broadcast signals may be captured by an antenna 141 and delivered to live acquisition server 140. Similarly, live acquisition server 140 may capture down linked signals transmitted by a satellite 142 and received by a parabolic dish 144. In addition, live acquisition server 140 may acquire programming feeds transmitted via high-speed fiber feeds or other suitable transmission means. Acquisition resources 106 may further include signal conditioning systems and content preparation systems for encoding content.
As depicted in
After acquiring multimedia content, acquisition resources 106 may transmit acquired content over private network 110, for example, to one or more servers in content delivery resources 107. Prior to transmission, live acquisition server 140 may encode acquired content using, e.g., MPEG-2, H.263, a Windows Media Video (WMV) family codec, or another suitable video codec. Acquired content may be encoded and composed to preserve network bandwidth and network storage resources and, optionally, to provide encryption for securing the content. VOD content acquired by VOD acquisition server 150 may be in a compressed format prior to acquisition and further compression or formatting prior to transmission may be unnecessary and/or optional.
Content delivery resources 107 as shown in
Content delivery server 155, in conjunction with live content server 156 and VOD delivery server 158, responds to user requests for content by providing the requested content to the user. The content delivery resources 107 are, in some embodiments, responsible for creating video streams that are suitable for transmission over private network 110 and/or access network 130. In some embodiments, creating video streams from the stored content generally includes generating data packets by encapsulating relatively small segments of the stored content in one or more packet headers according to the network communication protocol stack in use. These data packets are then transmitted across a network to a receiver (e.g., STB 121 of client 120), where the content is parsed from individual packets and re-assembled into multimedia content suitable for processing by a STB decoder.
User requests received by content delivery server 155 may include an indication of the content that is being requested. In some embodiments, this indication includes an IP address associated with the desired content. For example, a particular local broadcast television station may be associated with a particular channel and the feed for that channel may be associated with a particular IP address. When a subscriber wishes to view the station, the subscriber may interact with remote control device 126 to send a signal to STB 121 indicating a request for the particular channel. When STB 121 responds to the remote control signal, the STB 121 changes to the requested channel by transmitting a request that includes an IP address associated with the desired channel to content delivery server 155.
Content delivery server 155 may respond to a request by making a streaming video signal accessible to the user. Content delivery server 155 may employ unicast and broadcast techniques when making content available to a user. In the case of multicast, content delivery server 155 employs a multicast protocol to deliver a single originating stream to multiple clients. When a new user requests the content associated with a multicast stream, there may be latency associated with updating the multicast information to reflect the new user as a part of the multicast group. To avoid exposing this undesirable latency to the subscriber, content delivery server 155 may temporarily unicast a stream to the requesting subscriber. When the subscriber is ultimately enrolled in the multicast group, the unicast stream is terminated and the subscriber receives the multicast stream. Multicasting desirably reduces bandwidth consumption by reducing the number of streams that must be transmitted over the access network 130 to clients 120.
As illustrated in
To deliver multimedia content, client-facing switch 113 may employ any of various existing or future Internet protocols for providing reliable real-time streaming multimedia content. In addition to the TCP, UDP, and HTTP protocols referenced above, such protocols may use, in various combinations, other protocols including, real-time transport protocol (RTP), real-time control protocol (RTCP), file transfer protocol (FTP), and real-time streaming protocol (RTSP), as examples.
In some embodiments, client-facing switch 113 routes multimedia content encapsulated into IP packets over access network 130. For example, an MPEG-2 transport stream may be sent, in which the transport stream consists of a series of 188 byte transport packets, for example. Client-facing switch 113 as shown is coupled to a content delivery server 155, acquisition switch 114, applications switch 117, a client gateway 153, and a terminal server 154 that is operable to provide terminal devices with a connection point to the private network 110. Client gateway 153 may provide subscriber access to private network 110 and the resources coupled thereto.
In some embodiments, STB 121 may access MCDN 100 using information received from client gateway 153. Subscriber devices may access client gateway 153 and client gateway 153 may then allow such devices to access the private network 110 once the devices are authenticated or verified. Similarly, client gateway 153 may prevent unauthorized devices, such as hacker computers or stolen STBs, from accessing the private network 110. Accordingly, in some embodiments, when an STB 121 accesses MCDN 100, client gateway 153 verifies subscriber information by communicating with user store 172 via the private network 110. Client gateway 153 may verify billing information and subscriber status by communicating with an OSS/BSS gateway 167. OSS/BSS gateway 167 may transmit a query to the OSS/BSS server 181 via an OSS/BSS switch 115 that may be connected to a public network 112. Upon client gateway 153 confirming subscriber and/or billing information, client gateway 153 may allow STB 121 access to IPTV content, VOD content, and other services. If client gateway 153 cannot verify subscriber information for STB 121, for example, because it is connected to an unauthorized twisted pair or residential gateway, client gateway 153 may block transmissions to and from STB 121 beyond the private access network 130.
MCDN 100, as depicted, includes application resources 105, which communicate with private network 110 via application switch 117. Application resources 105 as shown include an application server 160 operable to host or otherwise facilitate one or more subscriber applications 165 that may be made available to system subscribers. For example, subscriber applications 165 as shown include an EPG application 163. Subscriber applications 165 may include other applications as well. In addition to subscriber applications 165, application server 160 may host or provide a gateway to operation support systems and/or business support systems. In some embodiments, communication between application server 160 and the applications that it hosts and/or communication between application server 160 and client 120 may be via a conventional web based protocol stack such as HTTP over TCP/IP or HTTP over UDP/IP.
Application server 160 as shown also hosts an application referred to generically as user application 164. User application 164 represents an application that may deliver a value added feature to a subscriber. User application 164 is illustrated in
As shown in
MCDN 100, as shown, includes an OSS/BSS resource 108 including an OSS/BSS switch 115. OSS/BSS switch 115 facilitates communication between OSS/BSS resources 108 via public network 112. The OSS/BSS switch 115 is coupled to an OSS/BSS server 181 that hosts operations support services including remote management via a management server 182. OSS/BSS resources 108 may include a monitor server (not depicted) that monitors network devices within or coupled to MCDN 100 via, for example, a simple network management protocol (SNMP).
Turning now to
In the embodiment depicted in
As shown in
Regardless of the implementation details of the multimedia processing hardware, STB 121 as shown in
Network interface 202 may further include or support software or firmware providing one or more complete network communication protocol stacks. Where network interface 202 is tasked with receiving streaming multimedia communications, for example, network interface 202 may include a streaming video protocol stack such as an RTP/UDP stack. In these embodiments, network interface 202 is operable to receive a series of streaming multimedia packets and process them to generate a digital multimedia stream 204 that is provided to transport/demux 205.
The digital multimedia stream 204 is a sequence of digital information that includes interlaced audio data streams and video data streams. The video and audio data contained in digital multimedia stream 204 may be referred to as “in-band” data in reference to a particular frequency bandwidth that such data might have been transmitted in an RF transmission environment. Digital multimedia stream 204 may also include “out-of-band” data which might encompass any type of data that is not audio or video data, but may refer in particular to data that is useful to the provider of an IPTV service. This out-of-band data might include, for example, billing data, decryption data, and data enabling the IPTV service provider to manage IPTV client 120 remotely.
Transport/demux 205 as shown is operable to segregate and possibly decrypt the audio, video, and out-of-band data in digital multimedia stream 204. Transport/demux 205 outputs a digital audio stream 206, a digital video stream 207, and an out-of-band digital stream 208 to A/V decoder 210. Transport/demux 205 may also, in some embodiments, support or communicate with various peripheral interfaces of STB 121 including a radio control (RC) interface 250 suitable for use with an RC remote control unit (not shown) and a front panel interface (not shown). RC interface 250 may also be compatible to receive infrared signals, light signals, laser signals, or other signals from remote controls that use signal types that differ from RC signals. RC interface 250 represents a hardware interface which may be enabled for receiving signals indicative of user inputs. For example, a user may provide user inputs to a remote control device for selecting or highlighting EPG elements on a display.
A/V decoder 210 processes digital audio, video, and out-of-band streams 206, 207, and 208 to produce a native format digital audio stream 211 and a native format digital video stream 212. A/V decoder 210 processing may include decompression of digital audio stream 206 and/or digital video stream 207, which are generally delivered to STB 121 as compressed data streams. In some embodiments, digital audio stream 206 and digital video stream 207 are MPEG compliant streams and, in these embodiments, A/V decoder 210 is an MPEG decoder.
The digital out-of-band stream 208 may include information about or associated with content provided through the audio and video streams. This information may include, for example, the title of a show, start and end times for the show, type or genre of the show, broadcast channel number associated with the show, and so forth. A/V decoder 210 may decode such out-of-band information. MPEG embodiments of A/V decoder 210 support a graphics plane as well as a video plane and at least some of the out-of-band information may be incorporated by A/V decoder 210 into its graphics plane and presented to the display 124, perhaps in response to a signal from a remote control device. The digital out-of-band stream 208 may be a part of an EPG, an interactive program guide (IPG) or an electronic service guide (ESG). Such devices allow a user to navigate, select, and search for content by time, channel, genre, title, and the like. A typical EPG may have a graphical user interface (GUI) which enables the display of program titles and other descriptive information such as program identifiers, a summary of subject matter for programs, names of actors, names of directors, year of production, and the like. In accordance with disclosed embodiments, such EPG data is presented audibly to users. The information may be displayed on a grid and allow a user the option to select a program or the option to select more information regarding a program. A user may make selections, as is commonly known, using input buttons on a remote control. Alternatively, user inputs may be provided by voice-recognition components incorporated into a STB or remote control device, as examples. In some embodiments, users may record customized audio files that may be played audibly during navigation of the STB to allow a user to navigate the EPG without relying on a visual representation of the EPG and associated program identifiers. EPGs may be sent with a broadcast transport stream or on a special data channel. Alternatively, EPGs may be accessed similar to web pages by a web browser or similar software module that retrieves EPG data from a remote web server. In accordance with disclosed embodiments, the components of such EPGs and menu systems are announced audibly to allow those with limited vision or reading skills to obtain data about and select available multimedia events.
The native format digital audio stream 211 as shown in
In addition to the multimedia modules described, STB 121 as shown includes various peripheral interfaces. STB 121 as shown includes, for example, a Universal Serial Bus (USB) interface 240 and a local interconnection interface 245. Local interconnection interface 245 may, in some embodiments, support the HPNA or other form of local interconnection 123 shown in
The illustrated embodiment of STB 121 includes storage 270 that is accessible to controller 260 and possibly one or more of the multimedia modules. Storage 270 may include dynamic random access memory (DRAM) or another type of volatile storage identified as memory 275 as well as various forms of persistent or nonvolatile storage including flash memory 280 and/or other suitable types of persistent memory devices including ROMs, erasable programmable read-only memory (EPROMs), and electrically erasable programmable read-only memory (EEPROMs). In addition, the depicted embodiment of STB 121 includes a mass storage device in the form of one or more magnetic hard disks 295 supported by an integrated device electronics (IDE) compliant or other type of disk drive 290. Embodiments of STB 121 employing mass storage devices may be operable to store content locally and play back stored content when desired.
In the embodiment depicted in
Turning now to
Remote control application 401 includes computer executable code that supports the STB 121's remote control functionality. For example, when a user depresses a volume button on remote control device 126, remote control application 401 includes code to modify the volume signal being generated by STB 121. In some embodiments, remote control application 401 is invoked by controller 260 in response to a signal from RC interface 250 indicating that RC interface 250 has received a remote control command signal. Although the embodiments described herein employ a wireless remote control device 126 to convey user commands to STB 121, the user commands may be conveyed to STB 121 in other ways. For example, STB 121 may include a front panel having function buttons that are associated with various commands, some of which may coincide with commands associated with function buttons on remote control device 126. Similarly, although remote control device 126 is described herein as being an RF or IR remote control device, other embodiments may use other media and/or protocols to convey commands to STB 121. For example, remote control commands may be conveyed to STB 121 via USB, WiFi (IEEE 802.11-family protocols), and/or Bluetooth techniques, all of which are well known in the field of network communications.
RC interface 250 may be operable to parse or otherwise extract the remote control command that is included in the signal. The remote control command may then be made available to controller 260 and/or remote control application 401. In this manner, remote control application 401 may receive an indication of the remote control command from the RC interface 250 directly or from controller 260. In the latter case, for example, controller 260 might call remote control application 401 as a function call and include an indication of remote control device 126 as a parameter in the function call.
STB 121, as shown in
Referring now to
Disclosed embodiments provide audio announced menu systems that may be run from a STB or data processing system coupled to a STB for assisting those that are visually impaired, for example, with selecting available multimedia content. In addition, disclosed embodiments may assist a visually impaired person with configuring settings related to a STB, user account, or television, as examples.
In some STB operating systems, a command line interface may be employed in which characters are mapped directly to a screen buffer in memory. On-screen cursor position may be determined using inputs from a keyboard or from buttons found on a remote control unit. Menu text may be obtained by intercepting or copying the flow of EPG information used in displaying the EPG on a display. In addition, the screen buffer may be access to obtain text that is for displaying as part of the EPG.
GUI screen readers may be more complicated than command line interface for screen readers. A GUI typically has characters and graphical symbols (e.g., selectable icons) generated on a display at particular positions. To a STB or other data processing system, such GUIs may consist of pixels on a screen with that have no particular form. As such, from the point of view of a STB that receives an EPG for display, there may be only limited, if any, textual representations or discrete graphical representations on a display. Therefore some embodied systems may be required to perform optical character recognition (OCR) and other recognition techniques to identify text and selectable icons, as examples.
Alternatively, EPG data may be sent from a provider network to an embodied STB with commands that can be read and interpreted by the STB. For example, instructions for drawing text and command buttons may be intercepted and used to construct an off-screen model that is analyzed and used to extract program identifiers, controls, and menu commands that are sent to a text-to-speech model for announcing audibly. As a user provides directional input, for example, to switch EPG elements, disclosed embodiments provide audible announcements indicative of which EPG element is highlighted or selected.
In other disclosed embodiments, maintaining off-screen models is not necessary. For example, some embodiments provide access through standard application programming interfaces (APIs) to indications of what is simultaneously displayed on a screen. Accordingly, in some embodiments, menu systems sent from a provider network are formatted for compatibility with one or more speech APIs (SAPIs). Such SAPIs allow speech recognition and speech synthesis for menu-based systems that may be used by disclosed STBs. Herein, screen reader and speech synthesizer technologies and methods are assumed to be known and particular details are omitted for clarity. Screen readers can query the operating system or application for what is currently being displayed and receive updates when the display changes. For example, a screen reader can be told that the current focus is on a button and the button caption may be communicated to the user.
While the disclosed systems may be described in connection with one or more embodiments, it is not intended to limit the subject matter of the claims to the particular forms set forth. On the contrary, it is intended to cover such alternatives, modifications and equivalents as may be included within the spirit and scope of the subject matter as defined by the appended claims.