The described technology generally relates to audio amplification devices.
Audio amplification devices can be used for a variety of purposes. For example, an audio headset can assist in hearing by amplifying sound from a single audio source, thereby allowing the user to listen to the audio source at a desired volume level. Headsets can also be used to protect a user's ears from damage in loud environments.
One innovative aspect of the subject matter discussed herein is implemented in an audio amplification device comprising a device body; at least one speaker; an electrical system housed in the device body, wherein the electrical system is configured to control an output of sound from the at least one speaker; and one or more light elements integrated into the device body and controlled by the electrical system to enhance user safety.
The electrical system can be configured to control at least one light element of the one or more light elements based on a time of day. The electrical system can be configured to wirelessly receive a signal indicating the time of day. In some implementations of the audio amplification device, the electrical system can comprise a clock configured to determine the time of day. The electrical system can be configured to control a color of at least one light element of the one or more light elements based on the time of day. The electrical system can be configured to control a flashing rate of at least one light element of the one or more light elements based on the time of day. The electrical system can be configured to control a brightness level of at least one light element of the one or more light elements based on the time of day.
The electrical system can be configured to controls at least one light element of the one or more light elements based on an amount of ambient light. Some implementations of the audio amplification device can comprise a sensor configured to detect the amount of ambient light. The electrical system can be configured to wirelessly receive a signal indicating the amount of ambient light. The electrical system can be configured to control a color of at least one light element of the one or more light elements based on the amount of ambient light. The electrical system can be configured to control a flashing speed of at least one light element of the one or more light elements based on the amount of ambient light. The electrical system can be configured to control a brightness level of at least one light element of the one or more light elements based on the amount of ambient light.
Various implementations of the audio amplification device can further comprise a passive reflector integrated on the device body. The audio amplification device can further comprise a light control interface for receiving user input to control at least one light element of the one or more light elements. At least one of a flashing rate, a color, or a brightness level of at least one light element of the one or more light elements can be user-controllable. The audio amplification device can further comprise at least one microphone configured to generate an ambient sound signal based on detecting ambient sound, wherein the electrical system is configured to generated an amplified ambient sound signal based on amplifying the ambient sound signal, and to control the output of sound to the at least one speaker based on the amplified ambient sound signal.
Another innovative aspect of the subject matter disclosed herein is embodied in an apparatus comprising a device body; at least one microphone configured to generate an ambient sound signal based on detecting ambient sound; at least one speaker; an electrical system housed in the device body, wherein the electrical system is configured to control the at least one speaker to output sound based on the ambient sound signal; and at least one light element integrated into the device body and having at least one of a color, a flashing rate, or a brightness level controlled by the electrical system. The electrical system can be configured to amplify the ambient sound signal and a secondary sound source signal, and to control the at least one speaker to simultaneously output sound based on the ambient sound signal and sound based on the secondary sound source signal.
Yet another innovative aspect of the subject matter disclosed herein is implemented in an audio amplification and ear protection device comprising: a device body; at least one microphone configured to generate an ambient sound signal based on detecting ambient sound; at least one speaker; an electrical system housed in the device body, wherein the electrical system is configured to amplify the ambient sound signal and a secondary sound source signal, and to control the at least one speaker to simultaneously output sound based on the ambient sound signal and sound based on the secondary sound source signal; and one or more light elements integrated into the device body.
The one or more light elements can include at least one reflector. The one or more light elements can include at least one powered light. The one or more light elements can further include at least one reflector. The apparatus can further comprise a shared power source configured to power the electrical system and the at least one powered light. The electrical system can be operable to control at least one powered light to flash. The one or more light elements can include at least one light emitting diode. The one or more light elements can include at least one solid state emitter. The device body can comprise a first arm, a second arm, and a neck loop connecting the first and second arms. The one or more light elements can include at least one light element on the first arm or the second arm. The one or more light elements can include at least one light element on the neck loop. The electrical system can be operable in a plurality of user-selectable operating modes, wherein operation of at least one light emitting element can change based on the selected operating mode.
The electrical system can be configured to receive a first user-controlled volume signal operable to control an amount of amplification provided to the ambient sound signal and a second user-controlled volume signal operable to control an amount of amplification provided to the secondary sound source signal. The audio amplification and ear protection device can further comprise a user control element integrated with the device body. The user control element can be configured to change at least one of a wavelength, an intensity or a flashing rate of light emitted from the one or more light elements.
The audio amplification and ear protection device can further comprise at least one of a sensor or a timing device. The electrical system can be configured to automatically change at least one of a wavelength or an intensity of light emitted from the one or more light elements based on at least one of an ambient light condition or a time of day. The audio amplification and ear protection device can further comprise a wireless transceiver configured to acquire information associated with a time of day or an ambient light condition. The electrical system can be configured to automatically change at least one of a wavelength or an intensity of light emitted from the one or more light elements based on the acquired information.
Example implementations disclosed herein are illustrated in the accompanying schematic drawings, which are for illustrative purposes only.
The following detailed description is directed to certain implementations for the purposes of describing the innovative aspects. However, the teachings herein can be applied in a multitude of different ways. As will be apparent from the following description, an audio amplification device can be implemented in a wide variety of form factors (e.g., in-ear buds or over-ear cups/muffs) and can include a wide range of features and functionality. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and/or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.
Examples of Audio Amplification Devices with Integrated Light Elements
In certain embodiments herein, an audio amplification device includes built-in light elements, such as reflectors and/or powered lights, for enhanced user safety. For example, the audio amplification device can include one or more controllable light emitting diodes (LEDs) and/or a highly reflective tape to increase the visibility of the user to others. The audio amplification device can comprise a user interface (for instance, one or more buttons) and/or automated control of the LEDs or other powered lights. In certain implementations, the user interface and/or automated control can be used to select a brightness level, a color, and/or a flashing rate of the powered lights.
For example, such a user interface and/or automated control can be used to set the rate at which the one or more LEDs turn on or off. For instance, in some implementations, the one or more LEDs can be configured to blink or flash at a first rate by activating (e.g., pressing/toggling) one or more buttons a first time. Activating the one or more controllable buttons a second time can cause the one or more LEDs to blink or flash at a second speed different from the first speed. The one or more LEDs can be turned off by activating the one or more controllable buttons a third time.
In some implementations, the brightness of the one or more LEDs can be varied by the user via the user interface and/or by automated control. For example, activating one or more buttons one or more times can increase or decrease the brightness of the one or more LEDs.
In one example, an audio amplification device can be used by a jogger or runner. The audio amplification device further includes built-in light elements, such as reflectors and/or powered lights, as discussed above, which provide the jogger with enhanced visibility and/or alert others to the presence of the jogger. The flashing speed and/or brightness of the powered lights can be automatically or manually selected to increase visibility of the jogger depending on the time of the day and/or light level. In certain implementations, the audio amplification device is multi-source, thereby allowing the jogger to listen to streamed music and/or receive phone calls while also hearing ambient sounds, including surrounding nature, people's voices, barking dogs, and/or cars.
Other suitable applications for audio amplification devices with integrated light elements include but are not limited to, bicycling, skateboarding, roller skating, snow skiing, snowboarding, sledding, hiking, shooting, jet skiing, wake boarding, water skiing, jet skiing, team sports, and/or dog walking.
Accordingly, an audio amplification device with light elements can be used in a wide variety of applications to enhance safety and/or increase visibility. The light elements can be used at times of day with low sunlight levels, such as at night, in early morning, or in late evening. Moreover, the light elements can be used in tunnels, heavy shade, and/or in poor weather conditions.
Accordingly, integrated reflectors and/or powered lights provide increased visibility, and can be used when a user is engaged in various mobile activities.
Integrating an audio amplification device with reflectors and/or powered lights can also obviate a need to buy separate, bulky reflectors and/or flashing lights. Furthermore, in implementations in which the built-in light elements include powered lights, a shared power source can be used for the light elements and other circuitry of the device, such as circuitry used for playing music and/or making calls. For example, the power management circuitry 350 of
In certain configurations, the powered lights can have a controllable color, such as when the powered lights include multi-colored LEDs. In such implementations, activating one or more buttons can change the color of the light emitted from the one or more LEDs. For example, the one or more LEDs can be configured to emit red light when the one or more buttons are activated a first time, green light when the one or more buttons are activated a second time, a yellow light when the one or more buttons are activated a third time and blue light when the one or more buttons are activated a fourth time. As another example, the one or more LEDs can be configured to emit a yellow/yellowish white light for a first setting of the one or more buttons, a blue/bluish white light for a second setting of the one or more buttons and/or a red/reddish white light for a third setting of the one or more buttons. The number of settings of the one or more buttons and the colors associated with the different settings can be different from the examples provided herein.
The color of the light can be selected to enhance user safety. For example, certain colors are more visible at certain times of days and/or at certain ambient light levels relative to other colors. Thus, a user and/or automated control can be used to select a color suitable for providing enhanced safety.
In some implementations, the audio amplification device can be configured to automatically vary the color and/or intensity of the light output from the one or more LEDs or other powered lights depending on the ambient light condition including but not limited to spectral content of the ambient light and brightness of the ambient light.
In some implementations, the audio amplification device can be configured to change the color and/or intensity of light output from the one or more LEDs based on a signal from a light sensor that can sense a change in the ambient light condition (e.g., spectral content and/or brightness) integrated with the audio amplification device. In some implementations, the audio amplification device can be configured to change the color and/or intensity of light output from the one or more LEDs based on the output of a timing device (e.g., a clock) integrated with the audio amplification device.
In some implementations, the audio amplification device can be configured to change the color and/or intensity of light output from the one or more LEDs based on a wireless signal indicating a time and/or detected ambient light level. The wireless signal can be received by a Bluetooth device or other suitable wireless transceiver integrated with the audio amplification device. For example, the Bluetooth device integrated with the audio amplification device can acquire a time of the day from a smartphone, or a smartwatch and automatically change color and/or brightness of light emitted from the one or more LEDs or other light elements based on the acquired time of the day.
Implementing an audio amplification device with one or more integrated light elements as discussed above provides a number of advantages, including but not limited to, enhanced safety, visibility, and/or energy saving. The one or more powered lights and/or the reflectors can be positioned on the audio amplification device to increase visibility of the user while reducing distraction or discomfort to the user. For example, the one or more powered lights can be positioned on the audio amplification device to be visible to persons facing the front of the user and the reflectors can be positioned to be visible to persons facing the back of the user. The one or more powered lights can be positioned on the audio amplification device such that light emitted from the one or more powered lights is directed away from the eyes of the user to reduce distraction and/or discomfort to the user.
Various embodiments of the audio amplification and device described herein are configured to be worn safely and comfortably, such as for example, around the neck to aid a user to use the device while participating in various activities including but not limited to sports and/or other mobile activities.
In certain embodiments herein, the audio amplification device is a multi-source audio amplification and ear protection device that allows a user to hear an ambient sound source captured via microphone(s) while also hearing sounds from a secondary audio source, such as audio received from a wireless connection (for example, Bluetooth), a wired connection (for example, an audio input port), and/or a built-in audio component (for instance, a music player). In certain implementations, the multi-source audio amplification and ear protection device allows the volume of sounds from the ambient sound source and from the secondary sound source to be separately controlled.
In certain configurations, a multi-source audio amplification and ear protection device includes at least one microphone that captures ambient sound from an ambient audio source. Additionally, the multi-source audio amplification and ear protection device receives sounds from a secondary audio source via a wireless connection, a wired connection, and/or a built-in audio component. The multi-source audio amplification and ear protection device includes one or more speakers for simultaneously outputting sounds from the ambient sound source and sounds from the secondary sound source, and electronic circuitry that provides separate control over the amplification of sounds from the ambient audio source relative to sounds from the secondary audio source. Implementing the multi-source audio amplification and ear protection device in this manner allows a user to separately control the volume of sounds received from the ambient sound source relative to sounds from the secondary sound source.
In addition to including an electrical system that provides amplification to assist the user in listening to ambient sounds and sounds from the secondary sound source at desired volume levels, the multi-source audio amplification and ear protection device can also protect the user's ears from damage by limiting the volume of loud sounds. For instance, the device can be implemented to provide attenuation or compression of sounds of large amplitude, and thus, also serves as an ear protection device.
The secondary sound source can correspond to a wide variety of sound sources. For example, the secondary sound source can correspond to audio received over a wireless connection, such as a Bluetooth, Zigbee, Wi-Fi, NFMI, AirPlay, SKAA, 2.4 GHz RF, and/or other connection. In another example, the secondary sound source can correspond to audio received over a wired connection, including, for example, sound received via an audio input port. In yet another example, the secondary sound source can correspond to audio received from a built-in audio component, such as a music player, an integrated radio (for instance, AM, FM and/or XM radio), integrated phone and/or audio playback device for playing music, audiobooks, audio courses, and/or other audio content.
Providing a user control over a volume of ambient sound relative to sound from a secondary audio source allows the user to perform a wide variety of tasks and activities while maintaining the user engaged with the world and the user's surroundings. The multi-source audio amplification and ear protection devices disclosed herein can be used in a wide variety of applications, and can be used to enhance a user's listening enjoyment, comfort, convenience, and/or safety.
In one example, a student can listen to instructional audio content, such as a streamed audio course, in a classroom. Additionally, a teacher may provide commentary while the student is listening to the instructional audio content. The student may use the device to control a relative volume of the instructional audio content relative to the volume of the instructor's voice. Thus, the student may be able to simultaneously listen to the audio course content and instructor commentary, and can separately control the volume of each sound source relative to one another.
In another example, a multi-source audio amplification and ear protection device serves as a listening assistance product for a television, computer, and/or other electronic device. The multi-source listening assistance product allows a user to control volume of received sound from the electronic device relative to the volume of ambient sounds. Thus, a user who is hard of hearing (for instance, an elderly person) may listen to the television, computer, and/or other electronic device at an appropriate volume level while remaining engaged with the user's surroundings. For example, if a smoke detector were activated while the user was wearing the multi-source listening assistance product, the user would be able to hear the smoke detector's alarm.
In another example, a child or other person is using the multi-source audio amplification and ear protection device as headphones for an electronic entertainment system, such as a tablet, video game system, computer, laptop, or other electronic device. In addition to hearing sound received from the electronic entertainment system, the user also hears ambient sounds. Thus, the user may hear a voice of a parent, sibling, friend, or other person even when sounds are playing from the electronic entertainment system.
In another example, a passenger of a vehicle, such as an airplane, a train, or a bus, may use the multi-source audio amplification and ear protection device to listen to audio content provided on the vehicle via a wireless network and/or via an audio input port. Additionally, the passenger may listen to the audio content at a desired volume level while remaining engaged with the passenger's surroundings. Thus, the passenger can hear a pilot, a driver, an attendant, and/or requests from other passengers without need to take off or remove the device.
In another example, a visitor to a museum or landmark can listen to an audio guide via the multi-source audio amplification and ear protection device. Additionally, the visitor can also hear the voices of proctors and/or commentary from other visitors, and provide relative control of the volume of the audio guide relative to the volume of ambient sounds.
In another example, a multi-source audio amplification and ear protection device may be used as hearing protection while the user is hunting or shooting. The microphone(s) of the multi-source earmuffs capture ambient sounds, which are provided to the user with attenuation or compression of loud noises, such as gunshots. Thus, the user enjoys the benefits of ear protection while still hearing the sounds of surrounding nature and/or of people's voices, including safety warnings. The user can also control the volume of ambient sounds relative to sounds from a secondary audio source, such as sound associated with a received phone call and/or streamed music. Thus, the user can take phone calls without needing to take off the device, which can be dangerous and/or result in missed calls.
In certain implementations, an electrical system of a multi-source audio amplification and ear protection device includes variable gain amplification circuitry that operates with automatic gain control (AGC) to reduce the volume of ambient sounds after a loud event has been detected. In one example, after detecting a high volume ambient sound event, such as a gunshot, the device can operate with audio compression for a certain amount of time. Implementing the device in this manner helps attenuate the loudness of echoes of an initial loud event and/or other loud events occurring within a certain time frame thereafter. For instance, the user may be in a hunting party and the compression mode can be triggered after an initial gunshot is fired toward a discovered prey. Without requiring the user to manually control the volume, automatic gain control can decrease the volume of echoes of the initial gunshot, as well as to decrease the loudness of subsequent gunshots fired at the discovered prey from the user and/or other members of the hunting party. Although an example of a gunshot is provided, automatic gain control can provide gain compression to a wide variety of loud noises, including, for instance, crashing steel, passing race cars or motorcycles, etc.
In certain implementations, the multi-source audio amplification and ear protection device can provide frequency dependent amplification to ambient sound, thereby providing different amounts of amplification to certain frequencies relative to other frequencies. For instance, the device can provide different amounts of gain to sounds in different frequency ranges, such as a high frequency range relative to a low frequency range. In one example, a user of the device can be bird watching and desire a relatively high amount of amplification to ambient sounds at relatively high frequencies associated with bird chirps or songs.
In certain configurations, a multi-source audio amplification and ear protection device can be operable in a selected mode chosen from multiple user-selectable operating modes or profiles. Additionally, the different user-selectable operating modes can provide different amounts of amplification to sounds of different frequencies and/or provide other mode-dependent processing.
For instance, the multiple user-selectable operating modes can include, but are not limited to, one or more of an indoor human voice mode, an outdoor human voice mode, a hunting mode, an indoor shooting mode, an outdoor shooting mode, a bird watching mode, a car mode, a bus mode, a train mode, an aircraft mode, a restaurant mode, a construction site mode, a sporting boat mode, a classroom mode, an audio guide mode, a media assisted listening mode, a loud concert mode, and/or a headphones mode. In one embodiment, the user can store one or more user modes or profiles, which can be, for example, custom modes developed by the user and/or modified versions of one or more preset modes. In certain implementations, a user may download one or more modes made available via the internet.
Each user-selectable operating mode can provide amplification, equalization, and/or other audio processing suitable for a particular application or operating environment associated with the mode. The sound volume after such processing can be further scaled by the user via volume control, including separate volume control for both the ambient sound source and the secondary sound source.
In one example, a sporting boat mode can provide a relatively large amount of attenuation to low frequency sounds associated with boat motors, while providing a relatively large amount of amplification to frequencies associated with human voice. Thus, a user of the device can hear a boat engine at a reduced or attenuated volume, while hearing human voices (including, for instance, voices of passengers/observers, vehicle operators, and/or towed persons) at a relatively louder volume. In another example, a user of the multi-source audio amplification and protection device may be bird watching and desire a greater amount of amplification to high frequency ambient sounds relative to low frequency ambient sounds. In yet another example, an indoor human voice mode can include processing to amplify human voice, while providing audio processing to compensate for voice echoes and/or to attenuate background noise.
In one embodiment, a multi-source audio amplification and ear protection device includes a hearing aid semantic. Thus, a user may get his or her hearing tested, and the multi-source audio amplification device can operate with user-customizable data to compensate for a hearing loss profile of the user. For example, the user-customizable data can be used to provide equalization to compensate for hearing loss or sensitivity to particular audio frequencies.
In certain implementations, an audio device includes multiple microphones, including, for instance, one or more directional microphones. In one embodiment, ambient sounds captured from the microphones can be processed differently based on the operating mode. For instance, in a human voice mode, a relatively large amount of amplification can be provided to sound captured from a directional microphone pointed generally in front of a user, thereby helping the user to better hear voice in the direction that the user is facing.
The multi-source audio amplification and ear protection devices herein can be controlled by a user in a wide variety of ways. In certain implementations, a user may control the device using one or more user interfaces on the device, including but not limited to, buttons, switches, knobs, levers, touch screens, and/or other controls. In certain implementations, the device includes one or more tactile controls that a user can distinguish by touch, thereby aiding the user in controlling the device without needing to look at an interface. Additionally, the devices herein can be remotely controlled including, for example, by a dedicated remote control and/or by using a tablet, phone, smart watch, laptop, computer, and/or other control device. Moreover, the teachings herein are applicable to voice-activated controls.
In certain implementations, a multi-source audio amplification and ear protection device is implemented to be waterproof. Additionally, to enhance tolerance to water submersion, controls are omitted from the device in favor of controlling the device remotely. Thus, a surfer can use the device to, for instance, listen to music and/or take calls, while still hearing ambient sounds, such as waves and/or the voices of other surfers.
The multi-source audio amplification and ear protection devices herein can be implemented a wide variety of form factors, can include a diverse multitude of features, and can be used in a vast range of applications. Example implementations of a multi-source audio amplification and ear protection device include, but are not limited to, amplification headsets, listening assistance devices, amplification earmuffs, hearing aids, and/or personal sound amplification products (PSAPs).
In certain configurations, an audio amplification and ear protection device includes at least one microphone that generates an ambient sound signal based on detecting ambient sound, at least one speaker, and an electrical system that controls sound outputted by the at least one speaker based on amplifying the ambient sound signal and a secondary sound source signal. The electrical system receives a first user-controlled volume signal that is operable to control an amount of amplification provided to the ambient sound signal, and a second user-controlled volume signal that is operable to control an amount of amplification provided to the secondary sound source signal.
Various embodiments of multi-source audio amplification and ear protection device including built-in light elements are provided below. Although described in the context of multi-source audio amplification and ear protection devices, the teachings herein are applicable to audio amplification devices implemented in other ways. Furthermore, although various embodiments are implemented as neck loops, built-in light elements can be included on audio amplification devices implemented using a wide variety of form factors.
The multi-source audio amplification and ear protection device includes a first or right ear plug 101a, a second or left ear plug 101b, a first or right arm 103a, a second or left arm 103b, and a neck loop 104. The first and second ear plugs 101a and 101b can be retractable in some implementations. The multi-source audio amplification and ear protection device includes buttons 106-108 which are described in further detail below with reference to
In the implementations of the multi-source audio amplification and ear protection device having retractable ear plugs can further comprise a right ear plug and left ear plug retraction control buttons. In the illustrated view right ear plug retraction control button 109a is shown. Left ear plug retraction control button 109b is shown in
As described below with reference to
In certain implementations, the first and the second light elements 157a and 157b can be manually controlled by one or more buttons integrated with the multi-source audio amplification and ear protection device. For example, a toggle switch 109c integrated with the right arm 103a of the multi-source audio amplification and ear protection device can be configured to turn on or turn off the one or more LEDs. As another example, a button 115 integrated with the right arm 103a of the multi-source audio amplification and ear protection device can be configured to vary the brightness, color and/or flashing speed of the LEDs. For example, when the button 115 is configured to be in a first setting (e.g., by pressing once) the LEDs can be configured to emit light at a first color, a first intensity and/or flash/blink at a first speed. When the button 115 is configured to be in a second setting (e.g., by pressing twice) the LEDs can be configured to emit light at a second color different from the first color, a second intensity different from the first intensity and/or flash/blink at a second speed different from the first speed. When the button 115 is configured to be in a third setting (e.g., by pressing thrice) the LEDs can be configured to emit light at a third color different from the second color, a third intensity different from the second intensity and/or flash/blink at a third speed different from the second speed. In any of the first, second or third settings the button 115 can be configured to turn off the LEDs.
In some implementations, the LEDs can be configured to blink/flash at a first speed when the button 115 is pressed once by the user, and blink/flash at a second speed faster/slower than the first speed when the button 115 is pressed twice by the user. In some implementations, the LEDs can be configured to emit red light when the button 115 is pressed once by the user, emit green light when the button 115 is pressed twice by the user, emit yellow light when the button 115 is pressed thrice by the user and/or emit blue light when the button 115 is pressed four times by the user. In a similar manner, the brightness of the LEDs can be varied by pressing the button 115 two or more times.
In some implementations, the multi-source audio amplification and ear protection device can be configured to automatically change the color and/or intensity of the light output from the LEDs based on an input from a light sensor, a timing device or a Bluetooth device integrated with the multi-source audio amplification and ear protection device. For example, a light sensor integrated with the multi-source audio amplification and ear protection device can be configured to sense a change in ambient light condition, such as, for example, a change in spectral content and/or intensity of ambient light and provide a signal to the LEDs to change at least one of a wavelength or an intensity of light emitted. As another example, a timing device (e.g., a clock) integrated with the multi-source audio amplification and ear protection device can be configured to automatically change at least one of a wavelength or an intensity of light emitted from the LEDs based on a time of the day. As yet another example, a Bluetooth device integrated with the multi-source audio amplification and ear protection device can be configured to acquire a time or a weather condition from a smart phone or a smartwatch and provide a signal to change at least one of a wavelength or an intensity of light emitted from the LEDs. Other features of the multi-source audio amplification and ear protection device are described in details below.
In the embodiment illustrated in
As shown in
To enhance safety and/or visibility, a multi-source audio amplification and ear protection device can include lights elements in multiple different positions, for instance, on a neck loop and on one or more arms. For example, the multi-source audio amplification and ear protection device of
In one embodiment, a multi-source audio amplification and ear protection devices includes only reflectors configured to reflect ambient light (e.g., street lights, headlights, and/or moonlight) to increase visibility. For example, the light elements 155, 157a and 157b can be configured as reflectors only. In another embodiment, a multi-source audio amplification and ear protection devices includes only powered lights. For example, the light elements 155, 157a and 157b can be configured as powered lights only. As another example, the light elements 155, 157a and 157b can be configured as LEDs.
In yet another embodiment, a multi-source audio amplification and ear protection device can include both reflectors and powered lights. In one example, a portion of the light element 155 can be configured as a reflector and another portion of the light element 155 can be configured to include powered lights. In another example, a portion of the light element 157a and/or 157b can be configured as a reflector and another portion of the light element 157a and/or 157b can be configured to include powered lights. In yet another example, a multi-source audio amplification and ear protection device includes at least two light elements (for example, light element 155 and 157a and/or 157b), and a first light element is configured as a reflector and a second light element is configured as a powered light or LED.
A light element (for example, the light elements 155, 157a, and/or 157b) can be integrated in a multi-source audio amplification and ear protection device in a wide variety of ways. For example, the light elements 155, 157a or 157b can be attached to the neck loop 104, the right arm 103a or the left arm 103b using adhesive. As another example, the neck loop 104, the right arm 103a or the left arm 103b can include cavities into which the elements 155, 157a or 157b can be mounted. In such embodiments, an optically transmissive cover (e.g., clear, translucent, frosted) can be used to close the cavities.
Light elements configured as reflectors can include reflective materials, such as for example, mirror, optical sheets with reflective features, optical sheets with reflective paints, laminates, metalized reflectors, etc. that are configured to reflect ambient light (e.g., street lights, headlights, moonlight, etc.).
In implementations in which the light elements are powered lights, the light elements can include solid state emitters, light emitting diodes, edge/surface emitting laser diodes, etc. The light elements can be configured to emit light in a single wavelength (e.g., red, green or blue) or in multiple wavelengths.
In some embodiment, light elements (for example, the light elements 155, 157a and/or 157b) are implemented as flashing lights. For example, a light element can repeatedly turn on for a first time interval and turn off for a second time interval. The duration of the first and the second time intervals can be equal in some embodiments. However, in other embodiments, the duration of the first and the second time intervals can be unequal.
In some embodiments, the frequency at which flashing lights turn on or off can be fixed. However, in other embodiments, the frequency at which the light elements turn on or turn off can vary. Accordingly, flashing lights (for example, the light elements 155, 157a or 157b) can be configured to flash in a variety of flashing patterns.
In certain implementations, one or more light elements are user controllable. For example, activation of a light element and/or a flashing pattern of a light element can be user controlled. In certain implementations, a user may control the device using one or more user interfaces on the device, including but not limited to, buttons, switches, knobs, levers, touch screens, and/or other controls. Additionally, the devices herein can be remotely controlled including, for example, by a dedicated remote control and/or by using a tablet, phone, smart watch, laptop, computer, and/or other control device (see for example,
In some embodiments, operation of the light elements (including, for example, whether or not the light elements are activated and/or a flashing pattern of the light elements) changes based on a user-selectable operating mode or profile.
In some embodiments, the flashing patterns can be configured to vary according to the rhythms/melody of the music that the user is listening to. In this manner, the flashing patterns of the elements 155, 157a or 157b when configured as flashing lights can provide a graphic display of music as well as increase visibility. In various embodiments and/or for various settings or modes, the elements 155, 157a or 157b can be configured as stationary sources of light.
In certain configurations, one or more light elements are activated to alert the user to a specific event, including but not limited to, an incoming call, an alarm, or synchronization or pairing with a device.
Light elements can be arranged in a variety of patterns and positions, as shown, for example, by the light elements 155, 157a or 157b depicted in
Although
In the illustrated embodiment, the ambient sound control interface 121 provides a user of the device with control over the volume of ambient sound. The ambient sound source is captured via one or more microphones of the device 100, as will be described in detail further below. Additionally, the secondary sound source control interface 122 provides a user of the device 100 with control over the volume of sound from a secondary sound source, which can be, for example, audio received over a wireless connection (for instance, a Bluetooth, Zigbee, Wi-Fi, NFMI, AirPlay, SKAA, 2.4 GHz RF, and/or other connection), audio received over a wired connection (for instance, via an audio input port 124), and/or audio received from a built-in audio component, such as a music player, an integrated radio (for instance, AM, FM and/or XM radio), integrated phone and/or audio playback device.
In the illustrated embodiment, the ambient sound control interface 121 includes buttons 111-112 and the secondary sound source control interface 122 includes buttons 106-108. Although the illustrated embodiment uses button interfaces implemented on the device 100, the teachings herein are applicable to devices controlled in a wide variety of ways. For example, an ambient sound control interface and/or a secondary sound source control interface can use a different style of interface and/or can be located in other positions. Additionally, the teachings herein are applicable to devices that are remotely controlled, including but not limited, devices controlled using a dedicated remote control (wireless and/or wired, such as a pluggable) and/or by using a tablet, phone, smart watch, laptop, computer, and/or other control device. Moreover, the teachings herein are applicable to devices that operate using voice-activated control. Furthermore, the teachings herein are applicable to devices that can be controlled in multiple ways, such by a combination of on-device interface(s), remote control device(s), and voice-activated control(s), thereby providing the user with flexibility in controlling the device in a manner that is desirable for a particular application.
In the illustrated embodiment, the device 100 includes a device body comprising the right arm 103a, the left arm 103b, and the neck loop 104. However, an audio amplification and ear protection device can include a device body implemented in a wide variety of ways. Moreover, in certain implementations, an audio amplification and ear protection device omits a device body.
With continuing reference to
Although
In the illustrated embodiment, the perforated acoustic grating 110a extends along a top surface of the right arm 103a. In certain implementations, the perforated acoustic grating 110a includes at least one of a microphone or a speaker therein. For example, as will be discussed further below,
As shown in
The right and left retractable ear plugs 101a and 101b are shown in an extended position in
As shown in
As persons having ordinary skill in the art will appreciate, the ear plugs are referred to as a right retractable ear plug 101a and a left retractable ear plug 101b for reference purposes, and wearing the device 100 with right and left retractable ear plugs 101a, 101b in a user's right and left ears, respectively, can allow for more ergonomic adjustment of the volume controls among other possible benefits. However, it will be understood a user can wear the device 100 with the right retractable ear plug 101a in the user's left ear and/or with the left retractable ear plug 101b in the user's right ear. Furthermore, the neck loop 104 can be worn in a variety of ways, including with the inside of the loop closest to the back of the user's neck or with the inside of the loop closest to the front of the user's neck. Moreover, the neck loop 104 can be held in the user's hand or used in a wide variety of other ways, including, for instance, on top of a hat and/or head.
In the illustrated embodiment, the right retractable ear plug 101a includes a right ear microphone 102a and a right ear speaker 114a. Additionally, the left retractable ear plug 101b includes a left ear microphone 102b and a left ear speaker 114b.
The multi-source audio amplification and ear protection device 100 includes microphones, such as the right ear microphone 102a and the left ear microphone 102b, for capturing ambient sounds. Although one implementation of microphones is shown, the device 100 can include more or fewer microphones and/or microphones arranged in other ways. For example, in one embodiment, the right and/or left perforated acoustic gratings 110a and 110b include(s) a microphone. The device's microphone(s) can be implemented in a wide variety of ways, and can include, for example, one or more condenser, dynamic, carbon, and/or piezoelectric microphones.
The right ear speaker 114a, the left ear speaker 114b, and/or speaker(s) in the perforated acoustic gratings provide amplified sound and/or sound of enhanced quality to a user. The sound provided to the user can simultaneously include both ambient sound and sound from a secondary sound source. Additionally, the volume of ambient sound can be separately controlled relative to the volume of sound from the secondary sound source.
In certain implementations, the processing of sound using the right ear microphone 102a and the right ear speaker 114a can be at least partially independent of the processing of sound using the left ear microphone 102b and the left ear speaker 114b. For example, in one embodiment, when one the right ear microphone 102a detects a particular noise in the ambient environment and the left ear microphone 102b does not detect that particular noise, an amplified version of the noise can be provided to the right ear speaker 114a but not to the left ear speaker 114b.
Accordingly, in certain implementations, the multi-source audio amplification and ear protection device 100 can detect ambient sounds using the right and left ear microphones 102a and 102b, respectively, and amplify and/or otherwise process the detected ambient sounds to drive the right and left ear speakers 114a and 114b, respectively. Implementing the device 100 in this manner can aid a user to better discriminate the direction from which particular ambient sounds are coming. For instance, if a sound is originating from the right of the user, the corresponding sound reproduced in the right ear speaker 114a can have a greater volume than the corresponding sound (if any) reproduced in the left ear speaker 114b.
In certain implementations, the device 100 includes one or more microphones in and/or on the right arm 103a, the left arm 103b, and/or the neck loop 104. Including microphones in this manner can aid in capturing the user's voice, such as when the user is making calls via a Bluetooth connection. Moreover, implementing the microphones in this manner can aid in capturing sound in front of and/or behind the user.
The multi-source audio amplification and ear protection device 100 includes an electrical system, such as electronic circuitry, that can be used to provide amplification and/or other processing to sounds from multiple sound sources, including ambient sounds as well sounds from a secondary sound source. The audio amplification and/or other audio processing can be provided in a wide variety of ways. In one example, the electronic circuitry can include analog amplifiers, such as variable and/or programmable gain amplifiers, used to provide a desired amount of amplification. In another example, the amplification is achieved at least in part by using digital processing. For instance, analog signals captured by the device's microphones can be converted into the digital domain using analog-to-digital converters. Thereafter, the values of the digital signals can be adjusted to provide digital amplification, and thereafter adjusted digital signals can be converted into signals suitable for driving the device's speakers. In addition to amplification, the device's electronic circuitry can also provide equalization, echo suppression or cancellation, compensation for multipath acoustic effects, noise cancellation, wind reduction, and/or other processing.
For example, in one embodiment, the device's electronic circuitry provides at least one of noise management, acoustic feedback control, delay filtering, or customized hearing loss compensation. The noise management can include, for example, spectral subtraction, binaural noise reduction, adaptive noise cancellation, directional microphone processing, impulsive sound suppression, wind noise reduction, automatic volume control, volume control learning, and/or low-level expansion. The customized hearing loss compensation can include, for example, adaptive dynamic range compensation (for instance, linear quasi-time-invariant compression) and/or wide dynamic range compensation (for instance, syllabic sub-band compression).
Thus, the device's electronic circuitry can provide a variety of audio processing functions to enhance listening enjoyment and/or sound quality.
In one example, spectral subtraction is used to reduce gain in frequency sub-bands in which strength of desired signals is relatively small. In another example, binaural noise reduction is used to process signals associated with both left and right ear devices to separate noise from a desired speech signal. In another example, impulse noise suppression is used to detect sudden loud sounds, and to reduce gain to suppress the noise thereafter. In another example, a sound signal is processed to reduce or remove noise arising from air turbulence at or near a microphone's input diaphragm. In another example, automatic volume control adjusts the loudness of sounds from a speaker relative to an ambient noise level. In another example, volume control learning is used to track use patterns of manual volume control, and the tracked patterns are applied to predict preferred loudness settings. In another example, reduced gain is applied to very low-level input sounds, which can be associated with microphone circuit noise. In another example, acoustic feedback control is used to estimate the acoustic path of a feedback signal from speaker output to microphone input, such that unwanted acoustic feedback is subtracted from the microphone input signal. In another example, low delay filtering provides filtering of an audio signal power spectrum with low acoustic delay to limit an echo effect. In another example, a linear-quasi-time-invariant compression is used to adjust audio frequency response by applying lower gains for high-level inputs relative to low-level inputs across the audio spectrum, with changes to the frequency response being sufficiently slow such that the device operates as a time-invariant linear filter over short time intervals. In another example, wide dynamic range compression is used to adjust frequency response by applying lower gains for high-level inputs than for low-level inputs in each part of the audio spectrum, with changes to the frequency response being sufficiently fast to change gain at the syllabic rate of speech.
The multi-source audio amplification and ear protection device 100 can be used to limit or attenuate loud sounds, thereby protecting a user's ears from damage. For example, the device 100 can be implemented to attenuate or compress audio sounds above a particular threshold, such as loud ambient sounds detected by the device's microphone(s). For instance, if the right ear microphone 102a or left ear microphone 102b detects sound above a particular threshold level (for instance, 100 dB), the audio electronics of the device 100 can reduce the signal provided to the speaker of the corresponding ear such that the sound heard by the user's ear is within a safe volume level. In certain implementations, the device's threshold level(s) are user-adjustable.
In certain implementations, the multi-source audio amplification and ear protection device 100 is implemented with automatic gain control to reduce the volume of ambient sounds after a loud event has been detected. Implementing the device in this manner helps attenuate the loudness of echoes of an initial loud event and/or other loud events occurring relatively soon thereafter. In certain implementations, the device's time window(s) and/or threshold level(s) for automatic compression are user-adjustable and/or vary with an operating mode or profile of the device.
In one embodiment, the device 100 provides frequency dependent amplification to ambient sound, thereby providing different amounts of amplification to certain frequencies relative to other frequencies. In one embodiment, the device 100 is switchable between different user-selectable operating modes or profiles that can have different frequency-dependent processing, as will be described in further detail below with respect to
The right arm 103a and the left arm 103b each have a respective curvature or contour. Additionally, the perforated acoustic grating 110a extends along a substantial portion of an upper surface of the right arm 103a. For example, in the illustrated embodiment, the perforated speaker grating 110a extends across a full width of the right arm 103a, and gradually narrows or tapers as the grating 110a approaches the neck loop 104. Similarly, the perforated acoustic grating 110b extends along a substantial portion of an upper surface of the left arm 103b and extends across a full width of the left arm 103b.
Implementing the perforated acoustic gratings 110a and 110b in his manner can increase the sound detection surface area, thereby improving detection of ambient sounds. In one example, the surface area of the grating can be at least about 5 square centimeters (cm2). Other granting surface areas, however, are possible.
The convex, outward curve of the perforated acoustic gratings 110a and 110b help detect and direct sound waves arriving from multiple directions.
For example,
The multi-source audio amplification and ear protection device 100 can receive audio from a secondary sound source. The secondary sound source can be, for example, audio received over a wireless connection, audio received over a wired connection, and/or audio received from a built-in audio component. In certain implementations, the audio from the secondary sound source is provided to the right ear speaker 114a and left ear speaker 114b in combination with ambient sound captured via the device's microphones. In another implementation, audio from the secondary sound source is provided to or can be selectively provided to one or more other speakers. For example, the left arm 103a, the right arm 103b, and/or the neck loop 104 can include a speaker used for outputting an amplified version of sound received from the secondary sound source. Implementing a device in this manner allows a user to play music that can be heard by others and/or allows the user to hear music when the ear plugs 101a and 101b are not inserted in the user's ears. For instance, a user may listen to music while skiing on the slopes with the ear plugs 101a and 101b removed and retracted.
The multi-source audio amplification and ear protection device 100 can also be implemented to make phone calls using, for instance, a Bluetooth connection. For example, the device 100 can be connected to a mobile phone using Bluetooth, and the mobile phone can transmit audio signals to the user, which the user can hear via the right and left ear speakers 114a and 114b. Additionally, the user's voice can be detected by the device's microphones, for instance, on the right and left ear microphones 102a and 102b, and/or one or more microphones in the arms (for the example, the arm microphone 135 of
In one embodiment, the buttons of the secondary sound source control interface 132 can be used to control a remote device, including but not limited to, a paired device connected via Bluetooth. In one example, the outermost buttons 107, 108 can be used to transmit next track and previous track commands, respectively. In another example, the outermost buttons 107, 108 can be used to control volume of the secondary sound source. In certain implementations, one or more of the buttons 106-108 can be used for multiple functions. For instance, when, for example, the outermost button 107 or button 108 is pressed twice in succession, or when the outermost button 107 or button 108 is pressed in conjunction with the button 106, a different function can be provided. In another example, one or more buttons of the secondary sound source control interface 132 can be used to control a listening mode or profile. In certain configurations, a sequence of button pushes over time and/or a combination of button commands can be used to input data into a secondary sound source control interface.
In certain implementations, the button 106 can provide synchronization or pairing with a device that generates the secondary audio source. In one example, the button 106 serves a pairing button, such as a Bluetooth pairing button, that can be, for instance, pressed and held for at least a certain amount of time (for example, 1 second) to activate pairing. In one example, the device 100 is equipped with a passcode that can be entered into the paired device, and once the passcode is entered and accepted, the pairing can be completed. However, other implementations are possible. For example, a device can be synchronized or paired with another device automatically without user action or via voice-activation, remote control, and/or using other implementations of on-device interfaces. Additionally, the teachings herein are applicable to a wide range of wireless and wired connections in addition to Bluetooth.
The ambient sound control interface 121 and the secondary sound source control interface 122 allow the user to separately control the volume of ambient sound and sound from the secondary sound source. Thus, if a user desires to reduce or eliminate a volume of external or ambient noise relative to music or audio from another source (for instance, a paired device), the user can control relative volume level of the sound sources using the ambient sound control interface 121 and the secondary sound source control interface 122. In certain implementations, the device 100 can further include controls (including, for instance, on-device controls and/or remote controls) for adjusting the volume level of sound provided to each ear. In such implementations, a user can increase the volume of one of the left or right ear relative to the volume provided to the other of the left or right ear. In one embodiment, a volume control for the right ear is located on the right arm 103a and a volume control for the left ear is located on the left arm 103b. Other implementations, however, are possible.
In certain implementations, electronic circuitry used for generating amplified sound from the secondary sound source is positioned in one of the right arm 103a or the left arm 103b, and a concealed wire in the neck loop 104 is used to provide the amplified sound to the other arm. For instance, a concealed wire can be embedded within or otherwise extends along the contour of the neck loop 104 into the opposite arm, and routed into the opposite ear plug. In this manner, sound from a paired device can be transmitted to both ear plugs 101a and 101b even when a Bluetooth chip or other electronic circuitry is included in only one arm of the device. Other configurations, however, are possible. For example, in another embodiment, two or more portions of the device 100 can wirelessly communicate with one another.
The multi-source audio amplification and ear protection device 100 can be constructed using a wide variety of materials. In one example, the neck loop 104 and/or the arms 103a and 103b can include at least one piece of rubber or plastic. In certain implementations, the ear plugs 101a and 101b can include a memory foam surrounding the right and left ear speakers 114a and 114b, thereby aiding in providing sound reduction and/or helping to protect the user's ears from damage from loud sounds. In one example, the memory foam provides about 28 dB or more of sound reduction as compared to when the user is not wearing any hearing protection. However, other amounts of sound reduction are possible. In certain implementations, the memory foam provides aid in customizing the ear plugs 101a, 101b for use by a particular user, thereby enhancing comfort and/or listening enjoyment.
In one embodiment, when the device 100 is powered on and the volume level for ambient sounds is set to a minimum volume setting using the ambient volume control interface 121, the device 100 drives the right and left ear speakers 114a and 114b at a sufficient loudness level such that the speakers output a sound level approximately equal to the external sound level detected by microphones 102a and 102b, respectively. In such an example embodiment, when the device 100 is powered on and the volume level is set to a maximum level using the volume control interfaces 121 and 122, the electrical system within the device 100 drive the speakers within the ear plugs 101a and 101b such that the speakers output a sound level about 5 times (about +14 dB) higher than the detected exterior sound level, e.g., up to about 66 dB of outside noise. For detected ambient sound levels above 80 dB, the device 100 of the example embodiment compresses the detected sound to be within 80 dB, and delivers the compressed audio to the speakers. Although one example of volume levels has been described, other implementations of volume levels can be used.
The multi-source audio amplification and ear protection device 100 can be powered in a variety of ways. In one embodiment, the device 100 is battery powered, such as by using lithium-based battery technology. In such configurations, the device's battery or batteries can be charged in a variety of ways, such as by using a charging plug and/or by using wireless charging technology, such as inductive charging. The device 100 can also be implemented without batteries, such as implementations in which the device is plugged into a wall outlet for operation and/or receives power via an interface, (for instance, a USB interface). In certain implementations, the multi-source audio amplification and ear protection device 100 operates using replaceable batteries, including, but not limited to, AA or other consumer batteries.
Providing a multi-source audio amplification and ear protection device that can process sound as described herein can increase a user's listening enjoyment, comfort, convenience, and/or safety. Thus, the user may use the device while performing a wide range of activities. In contrast, a user of a single source audio device can frequently remove the headset for various purposes. For example, the user of the single source audio device can remove the device to answer a phone call, to listen to digital music, to hear someone speaking, and/or for a variety of other reasons. However, removing the device can result in loud noise damaging the user's ears, missed communications, and/or the device being lost, left behind or stolen.
Thus, the illustrated device 100 can be worn safely and comfortably, and avoids a need to remove the device in order to simultaneously listen to both ambient sounds and sounds from a secondary sound source.
A variety of other form factors are possible. For instance, the multi-source audio amplification and ear protection device 170 of
Although
Although
The illustrated embodiment includes over-ear muff-type cups 201 and 202, which can provide a greater amount of ear protection and/or improved listening and comfort for long periods relative to the embodiment shown in
In the illustrated embodiment, the left-side ambient volume control knob 207 and the right-side ambient volume control knob 210 provide a user of the device 200 with control over the volume of ambient sound. Additionally, the secondary sound source volume control knob 212 provides a user of the device 200 with control over the volume of sound from a secondary sound source, which can be, for example, audio received over a wireless connection (for instance, a Bluetooth, Zigbee, Wi-Fi, NFMI, AirPlay, SKAA, 2.4 GHz RF, and/or other connection), audio received over a wired connection (for instance, via the audio input port 225), and/or audio received from a built-in audio component, such as a music player, an integrated radio (for instance, AM, FM and/or XM radio), integrated phone and/or audio playback device.
In the illustrated embodiment, the left-side ambient volume control knob 207 can be rotated to control volume of ambient sounds captured by the left-side microphones 205a and 205b, and the right-side ambient volume control knob 210 can be rotated to control volume of ambient sounds captured by the right-side microphones 206a and 206b. Accordingly, the volume of ambient sounds can be separately controlled to the left and right ears, in this embodiment. The secondary sound source volume control knob 212 allows for adjustment of the volume level output to the speakers 231 and 232 of sounds from the secondary sound source.
Although the illustrated embodiment uses knob interfaces implemented on the device 200, the teachings herein are applicable to devices controlled in a wide variety of ways. For example, an ambient sound control interface and/or a secondary sound source control interface can use a different style of interface and/or can be located in other positions. Additionally, the teachings herein are applicable to devices that are remotely controlled, including but not limited, devices controlled using a dedicated remote control (wireless and/or wired, such as pluggable) and/or by using a tablet, phone, smart watch, laptop, computer, and/or other control device. Moreover, the teachings herein are applicable to devices that operate using voice-activated control. Furthermore, the teachings herein are applicable to devices that can be controlled in multiple ways, such by a combination of on-device interface(s), remote control device(s), and voice-activated control, thereby providing the user with flexibility in controlling the device in a manner that is desirable for a particular application.
In the illustrated embodiment, the secondary sound source volume control knob 212 and the right-side ambient volume control knob 210 are cylindrical and have the same center axis 219, but have different widths. For example, the knobs 210 and 212 are of differing diameters, and are positioned in a recessed cavity 221 of the right ear cup 201. The knobs 210 and 212 are positioned coaxially, and the longitudinal axis 219 of both knobs 210 and 212 is substantially parallel to a plane 220 (see
The audio amplification and ear protection device 200 uses one example of touch differentiated controls, which can provide a number of advantages. For example, including one or more flanges or other protrusions or gripping features on the knobs facilitates turning of the knobs, which is particularly useful when the majority of knobs is enclosed with recess 221 and thus inaccessible to the user for gripping. Furthermore, the illustrated arrangement with coaxial knobs 210 and 212 of differing diameters allows the user to tactilely distinguish the two knobs from one another, and also to adjust both knobs in one motion. Although one example of touch differentiated controls is shown, other implementations are possible.
The illustrated audio amplification and ear protection device 200 includes two ear cups 201 and 202, one that goes over each ear of the user. The two ear cups 201 and 202 can separately detect external, ambient noise from outside and separately transmit (or cancel) the noise to the respective ear. In the illustrated embodiment, each of the cups 201 and 202 includes two microphones. However, other implementations are possible, including, for example, configurations with more or fewer microphones. Thus, the cup 201 and/or the cup 202 can include more or fewer microphones. For example, one or more microphones can be included and positioned to capture the user's voice, such as when the user is providing a voice command and/or using the device 200 to make a call.
Including multiple microphones on the device 200 can aid in capturing sounds at a wide variety of angles, including, for instance, 360 degrees around a user. Thus, while the microphones can be used to detect the same sounds, each microphone can face a different direction and provide a more accurate detection of the noise. For example, the microphones closer to the front of the user can detect noise coming from the front, and the microphones closer to the back of the user can detect the noise coming from the back. Similarly, the microphones closer to the right of the user can detect noise coming from the right, and the microphones closer to the left of the user can detect the noise coming from the left. The sounds can be reproduced to the speaker(s) of each ear cup 201 and 202 such that the user can better discriminate which direction sounds are coming from. For instance, if a turkey gobbles to the right of the user, the right-side speaker 231 would reproduce the sound at a higher volume level relative to the left-side speaker 232. Although the illustrated embodiment includes one speaker in each ear cup 201 and 202, other implementations are possible. In one example, separate speakers are provided for sound captured from each microphone of the device. Thus, if a sound is generated behind and to the right of the user, a corresponding speaker would play the sound the loudest.
In another example, a DJ uses the device 200 to both hear a song currently playing and an upcoming song in real-time. The song currently playing is captured from the ambient environment via the device's microphones, and the upcoming song is provided from a secondary sound source (including, but not limited to a Bluetooth connection). The relative volume of the song currently playing can be controlled relative to the volume of the upcoming song, thereby aiding the DJ in providing enhanced beat matching. Additionally, in certain implementations, the sound captured from one direction (for instance, to the right of the DJ) can be separately controlled relative to sound captured from another direction (for instance, to the left of the DJ). Thus, a monitor speaker can be placed on either side of the DJ booth, and the DJ can provide separate sound adjustment to match the volume of the currently playing song in both ears.
The audio amplification and ear protection device 200 simultaneously processes both sounds from an ambient sound source and sounds from a secondary sound source, and allows the user to separately control the volume of the sounds. In one embodiment, the secondary sound source is provided from a wireless connection, such as a Bluetooth connection. Other implementations, however, are possible. Thus, the device 200 can be paired to another device, such as a smartphone, a tablet, a computer, and/or any other suitable electronic device. The paired device (e.g., a cell phone) can transmit audio signals such as music, dialog, or electronic notifications, which can be played in the speakers of the ear cups. The pairing can be activated for a device when the user presses a pairing button 208. The pairing can be performed in a variety of ways, including but not limited to, using the pairing button 208 and/or via automatic pairing. In the illustrated embodiment, sounds from the secondary sound source can be played in the same speakers 231 and 232 as ambient sounds detected by the device's microphones. However, other implementations are possible, such as configuration in which separate speakers are included for outputting the audio received from the secondary sound source.
Thus, the device 200 can be configured to establish a two-way audio communication with a paired device such that a user can talk on the phone via the Bluetooth or other wireless connection, for example.
The audio amplification and ear protection device 200 includes an electrical system housed therein. In one implementation, each of the ear cups 201 and 202 includes electronic circuitry for processing sounds detected from the microphones of the cup and for driving the speaker of the cup. Electronics used for processing sounds from a secondary sound source can be implemented in a wide variety of ways, including, for example, in one or both of the cups. In the illustrated embodiment, the right ear cup 201 is electrically connected to the left ear cup 202 via a wire 214, which is partially concealed in the headband 216 in this example. In another embodiment, the right ear cup 201 and the second ear cup 202 each include a transceiver and communicate to one another wirelessly. In yet another embodiment, the right ear cup 201 and the left ear cup 202 communicate using a combination of wired and wireless signaling.
Additional details of the multi-source audio amplification and ear protection device 200 can be as described herein. For example, in certain embodiments, the multi-source audio amplification and ear protection device 200 can further include built-in light elements, such as reflectors and/or powered lights. Implementing the multi-source audio amplification and ear protection device 200 in this manner can provide a number of advantages, including but not limited to, improved user visibility and/or enhanced aesthetics.
Although one example of an electrical system is shown, multi-source audio amplification and ear protection devices can be implemented in a wide variety of ways. Accordingly, the teachings herein are applicable to electrical systems implemented in a wide variety of ways, including but not limited to, implementations that are based on a device's features, functionality, desired control interface(s), number of speakers, number of microphones, and/or form factor.
The illustrated left audio channel 302a includes a left channel ambient microphone 303a, a left channel variable gain preamplifier 304a, a left channel analog-to-digital converter (ADC) 308a, a left channel digital mixer 309a, a left channel digital signal processor (DSP) 310a, a left channel automatic gain controller 306a, a left channel digital-to-analog converter (DAC) 312a, a left channel summer 313a, a left channel speaker amplifier 314a, and a left channel speaker 316a. Additionally, the illustrated right audio channel 302b includes a right channel ambient microphone 303b, a right channel variable gain preamplifier 304b, a right channel ADC 308b, a right channel digital mixer 309b, a right channel DSP 310b, a right channel automatic gain controller 306b, a right channel DAC 312b, a right channel summer 313b, a right channel speaker amplifier 314b, and a right channel speaker 316b.
The illustrated Bluetooth circuitry 330 includes a light emitting diode (LED) 332, a Bluetooth microphone 334, a Bluetooth controller 336, an antenna 338, a programmable memory 340, and a Bluetooth interface 342, which serves as a secondary sound source control interface, in this example. The illustrated power management circuitry 350 includes a USB interface 354, a battery charging circuit 356, a lithium polymer battery 352, a low dropout (LDO) regulator 358, and a switch 360. The illustrated microcontroller 320 is coupled to an ambient sound control interface 318 and/or a LED control interface 318.
The LED control interface 319 can be configured to control at least one of a wavelength, intensity or blinking/flashing rate of light emitted from one or more LEDs 321 integrated with the various embodiments of multi-source audio amplification and ear protection device described herein.
In the illustrated embodiment, the left channel ambient microphone 303a generates a first ambient sound signal based on detecting ambient sound, and provides the first ambient sound signal to the electrical system 300 for amplification and processing. Additionally, the right channel ambient microphone 303b generates a second ambient sound signal based on detecting ambient sound, and provides the second ambient sound signal to the electrical system 300 for amplification and processing. The microphone 334 generates a third ambient sound signal based on detecting ambient sound, and provides the third ambient sound signal to the electrical system 300 for amplification and processing. The electrical system 300 also receives a secondary sound source signal, which comes from the antenna 338 in this embodiment. However, a secondary sound source signal can be received in other ways. In the illustrated embodiment, the electrical system 300 controls volume of ambient sound based on a first user-controlled volume signal received from the interface 318 and controls volume of sound from a secondary sound source based on a second user-controlled volume signal received from the interface 342.
In the illustrated embodiment, the electrical system 300 controls at least one of a wavelength, intensity or blinking/flashing rate of light emitted from one or more LEDs 321 based on a signal received from the interface 319. The signal received from the interface 319 can be provided by the user, a sensor, a timing device or a Bluetooth device.
The illustrated electrical system 300 can be housed in multi-source audio amplification and ear protection device, such as the multi-source audio amplification and ear protection device 100 of
The microcontroller 320 processes volume control signals received from the ambient sound control interface 318, and provides processed ambient volume control signals to the left and right audio channels 302a and 302b via a serial interface 322 in this example. The processed ambient volume control can be provided to, for instance, the left and right channel DSPs 310a and 310b.
The microcontroller 320 processes LED control signals received from the LED control interface 319, and provides control signals to the LED 321.
The Bluetooth controller 336 detects sounds (for instance, a user speaking) via the Bluetooth microphone 334, and communicates with a paired device via the Bluetooth antenna 338. The illustrated example includes an LED 332 for indicating when a Bluetooth connection is active. The Bluetooth controller 336 also receives Bluetooth volume control signals from the Bluetooth sound control interface 342. The Bluetooth controller 336 processes Bluetooth signals received via the antenna 338 based on the Bluetooth volume control signals to generate a left channel Bluetooth signal and a right channel Bluetooth signal. As shown in
Accordingly, the left and right channel speakers 316a and 316b output sounds from both the secondary sound source (Bluetooth in this example) and the ambient sound source (captured via microphones 303a and 303b). Additionally, the Bluetooth sound control interface 342 and the ambient sound control interface 318 can be used to control volume of Bluetooth sounds separately from volume of ambient sounds.
The illustrated left and right audio channels 302a and 302b are implemented with automatic gain control. For example, when the left DSP 310a detects loud sounds via the left channel ambient microphone 303a, the left channel automatic gain controller 306a can reduce the gain of the left channel variable gain preamplifier 304a, thereby reducing the ambient sound volume heard by the user from the left channel. Similarly, when the right DSP 310b detects loud sounds via the right channel ambient microphone 303b, the right channel automatic gain controller 306b can reduce the gain of the right channel variable preamplifier 304b.
Thus, the illustrated electrical system 300 illustrates one example of an electrical system implemented with an audio compression function to protect a user's ears from damage from loud sounds. For instance, the electrical system 300 can be configured to determine when sounds detected by the microphones are above a threshold sound level (e.g., 65 dB, 70 dB, 80 dB, 85 dB, 90 dB, 100 dB, 110 dB, 120 dB, or higher), and drive the speakers in the corresponding ear pieces to a safe output level.
At the same time, the left and right audio channels 302a and 302b can provide adjustable volume output of sounds below the safety threshold that are detected by the left and right ambient microphones 303a and 303b, and provide corresponding sounds in the right and left speakers 316a and 316b, respectively. The sounds detected by the microphones 303a and 303b are outputted to the left and right speakers 316a and 316b based on the current volume control settings by the ambient sound control interface 318. Additionally, the Bluetooth sound control interface 342 separately controls the volume of Bluetooth sounds from the Bluetooth circuitry 330.
Although one example gain/compression curve is shown, the teachings herein are applicable to a wide variety of gain/compression characteristics. For example, other implementations of volume control are possible, including, for example, different implementations of minimum and/or maximum volume. For instance, in other implementations, when the device is on with ambient volume set to minimum, a device can provide attenuation to ambient sound or mute ambient sound, thereby helping a user to reduce or eliminate the hearing of ambient sound in noisy environments, such as at construction sites, on boats, and/or at shooting ranges.
As shown in
The ambient sound control interface 511 can be used to control a volume of ambient sound played by the device 100. Additionally, the secondary sound control interface 512 can be used to separately control a volume of sound from a secondary sound source play by the device 100.
The operating mode control interface 513 can be used to control an operating mode of the device 100. In one example, the multi-source audio amplification and ear protection device 100 can be operable in a selected mode chosen from multiple user-selectable operating modes or profiles. Additionally, the different user-selectable operating modes can provide different amounts of amplification to sounds of different frequencies and/or provide other mode-dependent processing. For instance, the user-selectable multiple operating modes can include, but are not limited to, one or more of an indoor human voice mode, an outdoor human voice mode, a hunting mode, an indoor shooting mode, an outdoor shooting mode, a bird watching mode, a car mode, a bus mode, a train mode, an aircraft mode, a restaurant mode, a construction site mode, a sporting boat mode, a classroom mode, an audio guide mode, a media assisted listening mode, a loud concert mode, and/or a headphones mode. Each operating mode can provide amplification, equalization, and/or other audio processing suitable for a particular application or operating environment associated with the mode. The sound volume after such processing can be further scaled by the user via volume control, including separate volume control for both an ambient sound source and a secondary sound source via the interfaces 511 and 512.
The biometrics 514 can include displayed data related to biometrics captured by the device 100, including but not limited to, a user's footsteps, amount of perspiration, heart rate, blood pressure, and/or skin temperature. Including the biometrics 514 allows the user and/or authorized third-part to obtain biometric data reports. In one example, a nurse, caregiver, or other authorized person can use the remote device 501 to obtain biometric data from a patient wearing the device 100. In certain implementations, the device 100 can auto-generate a review request and/or alarm when the biometric data is abnormal.
The LED control interface 516 can be configured to change a wavelength, an intensity or a flashing/blinking rate of light emitted from one or more LEDs integrated with the multi-source audio amplification and ear protection device 100. The LED control interface 516 can comprise buttons and/or toggle switches that can turn on or turn off one or one or more LEDs integrated with the multi-source audio amplification and ear protection device 100. The buttons and/or toggle switches of the LED control interface 516 can be further configured to change the color of light emitted from the one or more LEDs. The buttons and/or toggle switches of the LED control interface 516 can also be configured to control the flashing rate/blinking rate of the one or more LEDs. Additionally, the buttons and/or toggle switches of the LED control interface 516 can be configured to control the intensity of the light emitted from the one or more LEDs.
The illustrated display 502 includes other controls 515, which can be used to control the multi-source audio amplification and ear protection device 100 in a wide variety of ways. In one example, the controls 515 can be used to remotely turn on or off the device, run diagnostics, perform software updates, and/or perform a wide variety of other functions.
Although one example of components and functionality is shown in
As discussed above, there is a wide range of applications for multi-source audio amplification and ear protection devices that allow a user to hear an ambient sound source captured via microphone(s) while also hearing sounds from a secondary audio source, such as audio received from a wireless connection (for example, Bluetooth), a wired connection (for example, an audio input port), and/or a built-in audio component (for instance, a music player).
In certain embodiments herein, a multi-source audio amplification and ear protection device includes built-in light elements, such as reflectors and/or powered lights. Implementing a multi-source audio amplification and ear protection device with one or more integrated light elements provides a number of advantages, including but not limited to, enhanced safety and/or visibility.
In one example, a multi-source audio amplification and ear protection device can be used by a jogger or runner. The jogger can listen to streamed music and/or receive phone calls while also hearing ambient sounds, including surrounding nature, people's voices, barking dogs, and/or cars. The multi-source audio amplification and ear protection device further includes built-in light elements, such as reflectors and/or powered lights, which provide the jogger with enhanced visibility and/or alert others to the presence of the jogger.
Other suitable applications for multi-source audio amplification and ear protection devices with integrated light elements include but are not limited to, bicycling, skateboarding, roller skating, snow skiing, snowboarding, sledding, hiking, shooting, jet skiing, wake boarding, water skiing, jet skiing, team sports, and/or dog walking.
Accordingly, a multi-source audio amplification and ear protection device with light elements can be used in a wide variety of applications to enhance safety and/or increase visibility. The light elements can be used at times of day with low sunlight levels, such as at night, in early morning, or in late evening. Moreover, the light elements can be used in tunnels, heavy shade, and/or in poor weather conditions.
Accordingly, integrated reflectors and/or powered lights provide increased visibility, and can be used when a user is engaged in various mobile activities.
Integrating a multi-source audio amplification and ear protection device with reflectors and/or powered lights can also obviate a need to buy separate, bulky reflectors and/or flashing lights. Furthermore, in implementations in which the built-in light elements include powered lights, a shared power source can be used for the light elements and other circuitry of the device, such as circuitry used for playing music and/or making calls. For example, the power management circuitry 350 of
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. Conjunctions, such as “and,” “or” are used interchangeably and are intended to encompass any one element, combination, or entirety of elements to which the conjunction refers.
Depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially.
The multi-source audio amplification and ear protection devices described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described herein. Various disclosed and illustrated modules may be implemented as software and/or firmware on a logic circuitry, processor, microcontroller, ASIC/FPGA, or dedicated hardware. Software and other modules may reside remotely from a multi-source audio amplification and ear protection device, such as on personal computers, computerized tablets, PDAs, and other devices suitable for the purposes described herein, such as remote control of a multi-source audio amplification and ear protection device. Software and other modules may be accessible via local memory, via a network, or via other means suitable for the purposes described herein. User interface components described herein may comprise buttons, knobs, switches, touchscreen interfaces, and other suitable interfaces.
Computer program instructions may be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to operate in a particular manner, thereby aiding in controlling a multi-source audio amplification and ear protection device.
The processing of the various components of the illustrated systems can be distributed across multiple logic circuits, processors, and other computing resources. In addition, two or more components of a system can be combined into fewer components. Various components of the illustrated systems can be implemented in one or more virtual machines, rather than in dedicated computer hardware systems. Moreover, in some embodiments the connections between the components shown represent possible paths of data flow, rather than actual connections between hardware. While some examples of possible connections are shown, any of the subset of the components shown can communicate with any other subset of components in various implementations.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the described methods and systems may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
This application claims the benefit of U.S. Provisional Patent Application No. 62/427,703, filed Nov. 29, 2016, titled MULTI-SOURCE AUDIO AMPLIFICATION AND EAR PROTECTION DEVICES WITH INTEGRATED LIGHT ELEMENTS, the entire contents of which are incorporated by reference herein for all purposes and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
62427703 | Nov 2016 | US |